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Supergravity solutions

1) space-like p-branes as the cosmic billiards, or

2) time-like p-branes as several rotational invariant black-
holes in D = 4 and more general solitonic branes in
diverse dimensions

reduce to geodesic equations on coset manifolds of the
type
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SL(p+q)/SO(p, q) cosets
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Lie-Poisson structure
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Liouville integrability
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General solution
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Triangular embedding in SL(N)/SO(p,N-p) and
integrability of the Lorentzian cosets U/H*

Statement 3.1 <<= Let N be the real dimension of
the fundamental representation of UJ. For each choice
of H or H* there exist a suitable integer p < [3] and
iz diagornal melric

p=diagl—1 s — kot Lot 1) 5

Bl g
P g=>MN—p

such that we have a canonical embedding
U — sl(IN) ,
g O H" «~— so(p,N —p) < sl{IN} .
This embedding is determined by the choice of the
basis where Solv (U/H*) is made by upper triangu-
lar matrices. In the same basis the elemenits of K

are rp-symmetric matrices while those of H* are n-
antisymmetric ones, namely:

YK € IK : nK" = K'n,
vH € H™ : 7HY = —HY np .
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The paradigmatic example: SL(3)/SO(1,2) coset
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A = —12h; 4 81b;3
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e [n the region where A << 0 we have three distinct

real cigenvalues.

e [n the region where A = 0 there is one real eigen-
value and a pair of complex conjugate cigenvalues.

e |'he locus A = 0 corresponds to orbits admitting an
cnhanced symmetry, except at the cusp.
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Intrinsic characterization of the Nilpotent orbits: vanishing of
polynomial hamiltonians.

Conjecture:

Cuspidal orbits of nilpotent Lax operators can also be found by
searching for eigenstates of the noncompact generators of H*.

Null eigenstates give orbits with enhanced symmetry (stability subgroup).
Eigenstates of non-vanishing eigenvalue occur only at the cusp.
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Conclusions and Outlook

1. The integrability of all the various symmetric-solvable cosets for generic
coajoint group orbits, both Euclidian and Lorentzian, follows from the
Liouville integrability of SL(p+q)/SO(p, q) cosets based on Borel subalgebra
B+ 0f sl(ptq).

2. The norm on any solvable Lie algebra S is not an independent external datum,
rather it is intrinsically defined by the restriction to S of the unique quadratic
hamiltonian on B, ), once the embedding S - B ,+q has been defined.

3. All symmetric cosets U/H* have integrable geodesic equations if the Lie algebra
of U is non-compact and the Lie algebra of H* is any of the real sections
contained in U of the complexication H of H - U, the former being the maximal
compact subalgebra of the latter.

4. The explicit integration algorithm has a universal form.

Open questions

1. Liouville integrability of singular group orbits?

2. The relation of the Hamiltonians with the physical invariants of the solution,
like the entropy or the total mass?

3. The solvable parametrization covers only open branches of the space and the
question is how to glue together different branches (global topology of the
solution space)?




<___Thank you for attention! >
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Parameters of the time flows

From initial data we obtain the time flow (complete integral)

Ly I Lo — L (t,Lg)

Initial data are specified by a pair: an element of the non-compact Cartan
Subalgebra and an element of maximal compact group:

Coe CSANK ; OeH.

Lo = OTCOO
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Properties of the flows

The flow is isospectral

Vit € R : Eigen
{1

values [L(t)] =

— ... AN} = const 9
L(t) = O () CoO(t)

The asymptotic values of the Lax operator are diagonal (Kasner epochs)

lim L(t) = L+

t—=x 00

t—=x 00

+oo € CSA
im O(t) € Weyl (Uts) ?
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Main Points

Definition

<< A supergravity billiard is a one-dimensional
o-model whose target space is a hon-compact
coset manifold U/H, metrically equivalent, in
force of a general theorem, to a solvable group
manifold exp [Solv (U/H)]. >>

Because t-dependent
supergravity field equations
are equivalent to the
geodesic equations for

a manifold

U/H

Statement

Supergravity billiards are exactly integrable by
means of a general algorithm constructing the
Toda-like flow

