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E.S. Fradkin

e broad spectrum of interests and important results
remarkable sense of what 1s new and important

boldly moving into new subjects and “crossing boundaries”
e quantum field theory; quantum gauge theory;

quantum gravity; supersymmetry and supergravity;
conformal field theories; higher spin theories

string theory
some of our joint papers:
eQuantization of Two-Dimensional Supergravity and
Critical Dimensions for String Models. Phys.Lett.B106:63,1981
eOn Quantized String Models. Annals of Phys.143:413,1982.
eQuantized Strings And QCD. in Nara Symposium, 0284, 1982.
eQuantum String Theory Effective Action. Nucl.Phys.B261:1,1985.
eEffective Action Approach to Superstring Theory. Phys.Lett.B160:69,1985.
eNonlinear Electrodynamics from Quantized Strings. Phys.Lett.B163:123,1985.



Some history:
¢ 1980 — met at seminar in this hall
e1981 — Polyakov’ talk here; our first string-theory paper
string theory for gauge theory (WL representation in QCD)
¢ 1981-83 — superstring developments, Witten’s talk here
string theory as quantum gravity
¢ 1984-85 — our work on effective field theory from string theory
(eff. action from string path integral, dilaton, Born-Infeld, etc.)

¢1997-98 — AdS/CFT duality:
unification of many ideas and methods Fradkin worked on:
e N = 4 super Yang-Mills theory = 4d CFT
e string theory in curved AdS5 space:
higher-spin theories in AdS,
SYM vs 4d conformal supergravity, etc.
... he would be excited to work on this remarkable subject...



Some of Fradkin’s related earlier work:

e N =4SYM conformal anomaly in curved space:
Conformal anomaly in Weyl Theory

and anomaly free Superconformal Theories

E.S. Fradkin, A.A. Tseytlin, Phys.Lett.B134:187,1984.

e Higher spins in Ad.S space:

On the Gravitational Interaction of Massless Higher Spin Fields
E.S. Fradkin, M.A. Vasiliev, Phys.Lett. B189:89,1987.

e Integrability of a string-theory sigma model:

Quantum R matrix in the relativistic string model

in a space of constant curvature.

E.S. Fradkin, R.R. Metsaev. Mod.Phys.Lett.A5:1329,1990.
e 4-d CFT methods:

New developments in D-dimensional

conformal quantum field theory
E.S. Fradkin , M.Ya. Palchik, Phys.Rept.300:1-112,1998.



AdS/CFT:

progress largely using limited tools of

supergravity + classical probe actions

To go beyond: understand quantum string theory in AdS5 x S°

Problems for string theory:
e find spectrum of states:
energies/dimensions as functions of A = giM N,
e construct vertex operators: closed and open (?) strings
e compute their correlation functions — scattering amplitudes
e compute expectation values of Wilson loops

e generalizations to simplest less supersymmetric cases



“tree-level” AdSs x S° superstring = planar ' = 4 SYM
Recent remarkable progress in quantitative understanding
interpolation from weak to strong ‘t Hooft coupling

based on/checked by perturbative gauge theory (4-loop in \)
and perturbative string theory (2-loop in % ) “data”

and (strong evidence of) exact integrability
string energies = dimensions of local Tr(...) operators

E(WVX,C,m,..)=A\C,m,...)

C' - “charges” of SO(2,4) x SO(6): S1,S2; J1,J2, J3
m - windings, folds, cusps, oscillation numbers, ...
Operators: Tr(®]'®52®3° DY D2 Fppp,. VL)

Solve supersymmetric 4-d CFT
= Solve string in curved R-R background (2-d CFT):
compute £ = A forany A (and any C,m)



Problem: perturbative expansions are opposite

A > 1 1n perturbative string theory

A < 1 in perturbative gauge theory

weak-coupling expansion convergent — defines A(\)
need to go beyond perturbation theory: integrability

Last 7 years — remarkable progress for subclass of states:

“semiclassical” string states with large quantum numbers

dual to “long” SYM operators (canonical dim. Ag > 1)

[BMN 02, GKP 02, FT 03,...]

