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Stationary solutions and timelike dimensional reduction
The search for supergravity solutions with assumed Killing
symmetries can be recast as a Kaluza-Klein problem. Consider a
D = 4 theory with a nonlinear bosonic symmetry G (e.g. E7 for
maximal N = 8 supergravity) Scalar fields take their values in a
target space ® = G/H, where H is the corresponding linearly
realized subgroup, generally the maximal compact subgroup of G
(e.g. SU(8) for N = 8 SG).

Searching for stationary solutions to such a theory amounts to
assuming further that a solution possesses a timelike Killing vector
field K, (x).

e We assume that the solution spacetime is asymptotically flat
or asymptotically Taub-NUT and that there is a ‘radial’
function r which is divergent in the asymptotic region,

g" duro,r ~ 1+ 0(r 1),

e The Killing vector x will be assumed to have

W= —g k's" ~ 14+ O(r1).
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e We assume asymptotic hypersurface orthogonality,
K (Oukin — Opky) ~ O(r=2).

e In any vielbein frame, the curvature will fall off as
Rabcd ~ (’)(r‘3).

e Lie derivatives with respect to k are assumed to vanish on all
fields.

The D = 3 theory dimensionally reduced with respect to the
timelike Killing vector x will have an Abelian principal bundle
structure, with a metric

ds® = — W (dt + Bidx’.)2 + Wil’y,-jdx"dxj

where t is a coordinate adapted to the Killing vector x and +y is the
metric on the 3-dimensional hypersurface X3 at constant t. If the

D = 4 theory has Abelian vector fields A, , they similarly reduce
to D=3 as

4V4n G A, dx* = U(dt + Bidx') + A;dx’
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Comparison to spacelike dimensional reductions

The timelike D = 3 reduced theory will have a G/H* coset space
structure similar to the G/H coset space structure of a D = 3
theory similarly reduced on a spacelike Killing vector. Thus, for a
spacelike reduction of maximal supergravity one obtains an
Eg/SO(16) theory continuing on in the sequence of dimensional
reductions originating in D = 11. . As for the analogous
spacelike reduction, the D = 3 theory has the possibility of
exchanging D = 3 Abelian vector fields for scalars by dualization,
contributing to the appearance of an enlarged D = 3 bosonic
‘duality’ symmetry. The resulting D = 3 theory contains D = 3
gravity coupled to a G/H* nonlinear sigma model.

» However, although the numerator group G is the same for a
timelike reduction to D = 3 as that obtained for a spacelike
reduction, the divisor group H* is a noncompact form of the
spacelike divisor group H. srcitenlohner, Gibbons & Maison 1988

» The origin of this H — H* change is the appearance of
negative-sign kinetic terms for scalars descending from D =4
vectors under the timelike reduction.
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Some examples of G/H* and G/H theories in D =3

G/H G/H" G/H 341 dimensional theory
SL(n+2) SL(n+2) n+4 dimensional
S0(n+2) S0(.2) GLy/SO) Einstein gravity with
n Killing vectors
SU((2,1) SU(2,1) vy U Einstein-Maxwell
SUQ=UE)  SUL )% UL (N =2 supergravity)
50(8,2) 50(8,2) S0(6) % S0, 1) )
B N=4 t
S0@)xS02)  50(6,2)xS0(2) S0(6) % 502) supergravity
50(8,8) 50(8,8) 50(6,6)x S02, 1) N =4 supergravity
SO8) x SO(8) 50(6,2) x SO(2,6) SO(6) x SO(6) x SO(2) +supersym. Maxwell

Eg(+5/SO(16)

Eg+5/S0*(16)

Eo042/SUB)

(10 dim. supergravity)

N =8 supergravity
(11 dim. supergravity)

The D = 3 classification of extended supergravity stationary
solutions via timelike reduction generalizes the D = 3 supergravity
systems obtained from spacelike reduction. de wit, Tolisten & Nicolai
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Charges
Define the Komar two-form K = 0k, dx* A dx”. This is invariant
under the action of the timelike isometry and, by the asymptotic
hypersurface orthogonality assumption, is asymptotically
horizontal. This condition is equivalent to a requirement that the
scalar field B dual to the Kaluza-Klein vector arising by dimensional
reduction out of the metric vanish like O(r~1) as r — co. In this
case, one can define the Komar mass and NUT charge by (where
s* indicates a pull-back to a section) sossrd, Nikolai & k5.5

mEi sTx K nzl/ s*K
8w oY 8w oY
The Maxwell field also defines charges. Using the Maxwell field
equation d x F = 0, where F = §L/JF is a linear combination of
the two-form field strengths F depending on the four-dimensional
scalar fields, and using the Bianchi identity dF = 0 one obtains
conserved electric and magnetic charges

1 1
= — % F = — *F
9 21 azs * p 271'/825



Now consider these charges from the three-dimensional point of
view in order to clarify their transformation properties under the
three dimensional duality group G (in a simple Maxwell-Einstein
example, G = SU(2,1)).