U — sl(N,R),

Because U/H is always
metrically equivalent to
a solvable group
manifold exp[Solv(U/H)]
and this defines a
canonical embedding

U>DH «— so(N) C sl(N,R) . < : 20




The discovered Principle

<< The asymptotic states att = +oo are in
one-to-one correspondence with the elements
w; € Weyl(U). The Weyl group admits a nat-
ural ordering in terms of {p(w), i.e. the num-
ber of transpositions of the corresponding per-

The relevant
Weyl group is that
of the Tits Satake

projection. It is

. . ) a property of a
mutation when Weyl(U) is embedded in the| ynjversality class
symmetric group. Time flows goes always in of theories
the direction of increasing ¢r which, therefore,
plays the role of entropy. >>
M . U . UTS There is an interesting topology of

TS : H 7 H parameter space for the LAX
TS EQUATION
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Parameter
space

Proposition

Trapped

submanifolds

ARROW OF
TIME

P = A / Weyl(U)

Gpaint

<< Consider now the 2N — 1 minors of O(t)
obtained by intersecting the first k columns
with any set of k-rows, for k = 1,...,N — 1.
If any of these minors vanishes at any finite

timet # doo then it is constant and vanishes
at all times.>>

There are N2 — 1 trapped hypersurfaces
>, C 'P. defined by the vanishing of one of
the minors. They can be intersected.

' On any (trapped) manifold the flow is from the

lowest, to the highest accessible Weyl element
22
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Standard FRW cosmology is concerned with studying the evolution
of specific general relativity solutions, but we want to ask what more general
type of evolution is conceivable just under GR rules.

What if we abandon isotropy?

. an empty, homogeneous, but non-isotropic universe

\

f .
-1 : — P
o O a;(t) =tV
g a,” (t) 3 3
HV= a,* (t) 2 __ _
O a.2 (1) Z p; — Z bi = 1
- S 1=1 =1
Some of the scale factors expand, but some other have to ‘
contract: an anisotropic universe is not static even in the |
absence of matter! — These
g ti
Useful pictorial representation: ? et?]l;aElizr;fe?;e
A light-like trajectory of a ball in equations
the lorentzian space of
h, R

h;(t)=log[a;(t)]
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Introducing Billiard Walls

Let us now consider, the coupling of a vector field to diagonal gravity g;; = ehi

vo __ —h;—h;+2 S h 2
VIFuwFpeg'?g" = 3" e Ml Ll (Fy)
2,J
If F; = const this term adds a potential to the ball’s hamiltonian

V=3 ewii(h) 2
(%}

( w;;(h) <0 Free motion (Kasner Epoch)
A totical
Ti:p oAy wi;j(h) >0 Inaccessible region
— OO
| w;ii(h) =0 Wall position or bounce condition
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The Rigid billiard

When the ball reaches the wall it bounces against it:
geometric reflection.

It means that the space directions transverse to the
wall change their behaviour: they begin to expand if

they were contracting and vice versa. -

-
-

Billiard table: the configuration of the walls

dynamically

v

-~ ball trajectory

-- the full evolution of such a universe is a sequence of Kasner
epochs with bounces between them
L -- the number of large (visible) dimensions can vary in time

-- the number of bounces and the positions of the walls depend on
the field content of the theory: microscopical input
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Smooth Billiards and dualities

Asymptotically any time—dependent solution defines a zigzag in In a; space
The Supergravity billiard is completely determined by U-duality group
h-space <——>  CSA of the U algebra

walls <——=- hyperplanes orthogonal
to positive roots a(h,)

bounces <—=—=>  Weyl reflections

billiard region <—=——=> Weyl chamber
Damour, Henneaux,

Nicolai 2002 --

Smooth billiards: EXact cosmological solutions can be constructed using
U-duality (in fact billiards are exactly integrable)
Fré, Rulik, Sorin,
Trigiante bounces <———=>  Smooth Weyl reflections

2003-2007 walls <—=——=>  Dynamical hyperplanes
series of papers 27



The space-like p-brane solutions that have an Euclidian
world-volume and are time-dependent, all fields being
functions of the time parameter t.

The time-like p-brane solutions that have a Minkowskian
world volume and are stationary, the fields depending on
another parameter t, typically measuring the distance from the
brane.
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