E = A —same (in some cases !) dependence on C, m, ...
coefficients = “interpolating” functions of A



Current status:

1. “Long” operators = strings with large quantum numbers:
Asymptotic Bethe Ansatz (ABA) [Beisert, Eden, Staudacher 06]
firmly established (including non-trivial phase factor)

2. “Short” operators = general quantum string states:

partial progress based on improving ABA by

“Luscher corrections” [Janik et al 08]

generalize ABA to TBA [Arutyunov, Frolov 08]

very recent (complete ?) proposal for underlying “Y-system”
[Gromov, Kazakov, Vieira 09]

To justify from first principles need better understanding

of quantum AdSs x S° superstring theory

1. Solve string theory on a plane R*! —

relativistic 2d S-matrix — asymptotic BA for the spectrum

2. Generalize to finite-energy closed strings — the theory on R x S*
— TBA (cf. integrable sigma models)



Superstring theory in AdS5 x S°

. SO(2,4) _ SO(6)
bosonic coset SO(1.4) X S0(5)

generalized to supercoset S(if(i)(iélé)@) [Metsaev, AT 98]

S = T/d2a {Gmn(az)c‘?xmﬁaz” +0(D + F5)00x
+ 0000020z + }

R%2 V)

2’ 27

Conformal invariance:  Bn = Rumn — (F5)%,, =0

tension 7' =

Classical (Luscher-Pohlmeyer 76) integrability of coset o-model
true for AdSs x S° superstring [Bena, Polchinski, Roiban 02]
Progress in understanding of implications of (semi)classical
integrability [Kazakov, Marshakov, Minahan, Zarembo 04,...]

Reformulation in terms of currents with Virasoro conditions solved:
“Pohlmeyer reduction” [Grigoriev, AT 07; Roiban, AT 09]



I-loop quantum superstring corrections

[Frolov, AT; Park, Tirziu, AT, 02-04, ...]

used as an input data to fix 1-loop term

in strong-coupling expansion of the phase #(\) in ABA
[Beisert, AT 05; Hernandez, Lopez 06]

2-loop quantum superstring corrections

[Roiban, Tirziu, AT; Roiban, AT 07]

— check of finiteness of the GS superstring

— implicit check of integrability of quantum string theory
— non-trivial confirmation of BES phase in ABA

[Benna, Benvenuti, Klebanov, Scardicchio 07;

Basso, Korchemsky, Kotansky 07]



Gauge states vs string states: principles of comparison

1. compare states with same global SO(2,4) x SO(6) charges
e.g., (S, J) —“sl(2) sector” — Tr(D{ )

2. assume no “level crossing” while changing A

min/max energy (S, .J) states should be in correspondence
Gauge theory:

A=FE=S+J+~(S,J,m,]N),

= 220:1 )‘k7k(37 J,m)

fix S, J, ... and expand in A;

then may expand in large/small S, J, ...

Semiclassical string theory:

E=S+J+~(S8,.J,m V),
Y= Zzoz—l ﬁ?k(gaja m)

fix semiclassical parameters S = %, J = -~

v

To match in general will need to resum — beyond ABA



Summary: planar N=4 SYM )\ = g2 N,

YM

e cusp anomalous dimension: Tr(®D2 ®), A = S+ f(A\) In S+...

2 2 )3
fr<d)= 2—; {1 N 4);% " 21831-A45 N (67330 + 4(C7§2)) );\7 + O(A‘l)}
fA>1) = g {1 — 31%2 — % — O(ﬁ)} _|_O(€—% A)

BES integral equation: any number of terms in expansions known
e anomalous dimension of Konishi operator: Tr(®;®;), A = 2+

12 AN 28N\
YA = oy - (4m2 " (4m)t
3
+[-208 +48((3) — 1200(5)] 4%6 +O(Y)

v > 1):2\/\7A [1+\%+0((\}X)2):

b - leading correction to mass of “lightest” AdSs x S° string state
higher order terms? integral equation for ~?