The three-dimensional theory is described in terms of a coset
representative V € G/H*. The Maurer—Cartan form V~1dV
decomposes as

V3dy =Q+P , Q=Qudx" eh”™ , P=P,dx' cgoh”

Then the three-dimensional equations of motion can be rewritten
as d x VPV~ =0, so the g-valued Noether current is xVPV L.

Since the three-dimensional theory is Euclidean, one cannot
properly speak of a conserved charge. Nevertheless, since VPV 1
is d-closed, the integral of this 2-form on a given homology cycle
does not depend on the representative of the cycle.
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As a result, for stationary solutions, the integral of this
three-dimensional current, over any space-like closed surface
containing in its interior all the singularities and topologically
non-trivial subspaces of a solution, defines a g © h*-valued charge

matrix ¢ 1
¢ = / *VPY1
47T oY

This transforms in the adjoint representation of G according to the
standard non-linear action. For asymptotically flat solutions, V
goes to the identity matrix asymptotically and the charge matrix ¢
in that case is given by the asymptotic value of the one-form P:

dr . (’)(rfz)
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Now set up some general notation for the relevant group structure.

Let g4 be the algebra of the D = 4 symmetry group G and let b
be the algebra of its D = 4 divisor group H. sl(2,R) = s50(2,1) is
the algebra of the Ehlers group (i.e. the D = 3 duality group of
pure D = 4 gravity); s0(2) is the algebra of its divisor group. Let
[4 be the h, representation carried by the electric and magnetic
charges g and p. Then % can be decomposed into three
irreducible representations with respect to s0(2) @ h4 according to

gobh* = (sl(2,R) ©50(2)) @ 4 & (g4 © ha)

The metric induced by the Cartan-Killing metric of g on this coset
space is positive definite for the first and last terms, and negative
definite for 4.

One associates the s[(2,R) © s0(2) component with the Komar
mass and the Komar NUT charge, and one associates the I4
component with the electromagnetic charges. The remaining
g4 © by charges come from the Noether current of the
four-dimensional theory.
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Characteristic equation

Breitenlohner, Gibbons and Maison proved that if G is simple, all
the non-extremal single-black-hole solutions of a given theory lie
on the H* orbit of a Kerr solution. Moreover, all static solutions
regular outside the horizon with a charge matrix satisfying

Tr 2 > 0 lie on the H*-orbit of a Schwarzschild solution.
(Turning on and off angular momentum requires consideration of
the D = 2 duality group generalizing the Geroch A% group, and
will be considered in future work.)

Using Weyl coordinates, the coset representative ) associated to
the Schwarzschild solution with mass m can be written in terms of
the non-compact generator h of the Ehlers s[(2,R) only, i.e.

r—m
r+m

Vzexp(éln h) — % = mh
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For the maximal N = 8 theory with symmetry Eg g (and also for
the exceptional ‘magic’ N = 2 supergravity Gunaydin, Sierra & Townsend With
symmetry Eg(_o4)), one finds
h> = 5h* — 4h
» Consequently, the charge matrix % satisfies in all cases

€5 = 5263 — 4t

where ¢? = %Tr %? is the extremality parameter (vanishing
for extremal static solutions) and k = Tr h? > 0.

» Moreover, for all but the two exceptional Eg cases, a stronger
constraint is actually satisfied by the charge matrix %"

€3 =¥

The characteristic equations select acceptable orbits of solutions,
i.e. orbits not exclusively containing solutions with naked
singularities. They determine % in terms of the mass and NUT
charge and the D = 4 electromagnetic charges.
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Supersymmetry ‘Dirac equation’
Extremal solutions have ¢ = 0, implying that the charge matrix €
becomes nilpotent: € = 0 in the Eg cases and 4> = 0 otherwise.

