Geometric spin decay in confined mesoscopic structures

Gergely Zarand

TU Budapest

work with:

Pablo San-José	Lancaster
Alexander Shnirman	TU Karlsruhe
Gerd Schön	TU Karlsruhe
Burkhad Scharfenberger	TU Karlsruhe

Pierre Le Doussal	Ecole Normale and
	Ecole Politechnique
Baruch Horovitz	Ben Gurion

P. San-Jose, G.Z., A. Shnirman, and G. Schon, PRL 97, 076803 (2006) P. San-Jose, G. Schön, A. Shnirman, and G.Z. PHYSICA E 40, 76 (2007) P. San-Jose, B. Scharfenberger, G. Schön, A. Shnirman, and G.Z. PRB 77, 045305 (2008)

Motivation: Recent experiments to control spin

Single-shot read-out of an individual electron spin in a quantum dot J. M. Elzerman, R. Hanson, *et al.* Nature **430**, 431 (2004).

Motivation

J. R. Petta, et al. Science 309 2180 (2005)

For spin manipulation coherence is crucial...

Spin decay mechanisms in Q-bits

Nuclear spins $\approx 1 \text{ mT}$ (100 ns) : important but (almost) static

[Khaetskii, Loss, Glazman, 2002]

Piezoelectric phonons + spin-orbit coupling

[Khaetskii, Nazarov (2001); Golovach, Khaetskii, Loss (2004); Stano, Fabian (2005)]

Geometrical relaxation (due to a Berry phase)

(with P. San-Jose, B. Scharfenberger, G. Schön, A. Shnirman)

Berry phase, unconfined electrons

Electron in 2DEG:

Move electron around:

$$V \wedge I_{y} \wedge I_{y} \wedge I_{y} \wedge V_{x} \neq 0 \rightarrow B_{eff,y} \neq 0 \Rightarrow U_{x} = e^{-i l_{x} 2\alpha m \sigma_{y}/2}$$
$$V_{y} \neq 0 \rightarrow B_{eff,x} \neq 0 \Rightarrow U_{y} = e^{i l_{y} 2\alpha m \sigma_{x}/2}$$

Rotation after cycle:

$$U = U_{y}^{+}U_{x}^{+}U_{y}U_{x} \approx e^{i \ \delta \phi \ \sigma_{z}/2}$$

$$\delta \phi = 8\delta A / \lambda_{SO}^{2}$$

Rotation proportional
to directed area !

Confined electron

$$H_{0} = \frac{\mathbf{p}^{2}}{2m^{*}} + V(\mathbf{r}) - \frac{g\mu_{B}}{2}\vec{B}\cdot\vec{\sigma} + H_{SO} + \delta V(t)$$
confinement in 2-deg
EM fluctuations

fluctuations:

 $\delta V(t) = -e \,\delta E_x(t) \cdot \hat{x} - e \,\delta E_y(t) \cdot \hat{y} + \dots$

Slow compared to level spacing

$$\delta V(t) = \sum_{k} X_{k}(t) \cdot \hat{O}_{k}$$

$$X_k(t) = \delta E_x, \delta E_y, \nabla_x \delta E_x, \dots$$

$$\hat{O}_k = x, y, x^2, \dots$$

(phonons, charge fluctuations)

B=0 adiabatic approximation

SLOW classical fluctuations $\vec{X}(t) \iff \delta E_{x,y}(t)$ $|\Psi(t)\rangle \approx a_{\uparrow}(t) |\Phi_{\uparrow}(\vec{X}(t))\rangle + a_{\downarrow}(t) |\Phi_{\downarrow}(\vec{X}(t))\rangle$

instantaneous ground doublet (Kramers degenerate!)

$$H_{\sigma\sigma'}^{eff}(B=0) = -i \left\langle \frac{d\phi_{\sigma}(\vec{X})}{dt} \middle| \phi_{\sigma'}(\vec{X}) \right\rangle$$

Non-Abelian Berry Phase !

