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E.S. Fradkin
• broad spectrum of interests and important results
remarkable sense of what is new and important
boldly moving into new subjects and “crossing boundaries”
• quantum field theory; quantum gauge theory;
quantum gravity; supersymmetry and supergravity;
conformal field theories; higher spin theories

string theory
some of our joint papers:
•Quantization of Two-Dimensional Supergravity and

Critical Dimensions for String Models. Phys.Lett.B106:63,1981
•On Quantized String Models. Annals of Phys.143:413,1982.
•Quantized Strings And QCD. in Nara Symposium, 0284, 1982.
•Quantum String Theory Effective Action. Nucl.Phys.B261:1,1985.
•Effective Action Approach to Superstring Theory. Phys.Lett.B160:69,1985.
•Nonlinear Electrodynamics from Quantized Strings. Phys.Lett.B163:123,1985.



Some history:
•1980 – met at seminar in this hall
•1981 – Polyakov’ talk here; our first string-theory paper

string theory for gauge theory (WL representation in QCD)
•1981-83 – superstring developments, Witten’s talk here

string theory as quantum gravity
•1984-85 – our work on effective field theory from string theory

(eff. action from string path integral, dilaton, Born-Infeld, etc.)

•1997-98 – AdS/CFT duality:
unification of many ideas and methods Fradkin worked on:
• N = 4 super Yang-Mills theory = 4d CFT
• string theory in curved AdS5 space:

higher-spin theories in AdS,
SYM vs 4d conformal supergravity, etc.

... he would be excited to work on this remarkable subject...



Some of Fradkin’s related earlier work:
• N = 4 SYM conformal anomaly in curved space:
Conformal anomaly in Weyl Theory
and anomaly free Superconformal Theories
E.S. Fradkin, A.A. Tseytlin, Phys.Lett.B134:187,1984.
• Higher spins in AdS space:
On the Gravitational Interaction of Massless Higher Spin Fields
E.S. Fradkin, M.A. Vasiliev, Phys.Lett.B189:89,1987.
• Integrability of a string-theory sigma model:
Quantum R matrix in the relativistic string model
in a space of constant curvature.
E.S. Fradkin, R.R. Metsaev. Mod.Phys.Lett.A5:1329,1990.
• 4-d CFT methods:
New developments in D-dimensional
conformal quantum field theory
E.S. Fradkin , M.Ya. Palchik, Phys.Rept.300:1-112,1998.



AdS/CFT:
progress largely using limited tools of
supergravity + classical probe actions
To go beyond: understand quantum string theory in AdS5 × S5

Problems for string theory:

• find spectrum of states:

energies/dimensions as functions of λ = g2
YM

Nc

• construct vertex operators: closed and open (?) strings

• compute their correlation functions – scattering amplitudes

• compute expectation values of Wilson loops

• generalizations to simplest less supersymmetric cases

...



“tree-level” AdS5 × S5 superstring = planar N = 4 SYM
Recent remarkable progress in quantitative understanding
interpolation from weak to strong ‘t Hooft coupling
based on/checked by perturbative gauge theory (4-loop in λ)
and perturbative string theory (2-loop in 1√

λ
) “data”

and (strong evidence of) exact integrability
string energies = dimensions of local Tr(...) operators

E(
√

λ, C, m, ...) = ∆(λ, C, m, ...)

C - “charges” of SO(2, 4)× SO(6): S1, S2; J1, J2, J3

m - windings, folds, cusps, oscillation numbers, ...
Operators: Tr(ΦJ1

1 ΦJ2
2 ΦJ3

3 DS1
+ DS2

⊥ ...Fmn...Ψ...)