Dimensions of short operators

= energies of quantum string states:

progress in understanding spectrum of conformal dimensions

of planar N = 4 SYM or spectrum of strings in AdSs x S°

based on quantum integrability

Spectrum of states with large quantum numbers —

solution of ABA equations

key example: cusp anomaly function

Recent proposal of how to extend this to “short” states

with any quantum numbers — TBA or “Y-system” approach

so far not checked/compared to direct quantum string results
1

Aim: compute leading o’ ~ 7 correction to dimension of

“lightest” massive string state dual to
Konishi operator in SYM theory
— data for checking future (numerical) prediction of “Y-system”



Konishi operator:
operators (long multiplet) related to singlet |0, O, O]%O 0) by susy

A=Ag+v(A), A;=2,2,3,.,10

— same anomalous dimension -y

singlet eigen-state of anom. dim. matrix with lowest eigenvalue
examples:

Tr(®;®;), i=1,2,3, Ay=2

Tr([®1, P2]?) in su(2) sector Ay = 4

Tr(®1.D3®q) in si(2) sector Ay = 4

Weak-coupling expansion of y(\): X\ = g2 N,

YM

A 22 23
— 4 28
anE i Ty

4

+ [—208 + 48¢(3) — 120((5)]

Y(A) =12

(;)8 + }

[Fiamberti,Santambrogio,Sieg,Zanon; Bajnok,Janik; Velizhanin 08]



Finite radius of convergence (N, = oo) — if we could sum up

and then re-expand at large A — what to expect? (cf. f(\))

AdS/CFT duality: Konishi operator dual to
“lightest” among massive AdSs x S° string states

large V= R—?:

(81
— “small” string at center of AdS5 — in nearly flat space

A> 1 AA—4)=4V2+a+O0(L)

-

—2—2¢__h+——+Ony), b:;

a = first correction to mass of dual string state
Evidence below: a=-4, b=0

(a+4)



Flat space case:

m? =220y — LNy N)=1,2,..., N=N

a/

n = 1: massless IIB supergravity (BPS) level

l.c. vacuum |0 >: (8 + 8)% = 256 states

n = 2: first massive level (many states, highly degenerate)

((a® | + S0 >]%2 = [(8 +8) x (8 + 8)]?

in SO(9) reps:

([2,0,0,0] +[0,0,1,0] + [1,0,0,1])? = (44 + 84 + 128)*

e.g. 44 x44 =1+ 36 + 44 + 450 + 495 + 910

84 x84 =1436+44+844126+495+5944-924+ 198042772

switching on AdSs x S° background fields lifts degeneracy
states with “lightest mass™ at first excited string level
should correspond to Konishi multiplet



string spectrum in AdS5 x S° :
long multiplets A7 ) of PSU(2,2[4)
highest weight states: [k, p, ¢|(j, ') labels of SO(6) x SO(4)

Remarkably, flat-space string spectrum can be re-organized
in multiplets of SO(2,4) x SO(6) C PSU(2,2|4)
[Bianchi, Morales, Samtleben 03; Beisert et al 03]

SO(4) x SO(5) C SO(9) rep.

lifted to SO(4) x SO(6) rep. of SO(2,4) x SO(6)

Konishi long multiplet

Ti=(1+Q+QAQ+..)[0,0,0]0
determines the KK “floor” of 1-st excited string level
Hl — Z?]O:() [07 J? O](O,O) X Tl



One expects for scalar massive state in AdSs
(=VZ24+m?)®+...=0

A(A—4):(mR) +0(a') =4(n— 1) —I—O( )
A=2+/(mR)2+4+O0()

AA>1 \/471—1

[Gubser, Klebanov, Polyakov 98]
e.g., for first massive level:

n=2: A=2VV\+ ..

Subleading corrections?



Comparison between gauge and string theory states non-trivial:

GT (A < 1): operators built out of free fields,
canonical dimension A determines states that can mix
ST (A > 1): near-flat-space string states built out of
free oscillators, level n determines states that can mix

meaning of A at strong coupling?
meaning of n at weak coupling?