Perturbation theory

Electric fields only: $\vec{X} = \delta \vec{E}(t)$ $H_{eff}(t) = B_{eff}(t) \sigma^{z}$ $B_{eff}(t) = \left(\frac{d\delta E_x}{dt} \delta E_y - \delta E_x \frac{d\delta E_y}{dt}\right) C \sim dA / dt$ $C = -i e^{2} \sum_{n \neq \sigma} \frac{\hat{x}_{\uparrow,n} \hat{y}_{n,\uparrow}}{(\varepsilon_{-} - \varepsilon_{-})^{2}}$ $\delta E_y(t)$ **Fluctuations** $\delta E_x(t)$ random spin rotation proportional to the area E. Abrahams, Phys. Rev. 107, 491 1957 ! RELAXATION

Adiabatic approximation: $B \neq 0$

Resummation of perturbation series for evolution operator in time-dependent field:

$$PU(t)P = \frac{\sigma \quad \sigma'}{\sigma} + \frac{\sigma \quad x \quad \sigma'}{\sigma} + \frac{\sigma \quad x \quad \alpha'}{\sigma} + \cdots$$

$$\approx \frac{\sigma \quad \sigma'}{\sigma} + \frac{\sigma \quad \alpha'}{\sigma} + \frac{\sigma \quad \alpha'}{\sigma} + \cdots$$

$$(\bigcirc = \times + \times)$$

$$\begin{split} B &\to 0 \\ C^{(1)} &\sim \frac{B}{\epsilon} \max\{\tilde{\alpha}, \tilde{\beta}\} \to 0 \\ |\vec{C}^{(2)}| &\sim \frac{B}{(\epsilon)^2} \max\{\tilde{\alpha}^2, \tilde{\beta}^2\} \to 0 \end{split}$$

$$C^{(3)} \sim \frac{1}{(\epsilon)^2} \max\{\tilde{\alpha}^2, \tilde{\beta}^2\} \to const.$$

All information in spectral function $\rho(\omega)$ of $\delta \vec{E}(t)$

Berry phase term!
$$1/T_1^{(3)} = 2|\vec{C}_{XY,a}^{(3)}|^2 S_{\dot{X}Y-X\dot{Y}}(B_{\text{eff}}),$$

 $S_{\dot{X}Y-X\dot{Y}}(\omega) = \frac{\pi}{2} \int d\tilde{\omega} \frac{\tilde{\omega}^2 \varrho(\frac{\omega+\tilde{\omega}}{2})\varrho(\frac{\omega-\tilde{\omega}}{2})}{1-\cosh(\tilde{\omega}/2T)/\cosh(\omega/2T)}$

Phonons	Ohmic fluctuations
$\rho_{ph}(\omega) = x_0 \lambda_{ph} \omega^3$	$\rho_{\Omega}(\omega) = \lambda_{\Omega}\omega$
$\frac{1}{T_{1}^{(1)}} \propto B^{4} \max \{B, T\}$ $\frac{1}{T_{1}^{(2)}} \propto B^{2} \max \{B^{7}, T^{7}\}$ $\frac{1}{T_{1}^{(3)}} \propto \max \{B^{9}, T^{9}\}$	$\frac{1}{T_{1}^{(1)}} \propto B^{2} \max \{B, T\}$ $\frac{1}{T_{1}^{(2)}} \propto B^{2} \max \{B^{3}, T^{3}\}$ $\frac{1}{T_{1}^{(3)}} \propto \max \{B^{5}, T^{5}\}$

Quantum fluctuations for parabolic confinement

Parabolic confinement:

 $V(\hat{\boldsymbol{r}}) = \frac{1}{2}m\omega_0^2 \hat{\boldsymbol{r}}^2$

Electric field shifts parabola

$$\mathcal{H}(t) = \frac{\hat{p}^2}{2m} + V(\hat{r}) + eE(t)\hat{r} + \mathcal{H}_{SO}$$
$$= \frac{\hat{p}^2}{2m} + V[\hat{r} - R_{\mathcal{C}}(t)] + \mathcal{H}_{SO} + \mathcal{C}(t),$$
$$R_{\mathcal{C}}(t) = -eE(t)/m\omega_0^2$$