Solve supersymmetric 4-d CFT
= Solve string in curved R-R background (2-d CFT):
compute E = ∆ for any λ (and any C,m)



Problem: perturbative expansions are opposite
λ � 1 in perturbative string theory
λ � 1 in perturbative gauge theory
weak-coupling expansion convergent – defines ∆(λ)
need to go beyond perturbation theory: integrability

Last 7 years – remarkable progress for subclass of states:
“semiclassical” string states with large quantum numbers
dual to “long” SYM operators (canonical dim. ∆0 � 1)
[BMN 02, GKP 02, FT 03,...]
E = ∆ – same (in some cases !) dependence on C,m, ...

coefficients = “interpolating” functions of λ



Current status:
1. “Long” operators = strings with large quantum numbers:
Asymptotic Bethe Ansatz (ABA) [Beisert, Eden, Staudacher 06]
firmly established (including non-trivial phase factor)
2. “Short” operators = general quantum string states:
partial progress based on improving ABA by

“Luscher corrections” [Janik et al 08]
generalize ABA to TBA [Arutyunov, Frolov 08]
very recent (complete ?) proposal for underlying “Y-system”

[Gromov, Kazakov, Vieira 09]

To justify from first principles need better understanding
of quantum AdS5 × S5 superstring theory
1. Solve string theory on a plane R1,1 →
relativistic 2d S-matrix → asymptotic BA for the spectrum
2. Generalize to finite-energy closed strings – the theory on R×S1

→ TBA (cf. integrable sigma models)



Superstring theory in AdS5 × S5

bosonic coset SO(2,4)
SO(1,4) ×

SO(6)
SO(5)

generalized to supercoset PSU(2,2|4)
SO(1,4)×SO(5) [Metsaev, AT 98]

S = T

∫
d2σ

[
Gmn(x)∂xm∂xn + θ̄(D + F5)θ∂x

+ θ̄θθ̄θ∂x∂x + ...
]

tension T = R2

2πα′ =
√

λ
2π

Conformal invariance: βmn = Rmn − (F5)2mn = 0
Classical (Luscher-Pohlmeyer 76) integrability of coset σ-model
true for AdS5 × S5 superstring [Bena, Polchinski, Roiban 02]
Progress in understanding of implications of (semi)classical
integrability [Kazakov, Marshakov, Minahan, Zarembo 04,...]

Reformulation in terms of currents with Virasoro conditions solved:
“Pohlmeyer reduction” [Grigoriev, AT 07; Roiban, AT 09]



1-loop quantum superstring corrections
[Frolov, AT; Park, Tirziu, AT, 02-04, ...]
used as an input data to fix 1-loop term
in strong-coupling expansion of the phase θ(λ) in ABA
[Beisert, AT 05; Hernandez, Lopez 06]

2-loop quantum superstring corrections
[Roiban, Tirziu, AT; Roiban, AT 07]
– check of finiteness of the GS superstring
– implicit check of integrability of quantum string theory
– non-trivial confirmation of BES phase in ABA
[Benna, Benvenuti, Klebanov, Scardicchio 07;
Basso, Korchemsky, Kotansky 07]



Gauge states vs string states: principles of comparison
1. compare states with same global SO(2, 4)× SO(6) charges
e.g., (S, J) – “sl(2) sector” – Tr(DS

+ΦJ)
2. assume no “level crossing” while changing λ

min/max energy (S, J) states should be in correspondence
Gauge theory:
∆ ≡ E = S + J + γ(S, J, m, λ) ,

γ =
∑∞

k=1 λkγk(S, J, m)
fix S, J, ... and expand in λ;
then may expand in large/small S, J, ...

Semiclassical string theory:
E = S + J + γ(S,J ,m,

√
λ) ,

γ =
∑∞

k=−1
1

(
√

λ)k
γ̃k(S,J ,m)

fix semiclassical parameters S = S√
λ
, J = J√

λ
, m

To match in general will need to resum – beyond ABA



Summary: planar N=4 SYM λ = g2
YM

Nc

• cusp anomalous dimension: Tr(Φ̄DS
+Φ), ∆ = S+f(λ) lnS+...

f(λ � 1) =
λ

2π2

[
1− λ

48
+

11λ2

28 · 45
− (

73
630

+
4(ζ(3))2

π6
)
λ3

27
+ O(λ4)

]
f(λ � 1) =

√
λ

π

[
1− 3 ln 2√

λ
− K

(
√

λ)2
−O( 1

(
√

λ)3
)
]

