$\mathcal{N} = 6$ CHERN-SIMONS THEORIES IN HARMONIC SUPERSPACE

B.M. Zupnik BLTP, JINR, Dubna

D=3 Chern-Simons theory

$$S_{CS} = \frac{k}{4\pi} \int d^3x \varepsilon^{mnr} \mathbf{Tr} \left\{ A_m (\partial_n A_r + \frac{i}{3} [A_n, A_r]) \right\}$$

where A_m is the three-dimensional gauge field. The classical CS solutions are pure gauge fields $F_{nr}(A) = 0$.

D=3 BF-theory

$$S_{BF} = \int d^3x \varepsilon^{mnr} \mathbf{Tr} \left\{ B_m F_{nr}(A) \right\}$$

This model has the additional noncompact Abelian b-transformations

$$\delta B_m = \partial_m b + i[A_m, b] + i[B_m, a], \quad \delta A_m = \partial_m a + i[A_m, a]$$

 $D=3, \mathcal{N}=1$ supersymmetric CS theory in the superspace $z=(x^m,\theta^\alpha)$ is described by the spinor gauge superfield $A_\alpha(z)$ and the superfield strength W_α [W. Siegel (1979), J. Schonfeld (1981)].

 $D=3, \mathcal{N}=2$ supersymmetric CS theory in the superspace $z=(x^m,\theta^\alpha,\bar{\theta}^\alpha)$ is described by the prepotential V and the pseudoscalar superfield strength W [B. Zupnik, D. Pak (1988)].

$$S_{CS} = \int d^3x d^4\theta V W = \int d^3x d^4\theta V D^{\alpha} \bar{D}_{\alpha} V$$

 $D=3, \mathcal{N}=3$ general superspace: $x^m, \theta^{\alpha}_{(ik)}, \quad i, k=1,2$ $D=3, \mathcal{N}=3$ harmonic superspace uses the SU(2)/U(1) harmonics u_i^{\pm}

$$\theta_{\alpha}^{++} = \theta_{\alpha}^{ik} u_i^+ u_k^+, \quad \theta_{\alpha}^0 = \theta_{\alpha}^{ik} u_i^+ u_k^-$$

 $\mathcal{N}=3$ gauge prepotential V^{++} and superfield strength W^{++} live in the same analytic superspace [D. Khetselius, B. Zupnik (1988)]

$$S_{CS} = \int d^3x d\theta^{-4} du V^{++} W^{++} = \int d^3x d^6\theta du V^{++} V^{--}$$
$$D^{++} V^{--} = D^{--} V^{++}, \quad W^{++} = -\frac{1}{4} D^{++\alpha} D_{\alpha}^{++} V^{--}$$

The $\mathcal{N}=6$ ABJM model was reformulated in this $\mathcal{N}=3$ superfield formalism [J. Buchbinder, E. Ivanov, O. Lechtenfeld, N. Pletnev, I. Samsonov, B. Zupnik (2008)]. This formalism was presented in the talk of I. Samsonov on this conference.

The action of the $\mathcal{N}=3$ abelian BF theory can be constructed as the difference of two Chern-Simons actions

$$\begin{split} \frac{1}{4} \int d\zeta^{-4} du [(V^{++} + A^{++})(W_V^{++} + W_A^{++}) - (V^{++} + A^{++})(W_V^{++} + W_A^{++})] \\ &= \frac{1}{2} \int d\zeta^{-4} [V^{++} W_A^{++} + A^{++} W_V^{++}] \end{split}$$

where the prepotentials V^{++} and A^{++} have opposite parities. The fourth supersymmetry transformations of these prepotentials are

$$\delta_4 V^{++} = \epsilon^{\alpha} D_{\alpha}^0 V^{++}, \quad \delta_4 A^{++} = -\epsilon^{\alpha} D_{\alpha}^0 A^{++}$$

This model can be also constructed in the $\mathcal{N}=4$ superspace.

