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1. Introduction: Mass scales in QCD

QCD is the selfconsistent quantum field theory which is defined by the
QCD Lagrangian, not containing any dimensionful parameters (except
for quark masses), and one needs one additional mass scale (M) to fix
the theory.

In gluodynamics one can choose ΛQCD ≈ 0.3 GeV or string tension
σ = 0.18 GeV2. They should be connected to one scale M.

But there are other scales in QCD, which are very different

Glueball mass: mG = O(2 Gev).
Deconfinement temperature Tc = 0.27 GeV÷0.17 GeV for nf = 0− 2.

Gluonic condensate G2 = α3
π 〈FµνFµν〉

G2(standard) = 0.012± 0.006 GeV4.

We aim at explaining all different scales in term of the only one, say M.
This is done in the framework of Field Correlator method (FCM).

Talk is based on many papers including recent V.I.Shevchenko,
Yu.A.Simonov, arXiv:0902.1405.



2. Perturbative and Nonperturbative

The very concept of finite G2 introduced by SVZ implies possibility of
separation of Perturbative and Nonperturbative contributions in QCD.
On general grounds for every physical amplitude of dimension m2 the

finite sum of Perturbative terms yields ∼ L−2f
(
ln 1

LΛQCD

)
, while

Nonperturbative ∼M2. In principle there can be mixed terms
O

(M
L , LM3, ..

)
.

We shall prove that for Field correlator one can write (x → y)

g2

4π2
〈trFµν(x)Φ(x, y)Fµν(y)Φ(y, x)〉 =

= Pert.

(
O

(
ln(x− y)
(x− y)4

))
+ G2 + ...



Infinite Pert. series are not defined due to IR renormalons, and
perturbation theory in QCD has sence when background vacuum fields
are taken into account. Confining background fields eliminate IR
renormalons and define IR stable perturbative theory (Yu.S. 1993)

αs(q) =
4π

(
1 + O

(
lnln
ln

))

βln
(

q2+M2
b

Λ2
QCD

) .

The new scale Mb
∼= 1 GeV is expressed via σ and is related to the

hybrid masses.



3. Basics of Field Correlator Method

As will be shown below, Green’s function of any white system is
proportional to the path integral of the Wilson loop.

For qq̄, Gqq̄ ∼
∫

(Dz)〈trW (C)〉... Therefore Wilson loop defines the
dynamics (pert. and nonpert.) of light and heavy quarks.

Building blocks: Wegner-Wilson loops

W (C) = P exp ig

∮

C

Aa
µ(z)tadzµ (1)

Parallel transporter

Φ(x; y) = P exp ig

y∫

x

Aa
µ(z)tadzµ (2)



Field strength

Fµν(x) = ∂µAν − ∂νAµ − ig[Aµ, Aν ]

D(n)
µ1ν1...µnνn

(x1, ..., xn) =

=
(

g√
Nc

)n

〈Tr Fµ1ν1(x1)Φ(x1, x2)Fµ2ν2(x2)...Fµnνn(xn)Φ(xn, x1)〉
(3)

Nonabelian Stokes Theorem and Cluster Expansion

〈Tr W (C)〉 =

〈
Tr P exp ig

∫

S

ΦFµν(z)Φdσµν(z)

〉
=

= exp
∞∑

n=2

(i)n∆(n)[S] = exp(−V (R)T ) (4)



The basic element of Nonperturbative QCD – the correlator D
(2)
µνρσ.

∆(2)[S] =
1
2

∫

S

dσµν(z1)
∫

S

dσρσ(z2)D(2)
µνρσ(z1, z2) (5)

∆(2)[S] = σS

Gauge-invariant Field Correlators

D(2)
µνρσ(z) =

g2

Nc
〈Tr Fµν(x)ΦFρσ(y)Φ〉 (6)



Two basic scalars: D and D1 (Dosch+ Yu.S., (’88)).

D(2)
µνρσ(z) = (δµρδνσ − δµσδνρ)D(z)+

+
1
2

(
∂

∂zµ
(zρδνσ − zσδνρ)− ∂

∂zν
(zρδµσ − zσδµρ)

)
D1(z) (7)

D(x) is purely nonperturbative (pert. cancel-Shevchenko+Yu.S.’98).

