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Introduction

Standard Model Extension (SME [Kostelecký])

Elaborated for studying the manifestation of the ‘New Physics’
(Strings, Extra Dimensions, Quantum Gravity,...) at low energies
E � mPl ∼ 1019ГэВ
Introduces a set of correction terms to the Lagrangian of SM (no new
fields!), that maintain some ‘natural’ features of SM:

observer Lorentz invariance (although the vacuum is not
Lorentz-invariant)
unitarity
microcausality
SU(3)C × SU(2)I × U(1)Y gauge invariance
power-counting renormalizablilty (for the minimal SME)

When E � mW ∼, the SME results in the extended QED with
U(1)em gauge invariance typical for SM
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Casimir effect within extended QED (O.G.Kharlanov and
V.Ch.Zhukovsky)

(3+1)D Maxwell-Chern-Simons electrodynamics

A particular case of extended QED with the Chern-Simons term:

L = −1

4
FµνF

µν +
1

2
ηµεµναβA

νFαβ + ψ̄(iγµDµ −m)ψ.

ηµ is a constant 4-vector, breaks CPT and Lorentz invariance.

ηµ may be a manifestation of axion condensation [Carroll, Field,
Jackiw,1992], or of the background torsion [Dobado,Maroto,1996]
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Casimir effect within extended QED (O.G.Kharlanov and
V.Ch.Zhukovsky)

The model we use

(3+1)D Maxwell-Chern-Simons electrodyanamics, ηµ = {η, 0}
Photon sector: ψ, ψ̄ = 0

Two infinite parallel superconductor plates separated by D = 2a

Gauge: A0 = 0, div A = 0

Equations of motion: �A = 2η rot A

T 00 = 1
2 (E2 + H2)− ηA ·H

When a < π/4|η|, the theory is stable [1]!

Vacuum energy and Casimir force (per unit area):
Evac =

∫
d3x
L2 〈T 00(x)〉 =

∑
n

ωn(D)
2L2 , fCasimir = 1

L2
∂Evac
∂D ,

n is a complete set of quantum numbers, L→∞ is linear plate size.

The force is gauge-invariant, athough the energy is not [1]
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Casimir effect within extended QED (O.G.Kharlanov and
V.Ch.Zhukovsky)

One-photon eigenstates [1]

A(x, t) = N e∓iωt+ikx f(z), k = {kx , ky , 0}.
(∇2 + 2η rot +ω2)A = 0, div A = 0,

Ax = Ay = 0 at z = ±a (boundary conditions at the conductor)
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Casimir effect within extended QED (O.G.Kharlanov and
V.Ch.Zhukovsky)

One-photon eigenstates [2]

Ansatz:

Aε,k,Π,nz (x, t) = N e−iεωt+ikx(fzez + fk k̂ + fzk [ez k̂]), k = {kx , ky , 0}.
Transversality implies: fk = i

k ∂z fz ,

Parity Π = ±1: fk(−z) = −Πfk(z), fzk,z(−z) = Πfzk,z(z).

Equations for fkz,z :

(ω2 − k2 + ∂2
z )kfy = 2iη(k2 − ∂2

z )fz ,

(ω2 − k2 + ∂2
z )fz = −2iηkfy ,

fy (a) = 0, ∂z fz(a) = 0

The existence of nontrivial solutions implies that:

gΠ(ω2) ≡ ϕΠ(κ+a)ϕ−Π(κ−a) sin θ− + ϕΠ(κ−a)ϕ−Π(κ+a) sin θ+ = 0,

κ± =
p

K± − k2, K± = ∓η +
p
ω2 + η2, sin θ± = κ±/K±; ϕ±1(x) ≡

(
cos x

sin x

V. Ch. Zhukovsky (MSU) Vacuum Polarization and Casimir Effect Sakharov conference 9 / 37
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Casimir effect within extended QED (O.G.Kharlanov and
V.Ch.Zhukovsky) Vacuum energy via the zeta function regularization

Vacuum energy

Renormalized vacuum energy (Casimir energy) per 1cm2:

Evac =
∑
n

ωn
2L2 = 1

2ζ(−1/2), fCasimir = ∂Evac
∂D ,

ζ(s) = 1
L2

∑
n

(ω2
n)−s =

∞∫
0

kdk
2π

∑
Π=±1

∑
nz

(ω2
k,Π,nz

)−s .