 $D=3, \mathcal{N}=4$ general superspace $x^m, \theta^{\alpha}_{ia}, \quad i,k=1,2, \quad a=1,2$ is covariant with respect to the group $SU_L(2) \times SU_R(2)$. We introduce left harmonics u^{\pm}_k and right harmonics $v^{(\pm)}_a$. The mirror map interchanges indices of two groups

$$\mathcal{M}: \quad SU_L(2) \leftrightarrow SU_R(2), \quad u_k^{\pm} \leftrightarrow v_a^{(\pm)}, \quad \theta_{12}^{\alpha} \leftrightarrow \theta_{21}^{\alpha}$$

The $\mathcal{N}=4$ left harmonic superspace uses the harmonics u_k^{\pm} and the analytic projection of the Grassmann coordinates $\theta_a^{+\alpha}=-u^{+k}\theta_{ka}^{\alpha}$. It is analogous to the $D=4, \mathcal{N}=2$ harmonic superspace [A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, E. Sokatchev (1984)]. The left gauge prepotential V^{++} and its superfield strength

$$W^{ab} = -\frac{1}{4}D^{+a\alpha}D_{\alpha}^{+b}V^{--}$$

are defined in different superspaces. The superfield $W = \sqrt{W^{ab}W_{ab}}$ plays the role of the superconformal dilaton. The constants φ and C^ab break down spontaneously the superconformal symmetry in the representation $W^{ab} = \varphi(C^{ab} + w^{ab})$. We can construct the superconformal generalization of the $\mathcal{N} = 4$ superfield abelian gauge action [B. Zupnik (1999)]

$$S_W^0 = \int d^3x d^8\theta du W^{-1} V^{++} V^{--}$$

The mirror $\mathcal{N}=4$ right harmonic superspace uses the harmonics $v_a^{(\pm)}$ and the corresponding projection of the Grassmann coordinates $\theta_k^{(+)\alpha}=-v^{(+)a}\theta_{ka}^{\alpha}$. The mirror abelian prepotential $A^{(++)}$ has the left analytic superfield strength

$$L^{++}(A) = -\frac{1}{4}u_k^+ u_l^+ D^{(+)k\alpha} D_\alpha^{(+)l} A^{(--)}, \quad D^{++}L^{++} = 0,$$

$$D^{(++)}A^{(--)} = D^{(--)}A^{(++)}, \quad D_{\alpha}^{(+)l}A^{(++)} = 0$$

The action of the $\mathcal{N}=4$ superfield abelian BF theory

$$S_{BF} = \beta \int d\zeta_L^{-4} du V^{++} L^{++}(A)$$

In components, it connects fields of the mirror gauge multiplets [R. Brooks, S.J. Gates (1994)]

$$S_{BF} = \beta \int d^3x (2\varepsilon^{mnp} A_m \partial_n B_p - \frac{1}{2}\phi^{ab} Y_{ab} - \frac{1}{2}\Lambda^{ik} X_{ik} + 2\rho_\alpha^{ka} \lambda_{ka}^\alpha)$$

This term yields the non-trivial interaction of the left and right abelian gauge multiplets in the \mathcal{M} -invariant action

$$S_W^0 + \mathcal{M}S_W^0 + S_{BF}$$

which describes the interactions of the topologically massive gauge fields with the scalar and fermion fields. The mixed scalar potential term is

$$P = -\frac{\sqrt{2}\beta^2}{4} \int d^3x \left[\phi^{ab}\phi_{ab}\sqrt{\Lambda^{kl}\Lambda_{kl}} + \Lambda^{kl}\Lambda_{kl}\sqrt{\phi^{ab}\phi_{ab}} \right]$$

We can add interactions of the left hypermultiplet q_a^+ and right hypermultiplet $Q_k^{(+)} = \mathcal{M} q_a^+$ with the corresponding gauge multiplets

$$S(q,V) = \int d\zeta_L^{-4} du q_a^+ [D^{++} \delta_b^a + (\tau_3)_b^a V^{++}] q^{+b},$$

$$S(Q,A) = \mathcal{M}S(q,V) = \int d\zeta_R^{(-4)} dv Q_k^{(+)} [D^{(++)} \delta_l^k + (\tau_3)_l^k A^{(++)}] Q^{(+)l}$$

 $\mathcal{N}=6$ general superspace $z=(x^m,\theta_a^\alpha)$ where $a=1,\ldots 6$ is the 6-vector index of the group SO(6). We analyze the \mathbf{CS}_3^6 theory using the SO(6)/U(3) harmonics [P.S. Howe, M.I. Leeming (1994)]

$$U = (U_a^{+k}, U_{ka}^{-})$$

where a is the SO(6) vector index, +,- are the U(1) charges, and k=1,2,3 are indices of the spinor representations of SU(3). The basic relations for these harmonics are

$$U_a^{+k}U_a^{+l} = 0, \quad U_a^{+k}U_{la}^{-} = \delta_l^k, \quad U_{ka}^{-}U_{la}^{-} = 0,$$

$$U_a^{+k}U_{kb}^{-} + U_{ka}^{-}U_b^{+k} = \delta_{ab}.$$

We treat the SO(6)/U(3) harmonics as real with respect to the special \sim conjugation.