Important: Dominance of Gaussian correlator D(2)(z) → the QCD
vacuum is almost (> 95%) Gaussian (Bali ’99, Shevchenko and
Yu.S.’00).Check: Casimir scaling – ∆(2) ∼ C2, hence all QQ̄ potentials
in different representations (j) are proportional to C2(j). Odd n
correlations vanish on flat surfaces).

∆(2)[S] À
∞∑

n=3

∆(n)[S] (8)



If (connected) average D(n)(x1 − x2, ...) ∼ exp(− |xi−xj |
λ ) for large

|xi − xj |, then

∆(n+2)[S]
∆(n)[S]

≈ λ4〈F 2〉 ≈ σλ2

It will be shown, that λ ∼ 0.1fm, and expansion parameter is
σλ2 ∼ 0.05. Therefore all ∆(n) with n > 2 contribute few percent.
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Figure 1:



From lattice and analytic data

D(x) ∼ exp(−|x|/λ),

Important feature of QCD vacuum! Vacuum correlator length λ
Campostrini, Di Giacomo, Olejnik (’86).
Di Giacomo et al. λ ≈ 0.2÷ 0.3 fm
Bali, Brambilla, Vairo λ <∼ 0.2 fm
Dosch et al. λ <∼ 0.2 fm
Yu.S. λ ≈ 0.15 fm.

Recently D(x), D1(x) were computed on lattice (Koma and Koma) in
evaluating spin-dependent potentials. Results are compatible with
λ <∼ 0.1 fm.
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Figure 2: Field strength correlators at β = 6.0 on the 204 lattice for r/a =
5 as a function of t/a. The solid lines are the fit curves corresponding to
Eqs. (??)-(??).



Static potentials from rectangular WW loop (R× T ),

〈trW (C)〈= exp(−TV (R))

V (R) = VD(R) + V1(R)

VD(R) = 2
∫ R

0

(R− ρ)dρ

∫ ∞

0

dνD(
√

ρ2 + ν2), (9)

V1(R) =
∫ R

0

ρdρ

∫ ∞

0

dνD1(
√

ρ2 + ν2). (10)



D ensures confinement

VD(R) = σR +O(R0) ; σ =
1
2

∫
d2zD(z), R →∞ (11)

VD(R) = cR2 + O(R4), R <∼ λ (12)

D1 contains all (but not confinement), V1(R) = V
(pert)
1 + V

(nonpert)
1

V
(nonpert)
1 (R →∞) = const ∼ 0.5GeV (13)

V1 supports bound states QQ̄ in quark-gluon plasma (Yu.S.’91, ’05)

V
(pert)
1 = −4(αs + O(α2

s))
3R

. (14)



αS σ, GeV2 Tg, fm T ′g, fm

set 1 0.16 0.22 0.2 0.2
set 2 0.16 0.22 0.1 0.1
set 3 0.16 0.22 0.07 0.1
set 4 0.16 − 0 0
set 5 0.32 0.17 − −

Table 1: The sets of the FCM parameters for the spin-dependent potentials
taken from Ref. [?]. Eqs. (??) and (??) are used for the sets 1-4 and set 5,
respectively.
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Figure 3: The profile of the V ′
0(r) for the set 1 (dash-dotted line), set 2

(dashed line), set 3 (fat solid line), set 4 (doted line), and set 5 (thin solid
line). Lattice data are given by dots.
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Figure 4: The same as in Fig. 3 but for V ′
1(r).
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4. Expaining meson and glueball scales via string tension

Quark Green’s function (Euclidean)

Sq(x, y) = (m + D̂)−1 = (m− D̂)
∫ ∞

0

ds(Dz)xye−KΦF (x, y)

where all dependence on field Aµ is in

ΦF (x, y) = (P exp ig

∫ x

y

Aµdzµ)(P exp g

∫ s

0

dτσµνFµν) ≡ ΦΣ

Φ charge factor, Σ spin factor.

