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To specify different types of cosmic fluids one usually uses a phenomeno-
logical relation between the pressure density p and the energy density %,
corresponding to each component of fluid

p = w%,

where w is the state parameter:

w(t) =
p

%
= −1− 2

3

Ḣ

H2
= − 1 +

2Ek

%
. (1)

Contemporary experiments, including WMAP, give strong support that at
present time the dark energy state parameter is close to−1: wDE = −1±0.2.

We consider the case wDE < −1. Null energy condition (NEC) is violated
and there are problems of instability. A possible way to evade the insta-
bility problem for models with wDE < −1 is to yield a phantom model as
an effective one, arising from a more fundamental theory, for example, the
string field theory (I.Ya. Aref’eva, astro-ph/0410443, 2004). The
concerned models are string field theory approximations.
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1 Exactly solvable DE Dominate Model

(I.Ya. Aref’eva, A.S. Koshelev, and S.Yu. Vernov, Theor. Math. Phys. 148
(2006) 895–909, astro-ph/0412619).

This is a model of Einstein gravity interacting with a single phantom scalar
field in the spatially flat Friedmann Universe:

S =

∫
d4x

√−g

(
M 2

p

2M 2
s

R +
1

g2
o

(
+1

2
gµν∂µφ∂νφ− V (φ)

))
,

Mp = 1/(8πGN) is the Planck mass, Ms is a string mass and go is a
dimensionless open string coupling constant.

Coordinates (t, xi) and field φ are dimensionless.

ds2 = − dt2 + a2(t)(dx2
1 + dx2

2 + dx2
3).

m2
p =

g2
oM

2
p

M 2
s

.
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3H2 =
1

m2
p

%DE,

3H2 + 2Ḣ = − 1

m2
p

pDE,

(2)

where

H ≡ ȧ(t)

a(t)
,

φ = φ(t), therefore,

%DE = −1

2
φ̇2 + V (φ),

pDE = −1

2
φ̇2 − V (φ),
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



Ḣ =
1

2m2
p

φ̇2,

3H2 =
1

m2
p

(
− 1

2
φ̇2 + V (φ)

)
.

(3)

The equation of motion for the field φ is

φ̈ + 3Hφ̇− V ′
φ = 0, (4)

Equation (4) is a consequence system (3).
System (3) is not integrable. We can find only special solutions.
It is easy to check that for

V (φ) =
ω2

2A2

(
A2 − φ2

)2
+

ω2φ2

12A2m2
p

(
3 A2 − φ2

)2
.

there exists the solution:

φ(t) = A tanh(ωt).

Is the obtained solution stable?
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Figure 1: Potential −V (φ) for various values of m2
p (A = ω = 1).
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A few known facts about stability

Let us remind a few facts about stability of solutions for

ẏk = Fk(y), k = 1, 2, . . . , N. (5)

By definition a solution y0(t) is attractive if

‖ỹ(t)− y0(t)‖ → 0 at t →∞ (6)

for all solutions ỹ(t) that start close enough to y0(t).
If all solutions of the dynamical system that start out near a fixed (equi-

librium) point yf ,
Fk(yf) = 0, (7)

stay near yf forever, then yf is a Lyapunov stable point.
If all solutions that start out near the equilibrium point yf converge to yf ,

then the fixed point yf is an asymptotically stable one.
A solution y0(t) of (5), which tends to the fixed point yf , is attractive if

and only if the point yf is asymptotically stable.
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The Lyapunov theorem states that to prove the stability of fixed point
yf of nonlinear system (5) it is sufficient to prove the stability of this fixed
point for the corresponding linearized system

ẋ = Ax, Aik =
∂Fi(y)

∂yk
|y=yf

. (8)

The stability of the linear system means that real parts of all roots λk of the
characteristic equations

det(Aik − λI)| = 0 (9)

are negative.
If there exist such λk that its real part is positive, then the fixed point is

unstable.
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The gravitational one-field model