+ O(e−
1
2

√
λ)

BES integral equation: any number of terms in expansions known
• anomalous dimension of Konishi operator: Tr(Φ̄iΦi), ∆ = 2+γ

γ(λ � 1) =
12λ

(4π)2
[
1− 4λ

(4π)2
+

28λ2

(4π)4

+ [−208 + 48ζ(3)− 120ζ(5)]
λ3

(4π)6
+ O(λ4)

]
γ(λ � 1) = 2

√√
λ

[
1 +

b√
λ

+ O( 1
(
√

λ)2
)
]

b - leading correction to mass of “lightest” AdS5×S5 string state
higher order terms? integral equation for γ?



Dimensions of short operators
= energies of quantum string states:
progress in understanding spectrum of conformal dimensions
of planar N = 4 SYM or spectrum of strings in AdS5 × S5

based on quantum integrability
Spectrum of states with large quantum numbers –
solution of ABA equations
key example: cusp anomaly function
Recent proposal of how to extend this to “short” states
with any quantum numbers – TBA or “Y-system” approach
so far not checked/compared to direct quantum string results

Aim: compute leading α′ ∼ 1√
λ

correction to dimension of

“lightest” massive string state dual to
Konishi operator in SYM theory
– data for checking future (numerical) prediction of “Y-system”



Konishi operator:
operators (long multiplet) related to singlet [0, 0, 0]2(0,0) by susy

∆ = ∆0 + γ(λ), ∆0 = 2, 5
2 , 3, ..., 10

– same anomalous dimension γ

singlet eigen-state of anom. dim. matrix with lowest eigenvalue
examples:
Tr(Φ̄iΦi), i = 1, 2, 3, ∆0 = 2
Tr([Φ1,Φ2]2) in su(2) sector ∆0 = 4
Tr(Φ1D

2
+Φ1) in sl(2) sector ∆0 = 4

Weak-coupling expansion of γ(λ): λ = g2
YM

Nc

γ(λ) = 12
[ λ

(4π)2
− 4

λ2

(4π)4
+ 28

λ3

(4π)6

+ [−208 + 48ζ(3)− 120ζ(5)]
λ4

(4π)8
+ ....

]
[Fiamberti,Santambrogio,Sieg,Zanon; Bajnok,Janik; Velizhanin 08]



Finite radius of convergence (Nc = ∞) – if we could sum up
and then re-expand at large λ – what to expect? (cf. f(λ))

AdS/CFT duality: Konishi operator dual to
“lightest” among massive AdS5 × S5 string states

large
√

λ = R2

α′ :
– “small” string at center of AdS5 – in nearly flat space

λ � 1 : ∆(∆− 4) = 4
√

λ + a + O( 1√
λ
)

∆− 2 = 2
√√

λ
[
1 +

b√
λ

+ O( 1
(
√

λ)2
)
]

, b =
1
8
(a + 4)

a = first correction to mass of dual string state
Evidence below: a = −4, b = 0



Flat space case:

m2 = 4(n−1)
α′ , n = 1

2 (N + N̄) = 1, 2, ..., N = N̄

n = 1: massless IIB supergravity (BPS) level
l.c. vacuum |0 >: (8 + 8)2 = 256 states
n = 2: first massive level (many states, highly degenerate)
[(ai

−1 + Sa
−1)|0 >]2 = [(8 + 8)× (8 + 8)]2

in SO(9) reps:
([2, 0, 0, 0] + [0, 0, 1, 0] + [1, 0, 0, 1])2 = (44 + 84 + 128)2

e.g. 44× 44 = 1 + 36 + 44 + 450 + 495 + 910
84×84 = 1+36+44+84+126+495+594+924+1980+2772

switching on AdS5 × S5 background fields lifts degeneracy
states with “lightest mass” at first excited string level
should correspond to Konishi multiplet



string spectrum in AdS5 × S5 :
long multiplets A∆

[k,p,q](j,j′) of PSU(2, 2|4)

highest weight states: [k, p, q](j, j′) labels of SO(6)× SO(4)