The SO(6) invariant harmonic derivatives are

$$\begin{split} \partial_k^{++} &= \varepsilon_{kjl} U_a^{+j} \frac{\partial}{\partial U_{la}^{-}}, \quad \partial^{--k} = \varepsilon^{kjl} U_{ja}^{-} \frac{\partial}{\partial U_a^{+l}}, \\ \partial_l^k &= U_a^{+k} \frac{\partial}{\partial U_a^{+l}} - U_{la}^{-} \frac{\partial}{\partial U_{ka}^{-}} - \frac{1}{3} \delta_l^k \left(U_a^{+j} \frac{\partial}{\partial U_a^{+j}} - U_{ja}^{-} \frac{\partial}{\partial U_{ja}^{-}} \right), \\ \partial^0 &= U_a^{+j} \frac{\partial}{\partial U_a^{+j}} - U_{ja}^{-} \frac{\partial}{\partial U_{ja}^{-}}. \end{split}$$

In the analytic basis (AB) of the SO(6)/U(3) harmonic superspace, we introduce harmonic projections of the N=6 spinor coordinates

$$\theta^{+k\alpha} = \theta_a^{\alpha} U_a^{+k}, \quad \theta_k^{-\alpha} = \theta_a^{\alpha} U_{ka}^{-\alpha}$$

and the corresponding analytic vector coordinates

$$y^{m} = x^{m} + i(\theta_{a}\gamma^{m}\theta_{b})U_{a}^{+k}U_{kh}^{-}$$

where γ_m are the 3D gamma-matrices. The analytic integral measure is pure imaginary and dimensionless

$$d\mu^{(-6)} = dUd^3yd\theta^{(-6)}, \quad \int d\theta^{(-6)}(\theta^{+1})^2(\theta^{+2})^2(\theta^{+3})^2 = 1.$$

This integral measure is odd with respect to the P parity transformation

$$(y^0, y^1, y^2) \to (y^0, -y^1, y^2), \quad \theta^{+k\alpha} \to (\gamma_1)^{\alpha}_{\beta} \theta^{+k\beta}$$

The analytic-superspace representation of the harmonic derivatives have the following form:

$$\mathcal{D}_{k}^{++} = \partial_{k}^{++} - i\varepsilon_{kjl}(\theta^{+j}\gamma^{m}\theta^{+l})\partial_{m} - \varepsilon_{kjl}\theta^{+j\alpha}\partial_{\alpha}^{+l}.$$

where

$$\partial_{k\alpha}^{-} = \frac{\partial}{\partial \theta^{+k\alpha}}, \quad \partial_{\alpha}^{+k} = \frac{\partial}{\partial \theta_{k}^{-\alpha}}.$$

The AB-representation of the spinor derivatives is

$$D_{k\alpha}^- = \partial_{k\alpha}^- - 2i\theta_k^{-\beta}(\gamma^m)_{\alpha\beta}\partial_m, \quad D_{\alpha}^{+k} = \partial_{\alpha}^{+k}.$$

The analytic superfield gauge parameters satisfy the conditions

$$D_{\alpha}^{+k}\Lambda(\zeta) = 0, \quad \mathcal{D}_{l}^{k}\Lambda = \mathcal{D}^{0}\Lambda = 0$$

In the gauge group SU(n), we use the following covariant derivatives and the analytic prepotentials:

$$\nabla_k^{++} = \mathcal{D}_k^{++} + V_k^{++}(\zeta), \quad (V_k^{++})^{\dagger} = -V_k^{++}, \\ \mathcal{D}_l^k V_i^{++} = \frac{1}{3} \delta_l^k V_i^{++} - \delta_i^k V_l^{++}, \quad \mathcal{D}^0 V_k^{++} = 2V_k^{++}$$

The superfield action of the $N\!=\!6$ CS theory has the following form in our notation:

$$S_{CS} = \frac{i}{12} \int d\mu^{(-6)} \varepsilon^{klj} \mathbf{Tr} \left\{ V_k^{++} \mathcal{D}_l^{++} V_j^{++} + \frac{1}{3} V_k^{++} [V_l^{++}, V_j^{++}] \right\}$$

The corresponding classical equations of motion $F_{kl}^{(+4)} = 0$ have the pure gauge solutions only.

The N=6 BF theory contains interactions of V_k^{++} with the second analytic gauge superfield B_k^{++}

$$\delta_{\Lambda} B_k^{++} = [B_k^{++}, \Lambda], \quad \delta_{\Sigma} B_k^{++} = \mathcal{D}_k^{++} \Sigma + [V_k^{++}, \Sigma]$$

where Σ is the independent superfield matrix parameter describing Abelian translations in the group space.