Let us consider the gravitational model with a scalar field φ and an arbitrary
potential V (φ), described by action:

S =

∫
d4x

√−g

(
R

16πGN
− C

2
gµν∂µφ∂νφ− V (φ)− Λ

)
. (10)

In the FRW metric equations are

2Ḣ + 3H2 = −8πGN

(
Cφ̇2

2
− V (φ)− Λ

)
, (11)

3H2 = 8πGN

(
Cφ̇2

2
+ V (φ) + Λ

)
. (12)

The equation of motion for φ(t) is the following

φ̈(t) + 3H(t)φ̇(t) +
1

C
V ′

φ(φ) = 0, (13)

where V ′
φ ≡ dV

dφ . This equation is in fact a consequence of system (11)–(12).
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System (11)–(13) can be considered as the following system of the first
order equations:

Ḣ(t) = − 3

2
H2 − 4πGN

(
Cψ2

2
− V (φ)− Λ

)
,

φ̇(t) = ψ(t),

ψ̇(t) = − 3H(t)ψ(t)− 1

C
V ′

φ(φ).

(14)

Equation (12) connects the following integral of motion of system (14) to
the cosmological constant:

I1 =
3

8πGN
H2 −

(
C

2
ψ2 + V (φ)

)
= Λ. (15)

We are interested in the stability of kink-type solutions.
The Hubble parameter H(t) tends to a finite level at t → +∞.
In this case φ(t) tends to a finite level as well.
There exists a fixed point yf ≡ (Hf , φf , ψf), which corresponds to t = +∞.
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It is easy to see that

ψf = 0, V ′
φ(φf) = 0, H2

f =
8

3
πGN(Λ + V (φf)). (16)

To analyse the stability of yf we present solutions in the following form:

H = Hf + εh(t) +O(ε2) (17a)

φ = φf + εϕ(t) +O(ε2) (17b)

ψ = εχ(t) +O(ε2), (17c)

where ε is a small parameter.
To first order in ε we obtain the following system of the equations:

ḣ(t) = −3Hfh(t) (18a)

ϕ̇(t) = χ(t) (18b)

χ̇(t) = −3Hfχ(t)− 1

C
V ′′

φ (φf)ϕ. (18c)

The equation (18a) has the solution

h(t) = b0e
−3Hf t, (19)
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where b0 is a constant.
From (18b-18c) we obtain the following solutions:

• at V ′′
φ

(
φf

) 6= 0 and V ′′
φ

(
φf

) 6= 9C
4 H2

f :

ϕ(t) = D1e
−3

2

(
Hf+

√
H2

f− 4
9CV ′′φ (φf )

)
t
+ D2e

−3
2

(
Hf−

√
H2

f− 4
9CV ′′φ (φf )

)
t
, (20)

• at V ′′
φ

(
φf

)
= 9C

4 H2
f

ϕ(t) = e−3Hf t/2(D1 + D2t), (21)

• at V ′′
φ

(
φf

)
= 0,

ϕ(t) = D̃1 − 1

3Hf

D2e
−3Hf t, (22)

where D̃1, D1 and D2 are arbitrary constants.
Using the Lyapunov theorem we state that fixed point yf is asymptotically

stable and, therefore, the exact kink-type solution y0(t) is stable if:

V ′′
ϕ

(
φf

)

C
> 0 and Hf > 0. (23)
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At V ′′
φ (φf) = 0 we need an additional analysis of stability, because the Lya-

punov theorem does not state the correspondence of the behavior of solutions
to the initial nonlinear system and the obtained linear system.

At Hf = 0 we obtain either saddle or center point.
At Hf < 0 the fixed point yf is unstable, because h(t) tends to infinity.