Remarkably, flat-space string spectrum can be re-organized
in multiplets of SO(2, 4)× SO(6) ⊂ PSU(2, 2|4)
[Bianchi, Morales, Samtleben 03; Beisert et al 03]
SO(4)× SO(5) ⊂ SO(9) rep.
lifted to SO(4)× SO(6) rep. of SO(2, 4)× SO(6)

Konishi long multiplet
T̂1 = (1 + Q + Q ∧Q + ...)[0, 0, 0](0,0)

determines the KK “floor” of 1-st excited string level
H1 =

∑∞
J=0[0, J, 0](0,0) × T̂1



One expects for scalar massive state in AdS5

(−∇2 + m2)Φ + ... = 0

∆(∆− 4) = (mR)2 + O(α′) = 4(n− 1)R2

α′ + O(α′)

∆ = 2 +
√

(mR)2 + 4 + O(α′)

∆(λ � 1) =
√

4(n− 1)
√

λ + ...

[Gubser, Klebanov, Polyakov 98]
e.g., for first massive level:

n = 2 : ∆ = 2
√√

λ + ...

Subleading corrections?



Comparison between gauge and string theory states non-trivial:

GT (λ � 1): operators built out of free fields,
canonical dimension ∆0 determines states that can mix
ST (λ � 1): near-flat-space string states built out of
free oscillators, level n determines states that can mix

meaning of ∆0 at strong coupling?
meaning of n at weak coupling?

1. relate states with same global charges;
2. assume “non-intersection principle” [Polyakov 01]:
no level crossing for states with same quantum numbers
as λ changes from strong to weak coupling



Approaches to computation of corrections to string masses:

(i) semiclassical approach:
identify short string state as small-spin limit of
semiclassical string state
– reproduce the structure of strong-coupling corrections
to short operators
[ Frolov, AT 03; Tirziu, AT 08]

(ii) vertex operator approach:
use AdS5 × S5 string sigma model perturbation theory to find
leading terms in anomalous dimension of corresponding
vertex operator
[Polyakov 01; AT 03]



(iii) space-time effective action approach:
use near-flat-space expansion and NSR vertex operators
to reconstruct α′ ∼ 1√

λ
corrections to corresponding

massive string state equation of motion
[Burrington, Liu 05]

(iv) “light-cone” quantization approach:
start with light-cone gauge AdS5 × S5 string action
and compute corrections to energy of
corresponding flat-space oscillator string state
[Metsaev, Thorn, AT 00 ]



Semiclassical expansion: spinning strings

E = E(
J√
λ

,
√

λ) =
√

λE0(J ) + E1(J ) +
1√
λ
E2(J ) + ...

in “short” string limit J � 1

En =
√
J (a0n + a1nJ + a2nJ 2 + ...)

expansion valid for
√

λ � 1 and J = J√
λ

fixed: J ∼
√

λ � 1

but if knew all terms in this expansion – could express J
in terms of J , fix J to finite value and re-expand in

√
λ

E =
√√

λJ
[
a00 +

a10J + a01√
λ

+
a20J

2 + a11J + a02

(
√

λ)2
+ ...

]
to trust the coeff of 1

(
√

λ)n
need coeff of up to n-loop terms

e.g. classical a10 and 1-loop a01 sufficient to fix 1√
λ

term

cf. “fast string” expansion J � 1 for fixed J

positive powers of
√

λ – need to resum



Example: circular rotating string in S5 with J1 = J2 = J :
cf. Konishi descendant with J1 = J2 = 2: Tr([Φ1,Φ2]2)
try represent it by “short” classical string with same charges
flat space Rt ×R4: circular string solution

x1 + ix2 = a ei(τ+σ) , x3 + ix4 = a ei(τ−σ)

E =
√

4
α′ J, J = a2

α′

this solution can be directly embedded into
Rt × S5 in AdS5 × S5 [Frolov, AT 03] :
string on small sphere inside S5: X2

