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Confinement is rather common phenomenon in 141 models

Its mechanism is relatively simple:

£ g + At

V = Ae |x1 — x7]

Confining potential — Tower of “Meson” states (stable & resonances)

May occure due to:

e Adding perturbation which lifts vacuum degeneracy from spon-
taneously broken symmetry; “Quarks” are domain walls.

e Presence of gauge field (abeelian or non-abelian), Ae ~ E.

The two may be related through bosonization (QED>)



Typical model:

L= (09)> - V(9)

Voymnf @) Vymnk @) + N Vagymnf @)

Confining interaction between the kinks ( “quarks’ )

gg + Ac




Details may depend on specific model, but basic physics is con-
trolled by one (dimensionless) parameter

e=22

>
mg

The “string tension” Ae may deepend on h (as well as on other
parameters of the model), but at small h

Ae ~ h

In physical system £ is real and > 0, but it is interesting to study
analytic properties of physical quantities (eg(&), Mn(£), etc) as the
functions of complex &.

Basic analytic features are expected to be universal, i.e. shared
by all confining interactions in 141.



One is well-known: There is essential singularity at € = 0 (Andreev
(1967), Fisher (1964), Langer (1967), Kobzarev, Okun, Voloshin
(1975), Coleman (1977))

Vsymm (¢) + h Vasymm (¢)

Analytic continuation to negative h turns vacuum into ‘false vac-
uum”

\éymn'( ®) +h \ésymm( ?) \éymn{ ®) B h Msymm(® )

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, L ™alsevacuum' .~
vacuum

“False vacuum' decay:

T

Smeg(€é) ~ (=€) e [ at £ <O0.



disc( &) ~ 1(=¢ ) exp(Tv¢ )

Do we encounter other singularities as we go under the branch
cut?

Proposition:

e [ here are infinitely many singularities under the branch cut,
accumulating towards & = 0.

e The singularities are critical points (R. diverges), with scaling,
critical exponents, and all that.




Generally, physical nature of these singularities is yet to be under-
stood.

Subject of this talk: Evidence for their presence.

Some singularities are well expected: “Quantum spinodal”

3 : Espi nodal




Two models:

e Ising Field Theory in a magnetic field



Ising Field Theory

Vymnk @)

Symmetry restoration transition

(Universality class of 2D Ising)

L= —&(Va)w_mqﬂlb —ho
o(x)- "spin field".

Spontaneous magnetization at h = 0,
5= (o) = (21/12 .—1/8 A3/2) m;/8
At small h
Ae = 2ho



1 mq

= ¢8/15 — 18/15

YL = "Quantum spinodal” = 2D CFT with ¢ = —-22/5
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Mass spectrum of IFT (numerical)
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Mass spectrum M_n(eta) in IFT

1 mq

= ¢8/15 — 1,8/15
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Magnetic field h — Confining interaction between the " quarks”

Ae = 25 h 4+ O(h3)

Meson states

d
| My, P) =/£\|}n(P,p) ab, abh | 0)+ .

Weak coupling (small h):

Keeping some multi-quark terms, as needed for Lorentz invariance
= Bethe-Salpeter equation

Rapidity variables:

P_|_—|—p_|_=mqeﬁ+9, P_|_—p_|_=mqeﬁ_9

Lorentz invariance: W,, depends only on 6.
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Bethe-Salpeter equation

M?2 00 do’
2 n / /

ms — v,(0) = A / G010 WV, (0) —
! q 4 COSh2 9] n( ) © — 00 ( | ) n( ) 21

The kernel

cosh(f —6) 1 sinhf® sinh¢’
sinh2(9 — 0") ' 4 cosh26 cosh2 ¢’
has second-order pole at § = ¢/ — Confining interaction.

G010 =2

= Tower of eigenvalues M,(n), n=1,2,3,...
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Real n = my/|h|8/15
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Analysis of the BS equation shows infinite set of singularities
(square-root) at complex n:

o

MfBS)(n) ~ (n— v )2 in BS approximation
Mi(n) ~ (n-— ny,_)5/12 in full theory
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In IFT the BS equation is an approximation (uncontrolled at finite
n), as it ignores multi-meson states.