Dyson equation :
$$\Pi(t,0) = \Pi^{0}(t,0) + \int_{0}^{t} dt_{1} dt_{2} \Pi^{0}(t,t_{1}) \Sigma(t_{1},t_{2}) \Pi(t_{2},0),$$
$$\overset{\sigma_{+}}{\underset{\sigma_{0}}{\overset{\sigma_{+}}{\overset{\sigma_{+}}{\overset{\sigma_{-}}{\overset{\sigma$$

Equation of motion:

$$\dot{\tilde{\rho}}_D(t) = L_0 \tilde{\rho}_D(t) + \int_0^t \Sigma(t - t') \tilde{\rho}_D(t') \qquad L_0 \tilde{\rho}_D(t) = i [\tilde{\rho}_D(t), H_Z]$$

Diagrammatic perturbation theory

"Born approximation"

Higher order corrections

These contain Berry phase !!!

Angular dependence of relaxation (5K dot)

$$\beta = 4, \ \theta = 0,$$

 $l_{SO} = 3 \ \mu m$
 $\lambda_{\Omega} = 10^{-3}$

$$\omega_0 = 5 \text{ K}$$

T = 100 mK

Experiments ?

Ohmic environment?

Amasha et al., PRL 2008

- Berry phase can be observed in large dots only...
- p-type quantum dots !

Gerardot et al, Nature 2008 Mircea Trif, Pascal Simon, Daniel Loss, arXiv:0902.2457 •Hyperfine coupling is not very important (nodes) •Relaxation rate is second order in SO coupling

Spin Relaxation on a Ring

(with Pierre Le Doussal and Baruch Horovitz)

Confine motion to lowest radial eigenmode

Generate effective Hamiltonian

$$\mathcal{H}_{1} = \frac{p_{\theta}^{2}}{2mr^{2}} + \frac{\alpha_{0}}{2r} \{\mathbf{S}_{r}^{+}, p_{\theta}\} - \frac{\beta_{0}}{2r} \{\mathbf{S}_{\theta}^{-}, p_{\theta}\} \qquad \mathbf{S}_{r}^{\pm} \equiv \cos\theta\sigma_{x} \pm \sin\theta\sigma_{y}$$
$$\mathcal{H}_{2} = i\alpha_{0}\hbar\mathbf{S}_{\theta}^{+}(\partial_{r} + \frac{1}{2r}) - i\beta_{0}\hbar\mathbf{S}_{r}^{-}(\partial_{r} + \frac{1}{2r}) \qquad \mathbf{S}_{\theta}^{\pm} \equiv \cos\theta\mathbf{S}_{y} \mp \sin\theta\mathbf{S}_{x}$$

Effective Hamiltonian:

Including fluctuations

$$\mathcal{H} = \mathcal{H}_{ring} + V(\theta, \xi).$$
 fluctuations

Equations of motion:

Position:
$$\ddot{\theta} = -\frac{1}{m\bar{r}^2}\partial_{\theta}$$

$$= -\frac{1}{m\bar{r}^2}\partial_\theta V(\theta,\xi)$$

Dynamics of θ decouples from spin!!!

Spin:

$$\frac{d\mathbf{S}}{dt} = \dot{\theta} \ \boldsymbol{h}(\theta) \times \mathbf{S} \Rightarrow \qquad \frac{d\mathbf{S}}{d\theta} = \boldsymbol{h}(\theta) \times \mathbf{S} \quad (\vec{h}(\theta) \approx h_0 \ \hat{z})$$

"Geometrical" evolution

T (0 0)/0

Spin evolution

$$\frac{d\mathbf{S}}{d\theta} = \boldsymbol{h}(\theta) \times \mathbf{S} \qquad \Longrightarrow \qquad S_i(\theta) = R_{ij}(\theta, \theta_0) S_j$$