Green’s function for qq̄ (mesons) or gg (glueballs)

GM , GGl =
∫ ∫

integral measure 〈Wσ〉

Thus all dynamics is defined by the Wilson loop (with spin factor
insertions).



Wilson loop with spin factors

〈trWσ(C)〉 = exp(−σArea) (spin factors)

Area =
∫ T

0

dt

∫ 1

0

dβ
√

ẇ2w′2 − (ẇw′)2;

Note: no DOF on the area after vacuum averaging. Minimal area →
minimal strings without DOF except at the ends.

q q̄

Figure 6:



Hamiltonian of minimal strings with quarks (gluons) at the ends

Last step: from path integral to Hamiltonian

Gqq̄(x, y) = 〈x| exp(−HT )|y〉 (15)

For equal current masses mq = mq̄ = m, µ1 = µ2 = µ

H0 =
m2 + p2

µ
+ µ +

L̂2/r2

µ + 2
∫ 1

0
dβ(β − 1

2 )2ν(β)
+

+
σ2r2

2

∫ 1

0

dβ

ν(β)
+

∫ 1

0

ν(β)
2

dβ. (16)

∂H0

∂µi
|
µi=µ

(0)
i

= 0,
∂H0

∂ν
|ν=ν(0) = 0. (17)



µ
(0)
i play role of constituent mass of particle i, µ

(0)
i = 〈

√
m2

i + p2〉

H0(L = 0) =
2∑

i=1

√
m2

i + p2 + σr. (18)

For large L,L →∞ one obtains a free bosonic string.

H2
0 ≈ 2πσ

√
L(L + 1), ν(0)(β) =

√
8σL

π

1√
1− 4(β − 1

2 )2
. (19)

Constituent masses µ
(0)
i are calculated through σ and mi.

For quarks, m = 0 µq = cn
√

σ = 0.34 GeV(ground state).

For gluons µg =
√

C2µq = 3
2µq = 0.5 GeV. ( Note: This mass is not

connected with IR freezing of αs.)

Total Hamiltonian

H = H0 + Hself + Hspin + HCoul + Hrad + Hmix. (20)



For H0 only, m = 0

M2
0 ≈ 8σL + 4πσ

(
n +

3
4

)
, n = 0, 1, 2, ...

The input is minimal:

1. Quark current masses m1, m2 (pole masses if Hpert is used).

2. String tension σ.

3. Background strong coupling αB(r).
In momentum space in one loop appr.

α
(1)
B (Q) =

4π

β0

1

ln (M2
0+Q2)

Λ2
QCD

To be derived later.

Resulting spectra of light mesons are shown.

Orbital excitations (Regge trajectories) vs experiment (Badalian,
Bakker).
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Table 2
Comparison of calculated glueball masses (in GeV) with lattice data
(σf = 0.18 GeV2, αs = 0.3 (αs = 0.2 in parentheses))

JPC Mtheory Mlat

this work [22] [23] [24]

0++ (1.61) 1.41 1.53±0.10 1.53±0.04 1.52±0.13
2++ (2.21) 2.30 2.13±0.12 2.20±0.07 2.12±0.15
0++∗ (2.72) 2.41 2.38±0.25 2.79±0.09
2++∗ (3.13) 3.32 2.93±0.14 2.85±0.28
0−+ 2.28 2.30±0.15 2.11±0.24 2.27±0.15
0−+∗ 3.35 3.24±0.2
2−+ 2.70 2.76±0.16 3.0±0.28 2.70±0.19
2−+∗ 3.73 3.46±0.21

Glueballs: Kaidalov+Yu.S.(’00,’05).



5. Explaining Tc via gluonic condensate

SV Z εvac = 1/4θµµ =
β(αs)
16αs

〈(F a
µν)2〉 ∼= − (11− 2

3nf )
32

G
(nf )
2 (21)

(NSV Z) G
(nf=2)
2 ≈

(
1
3
÷ 1

4

)
G

(nf=0)
2 (22)

G2(0.02± 0.005) GeV 4 S.Narison

G2(0.01± 0.002) GeV 4 Andreev, Zakharov (23)

P1(T ) = |εvac|+ π2

30
T 4 + T

∑

k

(2mkT )3/2

8π3/2
e−mk/T ≡ |εvac|+ T 4χ1(T ).