The corresponding superfield action has the following form:

$$S_{BF} = i \int d\mu^{(-6)} \varepsilon^{klj} \mathbf{Tr} \left\{ \frac{1}{2} B_k^{++} F_{lj}^{(+4)}(V) \right\}. \tag{0.1}$$

The BF-action preserves the P parity if B_k^{++} is the P-odd superfield.

The classical equations of the BF theory are

$$F_{lj}^{(+4)}(V) = 0, \quad \varepsilon^{klj} \nabla_l^{++} B_j^{++} = 0$$

They have the pure gauge solutions for both super-fields.

The superconformal transformations SC_3^6 of the N=6 analytic coordinates

$$\delta_{sc}y^{m} = c^{m} + 2l y^{m} + \varepsilon^{mnr} L_{n}y_{r} + (y^{n}k_{n})y^{m} - \frac{1}{2}y^{2}k^{m} - 2i(\epsilon_{k}^{-}\gamma^{m}\theta^{+k})$$
$$-i\omega_{ab}U_{ka}^{-}U_{lb}^{-}(\theta^{+k}\gamma^{m}\theta^{+l}) + iy^{m}\theta^{+k\alpha}\eta_{k\alpha}^{-} + i\varepsilon^{mnr}y_{n}(\theta^{+k}\gamma_{r}\eta_{k}^{-}),$$

$$\delta_{cs}\theta^{+k\alpha} = \epsilon^{+k\alpha} + L^{\alpha}_{\beta}\theta^{+k\beta} + l\theta^{+k\alpha} - \omega_{bc}U^{+k}_{b}U^{-}_{lc}\theta^{+l\alpha} + \frac{1}{2}y^{\alpha\beta}\theta^{+k\gamma}k_{\beta\gamma} + \frac{1}{2}y^{\alpha\beta}\eta^{+k}_{\beta} - i\theta^{+l\alpha}\theta^{+k\beta}\eta^{-}_{l\beta},$$

$$\delta_{sc}U_a^{+k} = \varepsilon^{klj}\lambda_l^{++}U_{ja}^{-}, \quad \delta_{sc}U_{ka}^{-} = 0,$$

$$\lambda_l^{++} = \varepsilon_{ljn}\left[\frac{i}{2}k_{\alpha\beta}\theta^{+j\alpha}\theta^{+n\beta} + i\theta^{+j\alpha}\eta_{\alpha}^{+n} + \frac{1}{2}\omega_{cb}U_c^{+j}U_b^{+n}\right],$$

where c^m, L^m, l and k^m are parameters of the 3D conformal group, ω_{ab} are the SO(6) parameters, and the harmonic projections of the odd parameters ϵ_a^{α} and η_a^{α} are used

$$\epsilon^{+k\alpha} = \epsilon_a^{\alpha} U_a^{+k}, \quad \epsilon_k^{-\alpha} = \epsilon_a^{\alpha} U_{ka}^{-}, \quad \eta^{+k\alpha} = \eta_a^{\alpha} U_a^{+k}, \quad \eta_k^{-\alpha} = \eta_a^{\alpha} U_{ka}^{-}.$$

The analytic integral measure is invariant with respect to these transformations.

The SC_3^6 transformations of the harmonic derivatives are

$$\delta_{sc}\mathcal{D}_k^{++} = \lambda_l^{++}\mathcal{D}_k^l - \frac{2}{3}\lambda_k^{++}\mathcal{D}^0, \quad \delta_{sc}\mathcal{D}_l^k = \delta_{sc}\mathcal{D}^0 = 0$$

The superfield CS and BF actions are invariant with respect to the superconformal transformations

$$\delta_{sc}V_k^{++} = 0, \quad \delta_{sc}F_{kl}^{(+4)} = 0, \quad \delta_{sc}B_k^{++} = 0.$$

The Grassmann decompositions of the gauge BF-superfield V_k^{++} contain the vector gauge field plus an infinite number of auxiliary fields

$$V_k^{++} = \varepsilon_{kjl}(\theta^{+j}\gamma^m\theta^{+l})A_m + i\Theta^{(+3)\alpha\beta\gamma}U_{ka}^-\Psi_{\alpha\beta\gamma}^a + i\Theta_k^{(+3)l\alpha}U_{la}^-\Psi_{\alpha}^a + \dots$$

where $\Psi^a_{\alpha\beta\gamma}(x)$ is the unusual auxiliary field.

We do not know how to describe interaction of this CS prepotential with the $\mathcal{N}=6$ matter superfields.