For sufficiently large Re s, the series for ζ(s) is convergent; for other s ∈ C,
it is analytically continued.
When η = 0:

ζ(s)|η=0 =

∞∫
0

kdk

2π

∑
Π=±1

∞∑
nz =1

(
k2 +

(πnz

2a

)2
)−s

=

(
D

π

)2s−2
ζR(2s − 2)

2π(s − 1)
,

fCasimir |η=0 =
π2

240D4
(attraction),

ζR(s) =
∞∑

n=1

1
ns is the Riemann zeta function.
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Casimir effect within extended QED (O.G.Kharlanov and
V.Ch.Zhukovsky) Vacuum energy via the zeta function regularization

The η-correction to the zeta function [1]

ζ(s) =
∞∫
0

kdk
2π

∑
Π=±1

∑
nz

(ω2
n)−s , n = {k,Π, nz}

ωn|η=0 ≡ ω0n =
√

k2 +
(
πnz
2a

)2.

Note that ωn are the roots of the equation gΠ(ω2) = 0, which is even with
respect to changing the sign of η, then ωn = ωn(η2).

∑
Π=±1

∂ωn

∂(η2)

∣∣∣∣
η=0

= −
∑

Π=±1

∂2gΠ/∂η
2

2∂gΠ/∂ω

∣∣∣∣
η=0,ω=ω0n

= − 1

ω0n
+

4a2k2

n2
zπ

2ω0n
,

∂ζ(s)

∂(η2)

∣∣∣∣
η=0

=

∞∫
0

kdk

2π

∑
nz

−2s

(ω2
0n)s+1/2

∑
Π=±1

∂ωn

∂(η2)

∣∣∣∣
η=0

.

V. Ch. Zhukovsky (MSU) Vacuum Polarization and Casimir Effect Sakharov conference 12 / 37
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Casimir effect within extended QED (O.G.Kharlanov and
V.Ch.Zhukovsky) Vacuum energy via the zeta function regularization

The η-correction to the zeta function [2]

∂ζ(s)

∂(η2)

∣∣∣∣
η=0

=

∞∫
0

kdk

2π

∞∑
nz=1

2s(
k2 +

(
πnz
2a

)2
)s+1

[
1− 4a2k2

π2n2
z

]
=

=
s − 2

2π(s − 1)

(
2a

π

)2s

ζR(2s)

ζ(s) =
1

2π(s − 1)

(
D

π

)2s−2
(
ζR(2s − 2) + (s − 2)

(
ηD

π

)2

ζR(2s) +O(η4)

)
.
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Casimir effect within extended QED (O.G.Kharlanov and
V.Ch.Zhukovsky) Vacuum energy via the zeta function regularization

The correction to the Casimir force

fCasimir =
∂

∂D

ζ(−1/2)

2
=

π2

240D4

(
1 +

25

3π2
(ηD)2 +O((ηD)4)

)
, |η|D � 1.

Discussion:
The correction is attractive, contrary to the recent result obtained by
[Frank,Turan,2006]
The difference from the Maxwell value is considerable for
comparatively large D

Experimental data [Mohideen et al., D ∼ 500nm, L ∼ 1cm,
1%accuracy] gives the constraint:

|η| . 5 · 10−3eV.

Some authors claim that sensing the Casimir force is possible at
D . 1mm, then one could place a harder constraint |η| . 10−5eV.

V. Ch. Zhukovsky (MSU) Vacuum Polarization and Casimir Effect Sakharov conference 14 / 37
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Casimir effect within extended QED (O.G.Kharlanov and
V.Ch.Zhukovsky) Vacuum energy via the residue theorem
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Casimir effect within extended QED (O.G.Kharlanov and
V.Ch.Zhukovsky) Vacuum energy via the residue theorem

Sum → complex plane integral [1]

fCasimir =
1

L2

∂

∂D

∑
ωn∈R+

ωn(D)

2
=

1

2

∂

∂D

∞∫
0

kdk

2π
D(S+ + S−),

Smooth cutoff regularization:

SΠ =
1

D

∑
ωk,Π,nz∈R+

ωk,Π,nz e
−ωk,Π,nz /

√
kΛ, Λ→ +∞.

Instead of gΠ(ω2) whose zeros are the one-photon energy eigenvalues, we
will use the meromorphic (analytical, except for the numerable set of poles;
in particular, with no branch points) function

g̃Π(K+) ≡ gΠ(ω)

ϕΠ(κ+a)ϕΠ(κ−a)
= tanΠ κ+a sin θ+ + tanΠ κ−a sin θ−,

ω2 = K+K−, K− = K+ + 2η.