1. relate states with same global charges;

2. assume “non-intersection principle” [Polyakov O1]:
no level crossing for states with same quantum numbers
as A changes from strong to weak coupling



Approaches to computation of corrections to string masses:

(1) semiclassical approach:

identify short string state as small-spin limit of
semiclassical string state

— reproduce the structure of strong-coupling corrections

to short operators
| Frolov, AT 03; Tirziu, AT 08]

(1) vertex operator approach:
use AdSs x S° string sigma model perturbation theory to find
leading terms in anomalous dimension of corresponding

vertex operator
[Polyakov O1; AT 03]



(111) space-time effective action approach:
use near-flat-space expansion and NSR vertex operators

to reconstruct o/ ~ % corrections to corresponding

massive string state equation of motion
[Burrington, Liu 03]

(1v) “light-cone” quantization approach:

start with light-cone gauge AdSs x S° string action
and compute corrections to energy of

corresponding flat-space oscillator string state
[Metsaev, Thorn, AT 00 ]



Semiclassical expansion: spinning strings

E = E(%, VA) = VAE(T) + E(T) + %52(\7) + ...

in “short” string limit 7 < 1
En = \/? (aOn +ainJ + a2nj2 + )
expansion valid for v/A > 1 and J = % fixed: J ~ V> 1

but if knew all terms in this expansion — could express [/
in terms of .J, fix J to finite value and re-expand in v/

J—l—CL()l a20J2+a11J+a02
E =1/ \/XJ {OJQO + 210 + + }
VA (V)2

to trust the coeff of ( \/lX)n need coeff of up to n-loop terms

e.g. classical a1 and 1-loop ag; sufficient to fix % term

cf. “fast string” expansion [/ > 1 for fixed J
positive powers of v/ A — need to resum



Example: circular rotating string in S° with J; = J, = J:
cf. Konishi descendant with J; = Jo = 2:  Tr([®1, ®2]?)
try represent it by “short” classical string with same charges
flat space R; x R*: circular string solution

i(Tt40) ’

T1+ixe = ae T3+ 14 = a eH7=7)

E=\/%J, J=%

this solution can be directly embedded into
R; x S°in AdSs x S° [Frolov, AT 03] :
string on small sphere inside S°: X7 + ...+ X3 =1

X1 -+ iXQ — Qa 67;(7_'_0), X3 + iX4 —a ei(T_J) y

X5—|—’I:X6:‘\/1—26L2, t = KT
J=Nh=F=ad, &E=r=47

Remarkably, exact Ej 1s just as in flat space

Eo = VAE = \/4V\J | J=VA\T



[cf. another (unstable) branch of J; = J5 solution with J > %:

Eo=VIZ+ A= VA(1+ L+ .1

I-loop quantum string correction to the energy:
sum of bosonic and fermionic fluctuation frequencies (n = 0, 1, 2, ...)

Bosons (2 massless + massive):

AdSs : 4 x w2 =n’+47

n —

S 2x  WRi=n?4+4(1 - T)+2/4(1 — T)n2 + 472

Fermions:
Ax Wl =n?+14+T VA0 =T +4T
1 ©.@)
_ f f
E, = o n_z_:oo [4wn + 2(wn+ +wp—) — 4wy, + wn_)}

expand in small J and do sums (UV divergences cancel)

1 2 1 3
B = \/—7[—j—[3+§(3)]j — 1[5+ 6¢(3) + 30¢(5)]T +}



1 3
E:l%+ﬂh:ZVVX41—57i—ZD+2q&h7§E+W

if we could interpolate to fininte J = J; = Jy = 2
that would suggest for Konishi state

E=2 %XP—§7:+OQWVH

But: above valid for large I and J;
need to account for quantization of ¢c.0.m. modes — re-interpret as

E(E —4) =4VA(J = 1) =4+ O(%)