In our model exact solutions in are stable in the Bianchi I metric at m2
p <

1/2 and unstable at m2
p > 1/2. The case of m2

p = 1/2 needs to more detail
analysis, the first corrections are bounded.
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Stability in the Bianchi I metric

Let us consider the model with one scalar field (10) in the Bianchi I metric

ds2 = − dt2 + a2
1(t)dx2

1 + a2
2(t)dx2

2 + a2
3(t)dx2

3. (24)

we obtain:

φ̇ = ψ, (25)

ψ̇ = − (H1 + H2 + H3)ψ − 1

C
V ′

φ(φ), (26)

Ḣ1 = − 4πGNp−H2
1 −

1

2
(H2H3 −H1H3 −H1H2), (27)

Ḣ2 = − 4πGNp−H2
2 −

1

2
(H1H3 −H2H3 −H1H2), (28)

Ḣ3 = − 4πGNp−H2
3 −

1

2
(H1H2 −H1H3 −H2H3), (29)

where

p = C
φ̇2

2
− V (φ)− Λ. (30)
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H1 =
ȧ1

a1
, H2 =

ȧ2

a2
, H3 =

ȧ3

a3
and dot denotes time derivative. (31)

Let the isotropic solution y0(t) tends to a fixed point yf ≡ (Hf , Hf , Hf , φf , ψf)
at t → +∞. For the fixed point we obtain:

ψf = 0, V ′
φ(φf) = 0, H2

f =
8

3
πGN(Λ + V (φf)). (32)

To analyse the stability of yf we present solutions as series in ε:

Hi = Hf + εhi(t) +O(ε2), φ = φf + εϕ(t) +O(ε2), ψ = εχ(t) +O(ε2).

To first order in ε we obtain the following system of the equations:

ḣi(t) = − 3Hfhi(t), i = 1, 2, 3
ϕ̇(t) = χ(t),

χ̇(t) = − 3Hfχ(t)− 1

C
V ′′

φ (φf)ϕ.

(33)

The solutions of this system coincide with solutions of system (18). Namely,
ϕ(t) and χ(t) are the same, and equations for hi(t) and h(t) are the same.

Thus, the isotropic solution which tends to a fixed point is
stable in the Bianchi I metric if and only if it is stable in the
FRW metric.
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The first order corrections to isotropic solutions in
the FRW and Bianchi I metrics

We have found that in the case of one-field models the equations for the first
corrections near a fixed point in the Bianchi I metric can be automatically
solved if the corresponding equations in the FRM metric are solved.

Let us generalize this result and consider consider the cosmological model,
which is described by action

S =

∫
d4x

√−g

(
R

16πGN
−

N∑

k=1

Ck

2
gµν∂µφk∂νφk − V (φ1, . . . , φN)− Λ

)
.

(34)
In the Bianchi I metric the Einstein equations have the following form:

H1H2 + H1H3 + H2H3 = 8πGN%, (35)

Ḣ2 + H2
2 + Ḣ3 + H2

3 + H2H3 = − 8πGNp, (36)

Ḣ1 + H2
1 + Ḣ2 + H2

2 + H1H2 = − 8πGNp, (37)

Ḣ1 + H2
1 + Ḣ3 + H2

3 + H1H3 = − 8πGNp, (38)
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where

% =

N∑

k=1

Ck
φ̇2

k

2
+ V (φ1, . . . , φN) + Λ, (39)

p =

N∑

k=1

Ck
φ̇2

k

2
− V (φ1, . . . , φN)− Λ, (40)

It is convenient to write equations (36)–(38) as follows

Ḣi + Ḣj = Kij, where i, j = 1, 2, 3, i 6= j, (41)

Kij = −H2
i −H2

j −HiHj − 8πGNp. (42)

From action (34) we obtain the following equations for the fields φk:

φ̇k = ψk, (43)

ψ̇k = − (H1 + H2 + H3)ψk − 1

Ck
V ′

φk
, (44)

Ḣi = Ki(φk, ψk, Hi), (45)

where

K1 =
1

2
(K13+K12−K23), K2 =

1

2
(K23+K12−K13), K3 =

1

2
(K23+K13−K12).
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To study the stability of this solution we present solutions, whose initial
conditions are close to the isotropic one, in the following form