V. Ch. Zhukovsky (MSU) Vacuum Polarization and Casimir Effect Sakharov conference 16 / 37
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Casimir effect within extended QED (O.G.Kharlanov and
V.Ch.Zhukovsky) Vacuum energy via the residue theorem

Sum → complex plane integral [2]

Residue theorem (we assume η ≥ 0, since the spectrum depends on |η|):∮
C

dK+

2πi
ω
∂g̃Π/∂K+

g̃Π
= SΠD +

∑
ω̄n

ω̄n
Res [∂g̃Π/∂K+,K+ = ω̄n]

g̃Π(ω̄n)
,

where ω̄n are the poles of function ∂g̃Π/∂K+ within ∆.
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Casimir effect within extended QED (O.G.Kharlanov and
V.Ch.Zhukovsky) Vacuum energy via the residue theorem

Sum → complex plane integral [3]

Transforming the pole residue term back into an integral, we obtain:

g̃Π(K+) ≡ tanΠ κ+a sin θ+ + tanΠ κ−a sin θ−,

SΠ =
Π

2

∮
C

ωdK+

2πi g̃Π(K+)

{
2− tanΠ κ+a tanΠ κ−a

(
sin θ−
sin θ+

+

+
sin θ+

sin θ−

)
+

Π tanΠ κ+a

κ+a
+

Π tanΠ κ−a

κ−a

}
The integral over the semicircle CΛ does not depend on a, when Λ→∞,
within any finite order in a, thus it is cancelled when renormalized.

Renormalization:
S ren

Π (D) = SΠ(D)− Sdiv
Π (∞), Sdiv

Π (D) = C1 + C2/D at D →∞.
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Casimir effect within extended QED (O.G.Kharlanov and
V.Ch.Zhukovsky) Vacuum energy via the residue theorem

After renormalization and Λ→∞
Let us redefine K+ → −iK+, and make all momentum quantities
dimensionless multiplying them by a, then we obtain:

fCasimir =
1

2

∂

∂D

(
D

(S̃+ + S̃−)

a4

)
,

S̃Π = −1

2

∞∫
0

kdk

2π

+∞∫
∞

dK+

2π

sgn K+

√
K+K−

tanhΠ κ+ cosh θ+ + tanhΠ κ− cosh θ−
ΣΠ,

ΣΠ = 1 + tanhΠ κ+ tanhΠ κ−
cosh θ+

cosh θ−
−
(

1 +
cosh θ+

cosh θ−

)
tanΠ κ++

+
tanhΠ κ+ − tanhΠ κ−

cosh θ+ + cosh θ−

cosh θ+ sinh2 θ−
κ−

+ (“ − ” ↔ “ + ”)

K− = K+ − iηD, κ± =
√

k2 + K 2
±, sinh θ± = k/K±.
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Casimir effect within extended QED (O.G.Kharlanov and
V.Ch.Zhukovsky) Vacuum energy via the residue theorem

The results of the calculation

After the expansion with respect to ηD and taking the integrals, we obtain:

S̃+ + S̃− = − π2

5760
− 5(ηD)2

1152
+O((ηD)4),

fCasimir =
1

2

∂

∂D

(
D

S̃+ + S̃−
a4

)
=

π2

240D4

(
1 +

25

3π2
(ηD)2 +O((ηD)4)

)
,

i.e., the expression we obtained earlier, which is valid when |η|D � 1.
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Casimir effect within extended QED (O.G.Kharlanov and
V.Ch.Zhukovsky) Conclusion

Main results

The eigenstates and energy eigenvalues for the Maxwell-Chern-Simons
photon between the conducting plates
The vacuum is stable when D|η| < π/2 [1]
The leading correction to the Casimir force, which is quadratic in η
Constraint on η

References:
[1] V.Ch.Zhukovsky and O.G.Kharlanov, Casimir effect within (3+1)D
Maxwell-Chern-Simons electrodynamics, arXiv/0905.3689[hep-th].
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Effective action in QED under the Lorentz violation
(A.F.Bubnov and V.Ch.Zhukovsky) The Model

The Model

Another special case of the Extended QED; fermion sector:

L = −1

4
FµνF

µν + Lψ,

Lψ[ψ̄, ψ,A, b] = ψ̄(i ∂̂ − Â + b̂γ5 −m)ψ, ξ̂ ≡ γµξµ.

where bµ is a constant 4-vector, that violates CPT and Lorentz invariance
of the theory.

Experimental constraints on bµ for the electron:

|b0| . 10−2eV, |b| . 10−19eV.