J=2: —2_2¢ﬁ_h+0x +0nyﬂ

same result will be found by different methods below




Spectrum of quantum string states

from target space anomalous dimension operator
_ 4(n—-1)
Oé/

e.g. leading Regge trajectory (0x0x)%/2e?**, n = S/2

Flat space: k? = m? =

spectrum in (weakly) curved background:
solve marginality (1,1) conditions on vertex operators

e.g. scalar anomalous dimension operator 7(G)

onT(x) =) cp. . max™...x™ or on coefficients ¢,
differential operator in target space

found from S3-function for the corresponding perturbation

! d?2[G o (2)02™ 0x™ + T ()]
4o
Br = 2T — 2 7T+ O(T?)
7 =QmD,, D + o+ Q™FD . Dp+ ...
an — Gmn 1+ 0(0/3)’ Q ~ Oé/nRP_”

I =




Solve —4 T' + m?T = 0: diagonalize ¥

similarly for massless (graviton, ...) and massive states
G _ ./ 13
e.g. B, =& Ry, + O0(a”)
gives Lichnerowitz operator as anomalous dimension operator

(FR)mn = —D*hinn + 2Rimpnth* — 2Ry, by + O(a?)
Massive string states in curved background:
/dDa:\/§ [cb_,,(—D2 +m?+ X)D A+ ..
m?=2(n-1), X=R. +0()
case of AdS5 x S° background
Ryn — 5= (F5F5)mn =0, R=0, Fg =0

Find leading-order term in X ?



How to find 7:  Effective action approach

derive equation of motion for a massive string field

in curved background from quadratic effective action S
reconstructed from flat-space NSR S-matrix

Example: totally symmetric NS-NS 10-d tensor

— state on leading Regge trajectory in flat space

symmetric tensor ®,,, . (m?* = w)
in metric+RR background

L=R—-55F+0(a"”)

~3(D, @D P + m*®%) + Y (o) T OX (R, F5, D) + ...
k>1

assumption: 'nR < 1, i.e. n < VA
small massive string in the middle of AdS5:
near-flat-space expansion should be applicable



then eq. for ® to leading o’ order [Burrington, Liu 05]

D%+ m? + X1 4+ 0(a)]®,,..n,, =0
(I)Xl(l) = Clq)M1M2"'/~L2nRM1V1“2V2(I)V1V2N3"‘M2TL
+C2(I)M1°'°M2nFulyla3”'a5Fu2y2a3...a5q)u1u2”3'”u2n
, —I_C3q),u1'u2...lf2nF/vblOéz...ogf,Fl/l agl---a5q),/1’u2m“2”

ciL=n", C2= 7, C3 = —Inal

check: reproduces eq for graviton perturbation around

Ry — ﬁ(F5F5)W =0

AdSs x S° background: Rg, = —%gab, Ry = % mn
u,v,...=0,1,..9; a,b,...in AdSs and m,n,...in S°

L= %(I)Ml“'/izn(_D2 + m2)q)ulmu2n

n2

a a Y
+? ((I)ala2,u3'“/1«2nq) Lazpsian

mimap3
(I)m1m2M3"'M2n(I) a

background is direct product — can consider particular tensor
with S indices in AdS5 and K indices in S°:

“hEn) 4



end up with anomalous dimension operator

—D? + (m” + 2R2S2)](I):07 D? :D?Luzsg3 +D%5

|
m*=2n-1)=2(S+K-2), 2n=S+K

o

symmetric transverse traceless tensor — highest-weight state —
Young table labels (A, S,0; J, K,0), J>K
extract AdSs radius R and set v\ = i—?

(—Das, + M?)® =0
1
M? :2\5\(S+K—2)+§(K2—SQ)+J(J+4) - K

For symmetric traceless rank S tensor in Ad.S5:

A—2=+/M2+S+4

= \2VAS + K —2) + 1S+ K = 2)(K — §) + J(J +4) + 4+ O()



To summarize:
condition of marginality of (1,1) vertex operator

for (A Sl,SQ,Jl,JQ,Jg) (A S,0;J, K, O) state

0=—-VAS+K-2)
FSIAA — )+ 25(5 —2) — SK(K —2) —J(T +4)] + O(%)

DO | —

BPSlevel: n=2(S+K) =1
S=2,K=0. A=4+J; etc.