Hi(t) = H0(t) + εhi(t) +O(ε2), i = 1, 2, 3 (46)

φk(t) = φ0k(t) + εϕk(t) +O(ε2), (47)

ψk(t) = ψ0k(t) + εχk(t) +O(ε2). (48)
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and obtain

ϕ̇k = χk, (49)

χ̇k = − (h1 + h2 + h3)ψ0k − 3H0χk − 1

Ck

N∑
m=1

V ′′
φkφm

(φ0) ϕm, (50)

ḣ1 + ḣ2 = − 3H0(h1 + h2) + 8πGN

N∑

k=1

(
V ′

φk
(φ0) ϕk − Ckφ̇0kχk

)
, (51)

ḣ1 + ḣ3 = − 3H0(h1 + h3) + 8πGN

N∑

k=1

(
V ′

φk
(φ0) ϕk − Ckφ̇0kχk

)
, (52)

ḣ2 + ḣ3 = − 3H0(h2 + h3) + 8πGN

N∑

k=1

(
V ′

φk
(φ0) ϕk − Ckφ̇0kχk

)
. (53)

From equations (51)–(53) we obtain

ḣ1(t)− ḣ2(t) + 3H0(t)(h1(t)− h2(t))=0, (54)

ḣ1(t)− ḣ3(t) + 3H0(t)(h1(t)− h3(t))=0, (55)
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H0(h1 + h2 + h3) = 4πGN

N∑

k=1

(
Ckφ̇0kϕ̇k + V ′

φk
(φ0) ϕk

)
, (56)

Theorem
Let H0(t) be a smooth function, bounded at all finite values of time and

∞∫
0

H0(τ )dτ be bounded from below, in other words this integral is equal to a

finite number or plus infinity. Functions h1(t), h2(t), h3(t) and ϕk(t), which
are solutions of (49)–(53), are bounded if and only if isotropic solutions,
namely solutions, which satisfy the condition h1(t) = h2(t) = h3(t), are
bounded.

Proof. It is trivial that if full set of solutions includes only boundary
functions, then any subset, which satisfies an additional condition, includes
only boundary functions. Let us prove that the boundedness of isotropic
solutions is not only a necessary condition but also a sufficient one.
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From equations (54) and (55) we obtain:

h1(t)− h2(t) = (h1(0)− h2(0))e
−3

t∫
0

H0(τ)dτ

,

h1(t)− h3(t) = (h1(0)− h3(0))e
−3

t∫
0

H0(τ)dτ

.

(57)

So we obtain that if the integral
t∫

0

H0(τ )dτ is uniformly bounded from

below, then anisotropy is bounded at all t. Note, that in the most of cosmo-
logical models H0(t) > 0 for all t > 0 and the anisotropy tends to zero at
t →∞.

Using (57), one can express h2(t) and h3(t) via h1(t) and reduce system
(51)–(53) to one equation.

Let us introduce a new function

h0(t) ≡ h1(t)− C0

3
e
−3

t∫
0

H0(τ)dτ

. (58)

It is easy to check that

3h0(t) = h1(t) + h2(t) + h3(t). (59)
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In terms of h0 and ϕk we get the system of equations which coincide with the
corresponding Friedmann equations, for which h1(t) = h2(t) = h3(t) = h0(t).

Therefore, the functions ϕk(t) in the Bianchi I and FRW metrics are the
same. Functions h1(t), h2(t) and h3(t) differ from the correction for the
Hubble parameter h0(t) on a finite value. Thus the theorem is proven.

Note that Theorem 1 connects the stability properties the the FRM and
Bianchi I metrics not only for solutions, which tend to a fixed point, but also
for solutions, which tends to infinity at t →∞.