We will find the contribution of the Lorentz-violating term to the effective

action iΓeff of QED.
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Effective action in QED under the Lorentz violation
(A.F.Bubnov and V.Ch.Zhukovsky) Induced Chern-Simons term in the constant field

Induced Chern-Simons term in the constant field [1]

Fµν = const

Effective action in the proper time representation:

iΓeff [A, b] = −1

2

∫ ∞
0

dz

z
Tr e−zH ,

H = −πµπµ − 2iσµνbµπνγ
5 +

1

2
σµνFµν + bµb

µ + m2,

where πµ = i∂µ − Aµ, σµν = i
2 [γµ, γν ], γ5 = −iγ0γ1γ2γ3.

In this expression, we apply the Baker-Hausdorf formula to the exponent to
find its expansion into a series with respect to bµ:

exp (τ(A + B)) = exp (τA) · exp (τB) · L−1(τ),
d ln L

dτ
= B − e−τB f (τ)eτB

A ≡ zπµπµ −
1

2
zσµνFµν , B ≡ 2izσµνbµπνγ

5, f (τ) = e−τABeτA.

V. Ch. Zhukovsky (MSU) Vacuum Polarization and Casimir Effect Sakharov conference 27 / 37



Effective action in QED under the Lorentz violation
(A.F.Bubnov and V.Ch.Zhukovsky) Induced Chern-Simons term in the constant field

Induced Chern-Simons term in the constant field [1]

Fµν = const

Effective action in the proper time representation:

iΓeff [A, b] = −1

2

∫ ∞
0

dz

z
Tr e−zH ,

H = −πµπµ − 2iσµνbµπνγ
5 +

1

2
σµνFµν + bµb

µ + m2,

where πµ = i∂µ − Aµ, σµν = i
2 [γµ, γν ], γ5 = −iγ0γ1γ2γ3.

In this expression, we apply the Baker-Hausdorf formula to the exponent to
find its expansion into a series with respect to bµ:

exp (τ(A + B)) = exp (τA) · exp (τB) · L−1(τ),
d ln L

dτ
= B − e−τB f (τ)eτB

A ≡ zπµπµ −
1

2
zσµνFµν , B ≡ 2izσµνbµπνγ

5, f (τ) = e−τABeτA.

V. Ch. Zhukovsky (MSU) Vacuum Polarization and Casimir Effect Sakharov conference 27 / 37



Effective action in QED under the Lorentz violation
(A.F.Bubnov and V.Ch.Zhukovsky) Induced Chern-Simons term in the constant field

Induced Chern-Simons term in the constant field [2]

Fµν = const

exp (τ(A + B)) = exp (τA) · exp (τB) · L−1(τ),
d ln L

dτ
= B − e−τB f (τ)eτB

A ≡ zπµπµ −
1

2
zσµνFµν , B ≡ 2izσµνbµπνγ

5, f (τ) = e−τABeτA.

Within the linear approximation, taking the trace tr, we obtain:

iΓeff(A, b) = −1

2

∫ ∞
0

dz

z
Tr e−zH = bαRµα

∫ ∞
0

dz

z
〈x |πµ exp

(
z(πνπ

ν)
)
|x〉 ,

where Rµα is the combination of the field tensor Fµν and the metric gµν .

The matrix element 〈x | ... |x〉 can be transformed into the form:∫
d4x 〈x |πµe(z(πνπν)) |x〉 = Pρ

µ

∂

∂λρ

∫
d4x 〈x | e−

1
4
zλ2

e(z(πν+λν)2) |x〉
∣∣∣
λ=0

,

where Pρ
µ is a polynomial in the field strength. This latter expression

vanishes due to the gauge invariance of the theory.
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Effective action in QED under the Lorentz violation
(A.F.Bubnov and V.Ch.Zhukovsky) Induced Chern-Simons term in the constant field

Induced Chern-Simons term in the constant field [3]

In the following papers, the Chern-Simons-like contribution of the form
βF̃µνAµbν to the effective action of QED was calculated:

R. Jackiw and V.A. Kostelecky, Phys. Rev. Lett 82, 3572 (1999).
The earliest publication, the coefficient β = 3

16π2

M.B. Hott, J.L.Tomazelli, Induced Lorentz and PCT symmetry Breaking in
External Electromagnetic Field, arXiv/hep-th/9912251.
β 6= 0, though depends on the regularization scheme.

Y.A. Sitenko, K.Y. Rulik On the effective lagrangian in spinor
electrodynamics with added violation of Lorentz and CPT symmetries,
arXiv/hep-th/0212007.