Q: Do the complex singularities exist in full theory?
Physics is similar to QCD»>. At N, = oo the BS approximation is
exact ('t Hooft, 1974)

Q'": Do similar singularities exist in 't Hooft’'s model of mesons?
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t" Hooft’'s model: QCD»

N, _
£=4gztr<F2)—w(fyD—|—mq)zp, Dy = 8, + Ay

At N, = oo the Bethe-Salpeter equation is exact.

e e 1 ©(y) L 2
241 e - [fay P =2r (o).

7rm2

a=-—L-1, M? = 2mg° ).
g

Spectral problem for A — A\p(a).

Analytic properties of A\p(«) at complex «? Singular points?
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Singularity at a = —1. Chiral limit mg — O:

M% ~ mgg — Agla) ~ va+1

Critical point. At finite N,

Ne WZW [Gflavor]

[Gepner, 1988; Affleck, 1989]
Other (complex) singularities?

Preliminary study [V.Fateev, S.Lukyanov, AZ, 2009]
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Rapidity form: =z = % (14 tanh )

lza— =X ]ww)zf_oo G(6 — 0") W (6) do

cosh20
1
GO—-0)=——
sinh<(0 — 6)
has second-order pole at 6 = ¢’.
Yet more convenient form
oo .
W (0) =/ IV it d(v)
—0c0 2T
Py o0
a4+ cothao() =22 A S(v — ) ()
2 2 2 J—o0o
v

S(v) =

H 1%
25|nh7r7
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e d(v) is meromorphic function of v, with (generally simple)
poles at vy, —vp, roots of

N4 I
oa+ — coth— =20
T 2 2
(Smvy, > 0 at real «)
e At complex a the pole —rg can wander into the upper half-

plane, and at special o it hits another pole there. This gives
rise to singularities (square-root branching points) at

ap = —% [1 + cosh(mvy)]

sinh(mvy) — wv, =0 Rev, <0

e The special oy are square-root branching points of Ap(«).
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Singular points in alpha-plane, under the branch cut
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n=va-+1

Singular points in the plabe of sqgrt(alpha+1)
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Proposition: n; are critical points:

Aop(a) ~ /n—mng
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The operator

S () — /OO 4/ S(v — v/ )d()

— 00
IS inverse to a finite-difference operator = Finite difference equa-
tion
Qlr+2i) + Qv —2i) —2Q(v) =U(v) Q(v)
for

Q) = [a sinh%l/—l—%y cosh%y d(v)

with

—1
U(v) = 272 A [a + % coth %]

Baxter's TQ equation (with T'(v) =2+ U(v))

Analytic results for Ap(«)
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1. Systematic large-n expansions of An(a):

2 C
n=2Xx- ", log(2\) — Co(a) + + 2/\(20‘)

7

_|_

2 e~ 7 (g o) o)
where
Cola) = + 25 Iog (4mer) -
a_Q/oo dt sinh(t) (sinh(2t) — 2t)
272

~00 t cosh2(t) (a sinh(t) +t cosh(t) )

Co(e) = 5 5 [P+ (—1" 2 (1 + )]

1
C3(e) = 5|50 + 72 (1 +0)?] |
CL(a) = 1 —|—33a -I-% /OO " sinh(2t) —

t sinh(t) ( sinh(t) 4 ¢ cosh(t) ) -

['t Hooft, 1974; Brauer, Spence, Weis, 1979; Fateev, Lukyanov,
AZ, 2009]
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2. Exact sum rules:

Dy — N 1 (), & 1
G = —, GY =
+ (a) mgO A%m(a) (a) mgo A%m-l-l(a)

G\ (a) =log(8r) —2+1 —
a [0 dt sinh(t) (sinh(2t) £+ 2t)
4 Jooo t cosh2(t) (asinh(t) 4+t cosh(t))

oy, are critical points: M2, (ay) ~ /o — ay.

25



Speculation: N, < oo,
M3, (a) ~ (a — ay)P*

with critical exponents

oy are likely to become non-trivial (non-unitary) CFT.

Q: What kind of criticality «; correspond to?

Requires study of finite N, QCD».
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Summary:

e N. = oo QCD» has infinitely many critical points at complex
o = mg/g2 —1

e [ his phenomenon seems to be common for confining theories
in 141 (e.g. IFT in a magnetic field).

Main Question: What these critical points try to tell us about
basic mechanism of confinement?
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