1 + ... + X2
6 = 1

X1 + iX2 = a ei(τ+σ), X3 + iX4 = a ei(τ−σ) ,

X5 + iX6 =
√

1− 2a2, t = κτ
J = J1 = J2 = a2, E2 = κ2 = 4J

Remarkably, exact E0 is just as in flat space

E0 =
√

λE =
√

4
√

λJ , J =
√

λJ



[cf. another (unstable) branch of J1 = J2 solution with J > 1
2 :

E0 =
√

J2 + λ =
√

λ(1 + J2

2
√

λ
+ ...) ]

1-loop quantum string correction to the energy:
sum of bosonic and fermionic fluctuation frequencies (n = 0, 1, 2, ...)
Bosons (2 massless + massive):

AdS5 : 4× ω2
n = n2 + 4J

S5 : 2× ω2
n± = n2 + 4(1− J )± 2

√
4(1− J )n2 + 4J 2

Fermions:

4× ω2
n

f
± = n2 + 1 + J ±

√
4(1− J )n2 + 4J

E1 =
1
2κ

∞∑
n=−∞

[
4ωn + 2(ωn+ + ωn−)− 4(ωf

n+ + ωf
n−)

]
expand in small J and do sums (UV divergences cancel)

E1 =
1√
J

[
− J − [3 + ζ(3)]J 2 − 1

4

[
5 + 6ζ(3) + 30ζ(5)

]
J 3 + . . .

]



E = E0 + E1 = 2
√√

λJ
[
1− 1

2
√

λ
− 3

4 [1 + 2ζ(3)]
J

(
√

λ)2
+ ...

]
if we could interpolate to fininte J = J1 = J2 = 2
that would suggest for Konishi state

E = 2
√√

λ
[
1− 1

2
√

λ
+ O( 1

(
√

λ)2
)
]

But: above valid for large E and J ;
need to account for quantization of c.o.m. modes – re-interpret as

E(E − 4) = 4
√

λ(J − 1)− 4 + O( 1√
λ
)

J = 2 : E − 2 = 2
√√

λ
[
1 + 0× 1√

λ
+ O( 1

(
√

λ)2
)
]

same result will be found by different methods below



Spectrum of quantum string states
from target space anomalous dimension operator

Flat space: k2 = m2 = 4(n−1)
α′

e.g. leading Regge trajectory (∂x∂̄x)S/2eikx, n = S/2
spectrum in (weakly) curved background:
solve marginality (1,1) conditions on vertex operators

e.g. scalar anomalous dimension operator γ̂(G)
on T (x) =

∑
cn...mxn...xm or on coefficients cn...m

differential operator in target space
found from β-function for the corresponding perturbation

I =
1

4πα′

∫
d2z[Gmn(x)∂xm∂̄xn + T (x)]

βT = −2T − α′

2 γ̂ T + O(T 2)
γ̂ = ΩmnDmDn + ... + Ωm...kDm...Dk + ...
Ωmn = Gmn + O(α′3), Ω.... ∼ α′nRp

....



Solve −γ̂ T + m2T = 0: diagonalize γ̂

similarly for massless (graviton, ...) and massive states
e.g. βG

mn = α′Rmn + O(α′3)
gives Lichnerowitz operator as anomalous dimension operator

(γ̂h)mn = −D2hmn + 2Rmknlh
kl − 2Rk(mhk

n) + O(α′3)

Massive string states in curved background:∫
dDx

√
g

[
Φ...(−D2 + m2 + X)Φ... + ...

]
m2 = 4

α′ (n− 1) , X = R.... + O(α′)

case of AdS5 × S5 background

Rmn − 1
96 (F5F5)mn = 0, R = 0 , F 2

5 = 0

Find leading-order term in X ?