...and others

Our calculations show that no Chern-Simons term (linear in bµ) is induced
by a fermion loop in the framework of the extended QED
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Effective action in QED under the Lorentz violation
(A.F.Bubnov and V.Ch.Zhukovsky) Quadratic contribution

Quadratic contribution: Magnetic field [1]

Constant homogeneous magnetic field: F12 = −F21 = −H,
bµ = {b0, 0, 0, 0}.

Then the exponent eτ(A+B) = eτAeτB is “decoupled” in the expression for
the effective action, since

[A,B] = 4z2γ5bµΠνσ
ναFαµ = 0.

The b2
0-contribution to the effective action reads:

iΓeff
b2

0
(H, b) = −2

∫ ∞
0

dz

z

×
(
A0 +

A1

z

∂

∂α

)∫
d4x 〈x | e−z((π4)2+α(π2

⊥+π2
‖)) |x〉

∣∣∣
α=1

,

where A0, A1 are certain field combinations.
The matrix element in the integrand expression∫

d4x 〈x | e−z(π)2
E |x〉 =

H

16π2z
√
α

1

sh(αzH)
.
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Effective action in QED under the Lorentz violation
(A.F.Bubnov and V.Ch.Zhukovsky) Quadratic contribution

Quadratic contribution: Magnetic field [2]

Finally we find the b2
0-contribution to the effective action:

iΓeff
b2

0
(H, b) = − b2

0

4π2

∫ ∞
0

dze−zm2
( H2

sinh2 (zH)

)
,

and, after the renormalization,

iΓeff
ren b2

0
(H, b) = − b2

0

4π2

∫ ∞
0

dze−zm2
( H2

sinh2 (zH)
− 1

z2

)
.

This integral leads to the Euler psi-function, taking the magnetic field strength H
exactly into consideration

iΓeff
ren b2

0
(H, b) = −b2

0

m2

4π2

(
ψ(m2/2H)− log (m2/2H) +

H

m2

)
.
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Quadratic contribution: Electric field

Constant homogeneous electric field: F03 = −F30 = E,
bµ = {0, b1, 0, 0}.

Like in the previous case, the exponent of the Hamiltonian is “decoupled”
since

[A,B] = 4z2γ5bµΠνσ
ναFαµ = 0.

The calculations are nearly analogous to the magnetic field case and give:

iΓeff
b2

1
(E , b) = − b2

1

4π2

∫ ∞
0

dze−zm2
( E 2

sin2 (zE )

)
,

and, after the renormalization, the effective action

iΓeff
b2

1
(E , b) = − b2

1

4π2

∫ ∞
0

dze−zm2
( E 2

sin2 (zE )
− 1

z2

)
.
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Effective action asymptotics: Magnetic field

Consider the asymptotics of the effective action iΓeff
b2

0
(H, b).

In the weak field, H � H0 (here H0 = m2/e = 4.41× 1013 Gs):

iΓeff
b2

0
(H, b) ∼ b2

0

H2

m2
+O

(
(H2b0/m

3)2
)
, Γeff

H−E (H) ∼ H4

m4
,

iΓeff
b2

0
(H, b)

iΓeff
H−E (H)

∼
(

b0

m

)2 (H0

H

)2
.

In the strong field, H � H0:

iΓeff
b2

0
(H, b) ∼ b2

0H +O
(

b2
0m

2 log

(
H0

H

))
, iΓeff

H−E (H) ∼ m4

(
H

H0

)2

log

(
H

H0

)
,

iΓeff
H−E (H)

iΓeff
b2

0
(H, b)

∼ H

H0

(m

b0

)2
log

(
H

H0

)
.
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We have elaborated a new method of calculating the contribution of the CPT-
and Lorentz-violating correction bµ to the effective action of QED, which
accounts for the external field exactly and is based on the proper time technique.

Using this method, we have obtained the following results:
No effective Chern-Simons term linear in bµ in extended QED, in
agreement with the publications:

1 Y.A. Sitenko, K.Y. Rulik ArXiv/hep-th/0212007,
2 B. Altschul ArXiv/hep-th/0602235,

The b2
0-term in the effective action, for the magnetic and the electric

fields exactly taken into account.

The Heisenberg-Euler-to-b2
0 correction ratio

iΓeff
H−E (H)

iΓeff
b2

0

(H,b)
is evaluated in

the weak- and strong-field cases.
References:
[2] V.Ch.Zhukovsky and A.Bubnov, to be published in arXiv/hep-th.
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Thank you for your attention!
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