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Efim Samoilovich Fradkin was fully devoted to science
and had fantastically broad scope of interests:
Hamiltonian Quantization, SUSY, SUGRA, String Theorvy,
Higher Spin theovy,...

Many unpublished or improperly published important results:
E.S.Fradkin, Proceed. 10 Winter Karpacz School, 1973, Hamiltonian
formalism...

E.S.Fradkin, M.V., Light-cone gravity (1974), N=2 SUGRA (1976)



Fradkin’s scientific career started from his work on massive fermionic
HS fields in 1950

because Ginzburg and Tamm worked in the field

Fradkin, Tseytlin: Symmetric conformal HS gauge fields (1985)
Fradkin, Vasiliev: HS interactions in AdS,; (1987)
Fradkin, Linetsky: Conformal HS interactions (1989)



HS Symmetries

vny..ns -~ FANK s double traceless symmetric tensor Fronsdal 1978

Gauge transformation:

0Pky..ks = Ok1Eko...ks) = O

5k1-.-ks_1(5’7)‘ symmetric traceless tensor gauge parameter

Study of HS interactions is the search of symmetries beyond ad hoc

geometric pictures.
Metric tensor (spin two) a member of an infinite family of gauge fields.

Formalism of differential forms



Unfolded Dynamics

First-order form of differential equations

§'(t) = ' (q(t)) initial values: ¢'(¢p)

# DOF = # of dynamical variables

Field theory: infinite number of DOF = spaces of functions
— —

Maxwell g ~ A(x), p~ E(x).

Covariant extension t — " ?

Unfolded dynamics: multidimensional generalization (1988)
o .
o d, qg"(t) - WHz) =dz™ N... A dmnPWﬁlo__np(:c)

a set of differential forms



Unfolded equations

dW(z) = G*(W(x)), d = dx"0p,

G*(W) : function of “supercoordinates” W¢

@)
GW) =Y %, s, WP A .. AWPn

n=1

Covariant first-order differential equations

OG*(W)

e — 0O equivalent

d > 1: Nontrivial compatibility conditions: G?(W) A
to the generalized Jacobi identities

>+ D81 B B ni1eBm} = O

n=0

Any solution to generalized Jacobi identities: FDA (Sullivan (1968))



FDA is universal if the generalized Jacobi identity holds for W interpreted
as supercoordinates. HS FDASs are universal.

Every universal FDA = some L algebra

Equivalent form of compatibility condition

0
owe

Q?=0, Q= GY(W)

-manifolds

Hamiltonian-like form of the unfolded equations
dF(W(zx)) = Q(F(W(z)), VE(W).
Invariant functionals: ¢ cohomology
S = /L(W(a:)) . QL=0  (2005)

T he unfolded equation is invariant under the gauge transformation

g0G*(W)
oW b

IWY =de* + ¢



Properties

e General applicability

e Manifest (HS) gauge invariance

e Invariance under diffeomorphisms
Exterior algebra formalism

e Interactions: nonlinear deformation of G*(W)

e Degrees of freedom are in O-forms C'(zg) at any z = zg (as ¢(tp))
instead of phase coordinates in the Hamiltonian approach

e Natural realization of infinite symmetries with higher derivatives

e Lie algebra cohomology interpretation



Unfolding as a covariant twistor transform

C(Y|x)

1\

M (z) T(Y).

Twistor transform

W (Y|x) are functions on the *“correspondence space” C.
Space-time M : coordinates x. Twistor space 7T : coordinates Y.
Unfolded equations: Penrose transform mapping functions on 7' to so-

lutions of field equations in M.

Independence of ambient space-time: Geometry is encoded by G%(W)
Physical dimension and metric emerge from unfolded equations 2002
Physical space-times of different dimensions can coexist in an ambient
space-time of higher (possibly infinite) dimension.

Branes are not localized while HS symmetries are unbroken



Mixed symmetry conformal fields

o_ cohomology determines content of all mixed symmetry conforma
fields in any dimension

p-form gauge field in o(d,2)-module FL Lorentz tensor field in the

0(d,2)"
o(d —1,1)-module e (d 1.1)
L L,p
Fota.2) Gold-1,1)
P H® = -
(1)
Dynamical field: G (d 1.1)
Gauge symmetry parameter: G (’Z }1) Ly — Lyyq + 1 derivatives
Ground gauge invariant Weyl tensor: G (’Z 11) L pH1 — Ly, + 1 derivatives.

Order of field equations is d + 2L, 1 — 2p

11



Example of Block

L=(—-1,...,5—1,0,...0...0)

7

~~

h
p = h — 1 FradKin-Tseytlin case: h=1,p = 2.

physical fields: ¢ : } h—1
—_—
Weyl tensor: C }h
—_—
SA
gauge parameter %/ h—2
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Physical content via supersymmetric mechanics

Supersymmetric Hamiltonian
1 1
H = Z(TLabTC{;) — TABTAB) — E(A +p)(A+p—d),

h
TAPT g = 2% Li(L; +d+ 2 — 2i)
i=1
Dynamical fields, Weyl tensors and gauge symmetry parameters: super-

symmetric vacua of 'H
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Conclusions

Realization of old Fradkin‘s idea that Conformal HS gauge theory shoulc

help to understand unitary HS gauge theory
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