For N extended supergravity theories, one finds

H* = Spin*(2/N') x Hp and the charge matrix € transforms as a
Wey!l spinor of Spin*(2A/) valued in a representation of ho. Define
the Spin*(2/\) fermionic oscillators

1 _ ; 1 .
3= (r2i—1 + lr2i) a'=(a)l = 5 (r2i—1 - lei)

fori,j,---=1,...,N. These obey standard anticommutation
relations

{ai,a} ={a',d} =0 |, {aj,d} =¥

Using this creation/annihilation oscillator basis, the charge matrix
% can be represented as a state

|€) = (W—I— Zja'd + Z,-J-k/aiajakal—l—---) |0)
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From the requirement that dilatino fields be left invariant under an
unbroken supersymmetry of a BPS solution, one derives a ‘Dirac
equation’ for the charge state vector,

(62‘3,‘ + Qaﬂe/igai> |€) =0

where (i, €?) is the asymptotic (for r — oc) value of the Killing
spinor and .3 is a symplectic form on C?" in cases with n/N
preserved supersymmetry.

This condition turns out to be equivalent to the algebraic
requirement that ¢ be a pure spinor of Spin*(2/N') For BPS
solutions, it has the consequence that the characteristic equations
can be explictly solved in terms of rational functions.

Note that c® = 0 is a weaker condition than the supersymmetry
Dirac equation. Extremal and BPS are not always synonymous
conditions, although they coincide for A/ < 5 pure supergravities.
They are not synomymous for N’ = 6 & 8 or for theories with
vector matter coupling.
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BPS Geology

Analysis of the 'Dirac equation’ or nilpotency degree of the charge
matrix € leads to a decomposition of the moduli space M of

supergravity solutions into strata of various BPS degrees.

Letting My be the non-BPS stratum, M being the % BPS
stratum, etc., the dimensions of the strata for pure supergravity
theories turn out to be

N=2[N=3[N=4|N=5|N=6|N=28
dim(Mo) | 4 8 14 22 34 58
dim(M;) | 3 7 13 21 33 57
dim(My) 8 16 26 46
dim(M,) 17 29
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‘Almost lwasawa’' decomposition

Earlier analysis of the orbits of the D = 4 symmetry groups G
Cremmer, Lii, Pope & K55, heavily used the Iwasawa decomposition

g = U(g,z) &P ('" Ag.2) Z) bie.2)
with vz 7) € H and bg,z) € Bz where Bz C G is the ‘parabolic’
(Borel) subgroup that leaves the charges Z invariant up to a
multiplicative factor A(g 7). This multiplicative factor can be
compensated for by ‘trombone’ transformations combining Weyl
scalings with compensating dilational coordinate transformations,
leading to a formulation of active symmetry transformations that
map solutions into other solutions with unchanged asymptotic
values of the spacetime metric and scalar fields.

» The D = 3 structure is characterized by the fact that the
Iwasawa decomposition breaks down for noncompact divisor
groups H*.

» The Iwasawa decomposition does, however work “almost
everywhere” in the D = 3 solution space. The places where it

fails are precisely the extremal suborbits of the duality group:
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Arithmetic subgroups?
Since the work of Hull & Townsend, there has been a ‘folk’
expectation that all Cremmer-Julia type duality symmetries should
be reduced to arithmetic subgroups like Eg(Z) as a result of Dirac
charge quantization. However, consider the explicit
transformations of the pure gravity charge matrix

m n
€ = h € sl(2,R) o s0(2)
yielding
e (@2 =4 2 = 8)c+ (a? — 92 — 2+ 8)m+ 2(af —1d)n

V2@ + 72+ 402 +2(02 +92 — 32— 62 + 4(af +790)
;L 2(ay + Bo)c+ 2(ay — BO)m + 2(ad + By)n
V202 + 72+ 2+ %) +2(02 + 72 — 32 — %) 2 + 4(af + 79)

It is very hard to see how such transformations can be discretized

in such a way as to preserve a Dirac type quantization rule.
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Conclusions

The understanding of duality group orbits for stationary
supergravity solutions has been deepened in the following ways.

» The Noether charge matrix % satisfies a characteristic
equation €° = 5¢?%3 — 4¢*% in the maximal Eg cases and
€3 = c2% in the non-maximal cases, where ¢ = %Tr &2 is
the extremality parameter.

» Extremal solutions are characterized by c2=0 and ¥
becomes nilpotent (4° = 0 viz. €3 = 0) on the corresponding
suborbits.

» BPS solutions have a charge matrix % satisfying an algebraic
‘supersymmetry Dirac equation’ which encodes the general
properties of such solutions. This is a stronger condition than
the ¢ = 0 extremality condition.

» The orbits of the D = 3 duality group G are not always acted
upon transitively by G. This is related to the failure of the
Iwasawa decomposition for noncompact divisor groups H*.
The lwasawa failure set corresponds to the extremal suborbits.
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