The equivalent formalism of the $\mathcal{N}=6$ CS theory can be formulated in the $\mathcal{N}=5$ harmonic superspace [Zupnik (2007)]. We used the SO(5)/U(2) harmonics

$$U_a^K = (U_a^{+i}, U_a^0, U_{ia}^-) = (U_a^{+1}, U_a^{+2}, U_a^0, U_{1a}^-, U_{2a}^-)$$

where $a=1,\ldots 5$ is the vector index of the group SO(5), i=1,2 is the spinor index of the group SU(2), and U(1)-charges are denoted by symbols +,-,0. The basic relations for these harmonics are

$$U_a^{+i}U_a^{+k} = U_a^{+i}U_a^0 = 0, U_{ia}^{-}U_{ka}^{-} = U_{ia}^{-}U_a^0 = 0,$$
$$U_a^{+i}U_{ka}^{-} = \delta_k^i, U_a^0U_a^0 = 1$$

We consider the SO(5) invariant harmonic derivatives with nonzero U(1) charges

$$\partial^{+i} = U_a^{+i} \frac{\partial}{\partial U_a^0} - U_a^0 \frac{\partial}{\partial U_{ia}^-}, \quad \partial^{+i} U_a^0 = U_a^{+i}, \quad \partial^{+i} U_{ka}^- = -\delta_k^i U_a^0,$$

$$\partial^{++} = U_{ia}^+ \frac{\partial}{\partial U_i^-}, \quad [\partial^{+i}, \partial^{+k}] = \varepsilon^{ki} \partial^{++}, \quad \partial^{+i} \partial_i^+ = \partial^{++}$$

The SO(5)/U(2) harmonics allow constructing projections of the spinor coordinates and the partial spinor derivatives

$$\theta^{+i\alpha} = U_a^{+i}\theta_a^{\alpha}, \quad \theta^{0\alpha} = U_a^0\theta_a^{\alpha}, \quad \theta_i^{-\alpha} = U_{ia}^{-}\theta_a^{\alpha}$$

We use the following representation of the vector coordinate:

$$x_A^m = x^m + i(\theta^{+k}\gamma^m\theta_k^-)$$

and the harmonic derivatives in the AB representation:

$$\mathcal{D}^{+k} = \partial^{+k} - i(\theta^{+k}\gamma^m\theta^0)\partial_m + \theta^{+k\alpha}\partial_\alpha^0 - \theta^{0\alpha}\partial_\alpha^{+k},$$

$$\mathcal{D}^{++} = \partial^{++} + i(\theta^{+k}\gamma^m\theta_k^+)\partial_m + \theta_k^{+\alpha}\partial_\alpha^{+k}$$

The integration measure in the analytic superspace $d\mu^{(-4)}$ has the dimension zero

$$d\mu^{(-4)} = dUd^3x_A(\partial_{\alpha}^0)^2(\partial_{i\alpha}^-)^4 = dUd^3x_Ad\theta^{(-4)}$$

The gauge superfields (prepotentials) $V^{+k}(\zeta)$ and $V^{++}(\zeta)$ in the harmonic SO(5)/U(2) superspace satisfy the Grassmann analyticity and U(2)-covariance conditions

$$D_{\alpha}^{+k}V^{+k} = D_{\alpha}^{+k}V^{++} = 0, \quad \mathcal{D}_{j}^{i}V^{+k} = \delta_{j}^{k}V^{+i}, \quad \mathcal{D}_{j}^{i}V^{++} = \delta_{j}^{i}V^{++}$$

We treat these prepotentials as connections in the covariant gauge derivatives

$$\nabla^{+i} = \mathcal{D}^{+i} + V^{+i}, \quad \nabla^{++} = \mathcal{D}^{++} + V^{++}$$

The superfield action in the analytic SO(5)/U(2) superspace is defined on three prepotentials V^{+k} and V^{++}

$$S_{CS} = \frac{ik}{12\pi} \int d\mu^{(-4)} \mathbf{Tr} \left\{ V^{+j} \mathcal{D}^{++} V_j^+ + 2V^{++} \mathcal{D}_j^+ V^{+j} + (V^{++})^2 + V^{++} [V_j^+, V^{+j}] \right\}$$

The transformation of the sixth supersymmetry can be defined on the analytic $\mathcal{N}=5$ superfields

$$\delta_6 V^{++} = \epsilon_6^{\alpha} D_{\alpha}^0 V^{++}, \quad \delta_6 V^{+k} = \epsilon_6^{\alpha} D_{\alpha}^0 V^{+k}$$