First massive level: n = 2(S 4+ K) = 2
minimal dimension shift

S=4, K =J=0:

dual to Ay = 6 Konishi state [0, 0, 0](2,2)

A — AO_Q\/\f%—O —2\/7{1+O>< +O((\/_>2)

what about other states in Konishi multiplet?




Vertex operator approach [Polyakov 01; AT 03]
calculate anomalous dimensions from “first principles”
superstring theory in AdS5 x S° :

I = ?{ [(9]\@5]\7 P 4+ OngOng + fermions ]
T

NyN_—N,N;—N,N;=1, ngn,+nyn, +n,n; =1
Nj: — NO :I:’I:N5, Nu = N1 -+ ’iNQ, ceey Ny = N +in2,

construct marginal (1,1) operators in terms of /NV,, and ny,
e.g. vertex operator for dilaton sugra mode

V(&) = (N+)—A (nx)‘] [— 8Np5Np + OnyOny, + fermions

N, = Ny +iN5 = %(22 + Ty Tpm) ~ ¥

Nge =N1 + tng ~ e'?

0_2_2+2\—f[ (A=4) = J(J + 4]+ O(757)



ie. A =4+ J (BPS)
candidate operators for states on leading Regge trajectory:

V(€)= (N+)_A(3nm5nx)J/2 , ng =mny + ing

Vs(€) = (Ny) "2 (0N,ON,)™?, N, =N, +iN,

+ fermionic terms
+a ~ % terms from diagonalization of anom. dim. op.

how they mix with ops with same charges and dimension?

in general (871:,; 57133) 172 mixes with singlets
(ng)?PT29(n,) 72~ (Ony) /2729 (O O, )P (O Oy )

ops. for states on leading Regge trajectory

Ops = fkl,,,kemlmm%nkl...nkeﬁnmléan...8nm23_15nm28

their renormalization studied before [Wegner 90]



simplest case: fx,.. k, Nk, ---Nk, With traceless fr, .k,
same anom. dim. 7 as its highest-weight rep V; = (n,)’

1
=2 ——J(J+4)+
Y 2\f( ) +

scalar spherical harmonic that solves Laplace eq. on S°
similarly for AdS5 or SO(2,4) model:
replacing n; and dn,,,On,,, with N;A and ONPON,,, with

J:—Aandg:\/lX _\/1X

e.g. dimension of n? 8nm5nm°
dimension of N__ RONP 8N

7= =AM -4) +0O(

)



Example of scalar higher-level operator:
N2 [(0nglng)" +...],  r=1,2,..

[Kravtsov, Lerner, Yudson 89; Castilla, Chakravarty 96|

0= —2(r—1)+%[A(A—@—I—Qr(r—l)]
! 27“7“— T—Z r
+(ﬁ)2[§( L)(r—5)+4r| + ...

r = 1: ground level

fermionic contributions should make » = 1 exact zero of
r = 2: first excited level

candidate for singlet Konishi state Ay = 2

A(A—4)=4VA -4+ 0(Z5)
A—A0:2\/\7A [1+0x%+0(ﬁ)}

same as for (S = 4, K = 0) Konishi state with Ay = 6



Operators with two spins .J, K in S°:

K/2
VK,J — N_IA Z Cuv My

u,v=0
Myy = 1) =7 02t (Ony)“(Ong) /27 (Ony) " (Ong ) /27

highest and lowest eigen-values of 1-loop anom. dim. matrix

ﬁminzz_fﬂﬁ[ (A —4) = SK(K +10) ~ J(J +4) — 27K] + O(A)
amax_z—K+F[ (A —4) — JK(K +6) ~ J(T +4)] + O )

fermions may alter terms linear in A

K = 4: first massive level — Konishi state
identify operators with right representations
— more evidence for b = 0

[R.Roiban, AT, in progress]



Conclusion

Beginning of understanding
quantum string spectrum in AdSs x S°
= spectrum of “short” SYM operators

more progress expected soon
aiding/checking integrability approach