How to find γ̂: Effective action approach
derive equation of motion for a massive string field
in curved background from quadratic effective action S

reconstructed from flat-space NSR S-matrix
Example: totally symmetric NS-NS 10-d tensor
– state on leading Regge trajectory in flat space

symmetric tensor Φµ1...µ2n
(m2 = 4(n−1)

α′ )
in metric+RR background

L = R− 1
2·5!F

2
5 + O(α′3)

− 1
2 (DµΦDµΦ + m2Φ2) +

∑
k≥1

(α′)k−1ΦXk(R,F5, D)Φ + ...

assumption: α′nR � 1, i.e. n �
√

λ:
small massive string in the middle of AdS5:
near-flat-space expansion should be applicable



then eq. for Φ to leading α′ order [Burrington, Liu 05]

[−D2 + m2 + X1 + O(α′)]Φµ1···µ2n = 0
ΦX1Φ = c1Φµ1µ2···µ2n

Rµ1ν1µ2ν2Φν1ν2
µ3···µ2n

+c2Φµ1···µ2n
Fµ1ν1α3···α5Fµ2ν2

α3···α5Φν1ν2
µ3···µ2n

+c3Φµ1µ2···µ2n
Fµ1α2···α5F ν1

α2···α5Φν1
µ2···µ2n

c1 = n2 , c2 = − 1
4! , c3 = − 1

4×4!

check: reproduces eq for graviton perturbation around
Rµν − 1

4×4! (F5F5)µν = 0

AdS5 × S5 background: Rab = − 4
R2 gab, Rmn = 4

R2 gmn

µ, ν, . . . = 0, 1, ...9; a, b, . . . in AdS5 and m,n, . . . in S5

L = 1
2Φµ1···µ2n

(−D2 + m2)Φµ1···µ2n

+
n2

R2
(Φa1a2µ3···µ2n

Φa1a2µ3···µ2n − Φm1m2µ3···µ2n
Φm1m2µ3···µ2n) + ...

background is direct product – can consider particular tensor
with S indices in AdS5 and K indices in S5:



end up with anomalous dimension operator

[−D2 + (m2 + K2−S2

2R2 )]Φ = 0 , D2 = D2
AdS5

+ D2
S5

m2 = 4
α′ (n− 1) = 2

α′ (S + K − 2), 2n = S + K

symmetric transverse traceless tensor – highest-weight state –
Young table labels (∆, S, 0; J,K, 0), J >K

extract AdS5 radius R and set
√

λ = R2

α′

(−D2
AdS5

+ M2)Φ = 0

M2 = 2
√

λ(S + K − 2) +
1
2
(K2 − S2) + J(J + 4)−K

For symmetric traceless rank S tensor in AdS5:

∆− 2 =
√

M2 + S + 4
=

√
2
√

λ(S + K − 2) + 1
2 (S + K − 2)(K − S) + J(J + 4) + 4 + O( 1√

λ
)



To summarize:
condition of marginality of (1,1) vertex operator
for (∆, S1, S2; J1, J2, J3) = (∆, S, 0; J,K, 0) state

0 = −
√

λ(S + K − 2)

+
1
2
[∆(∆− 4) +

1
2
S(S − 2)− 1

2
K(K − 2)− J(J + 4)] + O( 1√

λ
)

BPS level: n = 1
2 (S + K) = 1

S = 2,K = 0: ∆ = 4 + J ; etc.

First massive level: n = 1
2 (S + K) = 2

minimal dimension shift
S = 4, K = J = 0:
dual to ∆0 = 6 Konishi state [0, 0, 0](2,2)

∆−∆0 = 2
√√

λ + O( 1√
λ
) = 2

√√
λ

[
1 + 0× 1√

λ
+ O( 1

(
√

λ)2
)
]

what about other states in Konishi multiplet?



Vertex operator approach [Polyakov 01; AT 03]
calculate anomalous dimensions from “first principles”
superstring theory in AdS5 × S5 :

I =

√
λ

4π

∫
d2σ

[
∂Np∂̄Np + ∂nk∂̄nk + fermions

]
N+N− −NuN∗

u −NvN∗
v = 1 , nxn∗x + nyn∗y + nzn

∗
z = 1

N± = N0 ± iN5, Nu = N1 + iN2, ..., nx = n1 + in2, ...