 2π rotations

-

$$R_{2\pi}(\theta_0) = R(\theta_0 + 2\pi, \theta_0)$$

Makes rotation around special axis $N(\theta_0) = R_{2\pi}(\theta_0) N(\theta_0)$

randomized by ξ θ spin collapses to $N(\theta_0)$

Path integral for spin evolution operator

$$\langle \theta_f | e^{-it\mathcal{H}} | \theta_i \rangle = \sum_{m_\theta} \int_{\theta_i}^{\theta_f} \mathcal{D}\theta \ U(\theta_f + 2\pi m_\theta, \ \theta_i) \ e^{i \ S_P[\theta,\xi]}$$
$$U(\tilde{\theta}_f, \tilde{\theta}_i) = P_\theta \exp\left\{ -i \int_{\tilde{\theta}_i}^{\tilde{\theta}_f} h(\theta) \cdot \mathbf{S} \ d\theta \right\}$$

$$\psi = -S \int d\theta \left[\mathbf{A}(\mathbf{\Omega}) \cdot d\mathbf{\Omega}/d\theta + \mathbf{h} \cdot \mathbf{\Omega} \right]$$

 $\mathbf{A} = \hat{\mathbf{z}} \times \mathbf{\Omega}/(1 + \hat{\mathbf{z}} \cdot \mathbf{\Omega})$
 $\frac{d\mathbf{\Omega}}{d\theta} = \mathbf{h}(\theta) \times \mathbf{\Omega}$

Expectation value of spin

$$\langle \mathbf{S}(t) \rangle = \int_{\theta_0}^{\theta_t^+} \mathcal{D}\theta^+ \int_{\theta_0}^{\theta_t^-} \mathcal{D}\theta^- \langle e^{i(S_P[\theta^+, \xi^+] - S_P[\theta^-, \xi^-])} \rangle_{\xi^+, \xi^-} e^{i(\psi_+ - \psi_-)} \\ \langle \Omega(\theta_t^-) | \mathbf{S} | \Omega(\theta_t^+) \rangle \delta_{2\pi}(\theta_t^+ - \theta_t^-)$$

Initial spin direction
Semiclassical limit: $S \to \infty$ \diamondsuit $\langle \mathbf{S}(t) \rangle = S \langle \Omega(\theta_t) \rangle_{\theta, \xi}^{m, -m, = 0}$
with $\Omega(\theta_t - \theta_0) = \mathbf{N}_0(\mathbf{N}_0\Omega_0) + \sin(\Phi_t) \mathbf{N}_0 \times \Omega_0$ Rotation axis $+ \cos(\Phi_t) (\Omega_0 - \mathbf{N}_0(\mathbf{N}_0\Omega_0))$, $\Phi_t \equiv \Gamma_{\theta_0}(\theta_t - \theta_0)/2\pi$
however $\sin(\Phi_t)$ and $\cos(\Phi_t)$
 $decay algebraically to zero, even at $T = 0$!!!
[Imaginary time proof: H. Spohn and W. Zwerger, J. Stat. Phys. 94, 1037 (1999)]$
 \downarrow $\langle \mathbf{S}(t) \rangle \longrightarrow S \mathbf{N}_0(\mathbf{N}_0\Omega_0)$

Conclusions

• Spin relaxation is dominated by Berry phase relaxation as $B \rightarrow 0$

Relevant for large dots or p-type dots ?

Ohmic fluctuations can be important at low fields / temperatures

Hamiltonian of an electron confined to a ring

• Algebraic spin decay on a ring at T = 0 ?

• Real time correlations of $\cos(\hat{\theta}(t))$ on a ring

P. San-Jose, G.Z., A. Shnirman, and G. Schon, PRL 97, 076803 (2006) P. San-Jose, G. Schön, A. Shnirman, and G.Z. PHYSICA E 40, 76 (2007) P. San-Jose, B. Scharfenberger, G. Schön, A. Shnirman, and G.Z. PRB 77, 045305 (2008)

Moriond

Results: Keldysh formalism, small dot

$$l_{\rm SO} = 3000 \text{ nm}$$
 $\lambda_{\Omega} = 10^{-4}$ $x_0 = 36 \text{ nm} (\omega_0 = 10 \text{ K})$

3.10.2008

Moriond

Spin manipulation...

All-electric control of spin can be reached...

Moriond

Motivation

Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots Petta et al., Science, 2005

Pulse sequence to measure T_2^*

"Phase diagram"

Experiments ?

Ohmic environment?

• Berry phase can be observed in large dots only...

Results: Keldysh formalism, large dot

 $T = 100 \text{ mK}, \dots, 900 \text{ mK}$