Model with massless phantom field

Let us consider the stability of solutions of local models, which correspond to
the nonlocal model with quadratic potential (I.Ya. Aref’eva, L.V. Joukovskaya,
and S.Yu. V., J. Phys. A: Math. Theor. 41 (2008) 304003, arXiv:0711.1364).
Let us consider the one-field model with zero potential V (φ) = 0.
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The Friedmann equations are:

3H2 =
C

2m2
p

φ̇2 +
Λ

m2
p

, (60)

Ḣ = − C

2m2
p

φ̇2. (61)

At Λ > 0 and C < 0 there is the following real solution:

H0(t) =

√
Λ

3m2
p

tanh

(√
3Λ

m2
p

(t− t0)

)
,

φ0(t) = ±
√
− 2m2

p

3C
arctan

(
sinh

(√
3Λ

m2
p

(t− t0)

))
+ C1,

(62)

where t0 and C1 are arbitrary real constant.
Let us consider the stability of the solution (H0, φ0). Substituting H0 and

φ0 in (46)–(47), to first order in ε we obtain
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ϕ(t) =
2m2

p

√
2e

2

√
3m2

pΛ

m2
p

(t−t0)

√−CΛ


e

2

√
3m2

pΛ

m2
p

(t−t0)
+ 1




C3 + C2,

h(t) =
2C3

cosh

(
2

√
3m2

pΛ

m2
p

(t− t0)

)
+ 1

,

(63)

where C2 and C3 are arbitrary real constants. It is obvious, that functions
h(t) and ϕ(t) are bounded. In the Bianchi I metric we have

hi(t) = h(t) + C̃i

√√√√√√1− tanh2




√
3m2

pΛ

m2
p

(t− t0)


. (64)

Thus, we have obtained, that kink-type solution (62) in the Bianchi I metric
have the bounded first corrections.
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Model with quadratic potential and the cosmological constant

Let us consider the model of the scalar field with the quadratic potential and
the cosmological constant. In this case the Friedmann equations are

H2 =
8πGN

3

(
C

2
φ̇2 +

B

2
φ2 + Λ

)
, (65)

Ḣ = − 4πGNCφ̇2, (66)

where C and B are arbitrary nonzero real numbers.
System (65)–(66) has the following particular solution

H0(t) = k1t, φ0(t) = k2t, (67)

where

k1 = − B

3C
, k2

2 =
B

12πGNA2
. (68)

From (68) it follows, that the function φ is real if and only if B > 0. The
above-mentioned solutions exist only if

Λ = − B

24πGNA
. (69)
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To analyse stability of these exact solutions we substitute

H(t) = k1t + εh(t) (70)

and
φ(t) = k2t + εϕ(t). (71)

in (65) and (66).
To first order in ε we obtain the following system of equations

2
√

3πBGN(Aϕ̇(t) + Btϕ(t)) = 3Bt h(t), (72)

ḣ(t) = −8πGNCk2ϕ̇(t). (73)

Solutions of (72)–(73) are

ϕ(t) = C̃1e
B
2C t2 + C̃2 (74)

h(t) = C̃1e
B
2C t2 + C̃2. (75)

Therefore, the functions h(t) and ϕ(t) are bounded at C/B < 0. Real
solutions exist only if B > 0, hence, C < 0. We come to conclusion that
solution (67) can be stable (the first corrections are bounded), only if C < 0,
in other words, φ(t) is a phantom scalar field.
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Conclusions

• We have analysed the stability of isotropic solutions for the models with
the NEC violation in the Bianchi I metric.

• For one-field model we used the Lyapunov theorem and found sufficient
conditions for stability of kink-type solutions.

• We found the explicit form of the connection between h1(t), h2(t) and
h3(t), which define metric perturbations in the Bianchi I metric, and h0,
which defines perturbations in the FRW metric.

• The first corrections for the fields in both metric are the same.

• In particular we state that for H0 > 0 the boundedness of h0 is a sufficient
and necessary condition for the boundedness of h1(t), h2(t), and h3(t).
This result is valid for both N -field and k-essence models as well as for
models with the CDM.

• The exact solutions, found in string inspired phantom models (I. Aref’eva,
A. Koshelev, S.V., 2004; I. Aref’eva, L. Joukovskaya, 2005), are stable.
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