construct marginal (1,1) operators in terms of Np and nk

e.g. vertex operator for dilaton sugra mode

VJ(ξ) = (N+)−∆ (nx)J
[
− ∂Np∂̄Np + ∂nk∂̄nk + fermions

]
N+ ≡ N0 + iN5 = 1

z (z2 + xmxm) ∼ eit

nx ≡ n1 + in2 ∼ eiϕ

0 = 2− 2 +
1

2
√

λ
[∆(∆− 4)− J(J + 4)] + O( 1

(
√

λ)2
)



i.e. ∆ = 4 + J (BPS)
candidate operators for states on leading Regge trajectory:

VJ(ξ) = (N+)−∆
(
∂nx∂̄nx

)J/2
, nx ≡ n1 + in2

VS(ξ) = (N+)−∆
(
∂Nu∂̄Nu

)S/2
, Nu ≡ N1 + iN2

+ fermionic terms
+ α′ ∼ 1√

λ
terms from diagonalization of anom. dim. op.

how they mix with ops with same charges and dimension?

in general
(
∂nx∂̄nx

)J/2
mixes with singlets

(nx)2p+2q(∂nx)J/2−2p(∂̄nx)J/2−2q(∂nm∂nm)p(∂̄nk∂nk)q

ops. for states on leading Regge trajectory

O`,s = fk1...k`m1...m2snk1 ...nk`
∂nm1 ∂̄nm2 ...∂nm2s−1 ∂̄nm2s

their renormalization studied before [Wegner 90]



simplest case: fk1...k`
nk1 ...nk`

with traceless fk1...k`

same anom. dim. γ̂ as its highest-weight rep VJ = (nx)J

γ̂ = 2− 1
2
√

λ
J(J + 4) + ...

scalar spherical harmonic that solves Laplace eq. on S5

similarly for AdS5 or SO(2, 4) model:
replacing nJ

x and ∂nm∂̄nm with N−∆
+ and ∂Np∂̄Np, with

J = −∆ and g = 1√
λ
→ − 1√

λ

e.g. dimension of nJ
x∂nm∂̄nm:

γ̂ = − 1
2
√

λ
J(J + 4) + O( 1

(
√

λ)2
)

dimension of N−∆
+ ∂Np∂̄Np:

γ̂ = 1
2
√

λ
∆(∆− 4) + O( 1

(
√

λ)2
)



Example of scalar higher-level operator:

N−∆
+ [(∂nk∂̄nk)r + ...] , r = 1, 2, ...

[Kravtsov, Lerner, Yudson 89; Castilla, Chakravarty 96]

0 = −2(r − 1) +
1

2
√

λ
[∆(∆− 4) + 2r(r − 1)]

+
1

(
√

λ)2
[ 23r(r − 1)(r − 7

2 ) + 4r] + ...

r = 1: ground level
fermionic contributions should make r = 1 exact zero of γ̂

r = 2: first excited level
candidate for singlet Konishi state ∆0 = 2

∆(∆− 4) = 4
√

λ− 4 + O( 1√
λ
) ,

∆−∆0 = 2
√√

λ
[
1 + 0× 1√

λ
+ O( 1

(
√

λ)2
)
]

same as for (S = 4,K = 0) Konishi state with ∆0 = 6



Operators with two spins J,K in S5:

VK,J = N−∆
+

K/2∑
u,v=0

cuvMuv

Muv ≡ nJ−u−v
y nu+v

x (∂ny)u(∂nx)K/2−u(∂̄ny)v(∂̄nx)K/2−v

highest and lowest eigen-values of 1-loop anom. dim. matrix

γ̂min = 2−K +
1

2
√

λ
[∆(∆− 4)− 1

2
K(K + 10)− J(J + 4)− 2JK] + O( 1

(
√

λ)2
)

γ̂max = 2−K +
1

2
√

λ
[∆(∆− 4)− 1

2
K(K + 6)− J(J + 4)] + O( 1

(
√

λ)2
)

fermions may alter terms linear in K

K = 4: first massive level – Konishi state
identify operators with right representations
– more evidence for b = 0
[R.Roiban, AT, in progress]



Conclusion

Beginning of understanding
quantum string spectrum in AdS5 × S5

= spectrum of “short” SYM operators

more progress expected soon
aiding/checking integrability approach


