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USUAL MATTER:

collisional losses vs. radiative losses

1. Collisional losses

e scattering on electrons
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nZ - density of electrons, AE(t) ~ |t|/(2m) (m -
electron mass).
We obtain, up to a logarithm,
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2.Radiative (Bethe-Heitler) losses

in hydrogen
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e ofy — char. energy emitted in a scattering

act.
o [t|/m? = ¢5 /m? — “dead cone” suppression
factor
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e R~1at E ~ 350MeV.

massive particle, atoms with Z electrons

dEBH ZoaEm
R(Mj Z> B dEcoll N M? .




HOT ULTRARELATIVISTIC PLASMA

e density n ~ T3.

eDebye screening mass u ~ g1' = charateristic
momentum transfer during scatterings.

e mean free path \ with respect to scatterings
with momentum transfer ~ p,
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(A is related to the so called
of quark and gluon collective excitations).



collisional losses (Bjorken)
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radiative (Bethe-Heitler) losses
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e the second formula is WRONG !



MULTIPLE SCATTERING AND LPM EFFECT

e bremsstrahlung — shedding the radiation field
coat

e newborn (or freshly hard-scattered) particle
is NAKED and is not able to radiate.

o Fourrier components of the coat grow
with speed.

formation length for massless particle radiation
(in vacuum)

L;‘ac(wae) ~ 002

e in average, (w) ~ F, 02, ~ u?/E?. Hence
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o If (L¥*°) > A, the particle undergoes
(N) scatterings before photon is emitted.

e Char. momentum transfer in a multiple scat-
tering: p2g ~ Np?

e [n-medium formation length
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e on the other hand, (V) ~ (L7°9)/X
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e At length L*, the energy ~ aF is lost. Hence,
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e In fact, uZg ~ (N InN)p? ‘fl—f = Co?VET3InE
e (' is unknown :(

e the same perturbative behavior for N = 4
SYM. Strong coupling ?..

FINITE L

e drastically different behavior in two situa-
tions:
Particle comes from infinity
particle created in plasma.

o is more natural in QED
o is more natural in QCD (jet quenching
etc)



However, one can imagine
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AEg(L)

eat L < L*, AEg(L) ~ aE(L/L*).
e quadratic law is not specific for QCD
e Capacity to radiate c(z) x

AE ~ fOL c(z)dr < L.
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HEAVY QUARKS

A) M? <« asVET3 — the same as for light
quarks.
B) asVET? <« M? < aE?
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C) M? > asE?
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e In this region, collisional losses dominate.




AE

a) M? < a;,VET3; b) a,VET? < M? <
asE?%; ¢) M?* > a,E2.

e At small enough L, AFE(L) is the same as for
light quarks, however large M is.

e The larger is M, the earlier the curve devi-
ates.



M

\ I I
\ | | ,
\ | | i
\ | | // /
\ l l
\ | e s o | v J
N 1 1 l\

e Multiple scattering + gluon/photon emission
diagrams
give the same qualitative results.

e quantitative model-independent calculations
are very difficult and are not done yet :(