(24)

In the deconfined phase one can assume (later confirmed by lattice)
(Yu.S. JETP Lett.’92), that

DE(x) = 0 = σE ; DH(x), DH
1 , DE

1 6= 0. (25)



P2(T ) = |εdec
vac|+ T 4(pgl + pq) (26)

Critical line Tc(µ)

PI = |εvac|+ χ1(T ) → 11
32

G2

PII =
11
32

Gdec
2 + (pgl + pq)T 2;

PI(Tc) = PII(Tc)

Tc(µ) =
( 11

32∆G2

pgl + pq

)1/4

,

within 10% ∆G2 ≈ 1
2G2.



∆G2
0.01 GeV4 0.191 0.341 0.57 1

Tc( GeV) nf = 0 0.246 0.273 0.298 0.328

Tc( GeV) nf = 2 0.168 0.19 0.21 0.236

Tc( GeV) nf = 3 0.154 0.172 0.191 0.214

µc( GeV) nf = 2 0.576 0.626 0.68 0.742

µc( GeV) nf = 3 0.539 0.581 0.629 0.686



6. Field correlators via gluelumps

In this section we calculate D, D1 analytically via gluelump Green’s
functions. Physical idea: Nonabelian mean field approach yields
confining background field Bµ, with aa

µ -quanta of gluonic field –

propagating in vacuum with a fixed color index a, while Bµ ∼ Ab
µ, b 6= a.

Aµ = Bµ + aµ

When averaging over Bµ one obtains confining string for aa
µ.

As a result (Yu.S. ’05, Antonov ’05) to the lowest order in αs

D1(x) = −2g2

N2
c

dG(1)(x)
dx2

D(x) =
g4(N2

c − 1)
2

G(2)(x)



and G(1)(x) is the one-gluon gluelump Green’s function, G(2) - the same
for two gluons.

For one-gluon-gluelump Green’s function G(1) one can write.

Gab
µν(x, y) =

{∫ ∞

0

ds(Dz)xye−KPa exp(ig
∫ x

y

Âµdzµ)PΣ(x, y, s)
}ab

µν

,

(27)
where

PΣ(x, y, s) = PF exp(2ig
∫ s

0

F̂λσ(z(τ))dτ).

For two-gluon-gluelump G(2) ∼ 〈tr(Gab
µνGba

µν)〉.
As was shown in [V.Shevchenko, Yu.S., PLB 437 (1998) 146]
perturbative terms cancel in D(x) and not in D1(x).

D(z) = Dnp(z) ; D1(z) = Dp
1(z) + Dnp

1 (z) (28)

and general asymptotics for D1(z) is



D1(z) =
c

z4
+

a2

z2
+ O(z0). (29)

Finally, for G2

G2 =
6Nc

π2
(Dnp(0) + Dnp

1 (0)) (30)

For G(1) and G(2) one has path integrals

G(1gl)
µν (x, y) = Tra

∫ ∞

0

ds(Dz)xy exp(−K)〈WF
µν(Cxy)〉, (31)

G(2gl)(z) =
∫ ∞

0

ds1

∫ ∞

0

ds2(Dz1)0x(Dz2)0xTrWΣ(C1, C2). (32)
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Fig. 10 Two-gluon gluelump for D(x)

Using Hamiltonian formalism for gluelumps, one has asymptotics,

D(x) ∼ exp (−|x|/λ) , D1(x) ∼ exp (−|x|/λ1)

λ =
1

M
(2)
0

, λ1 =
1

M
(1)
0

,

where M
(2)
0 –lowest 2g gluelump mass,



M
(1)
0 – lowest 1g gluelump mass.

Specifically

D1(z) =
2C2(f)αsM

(1)
0 σadj

|z| e−M
(1)
0 |z|, |z|M (1)

0 À 1. (33)

where M
(1)
0 = (1.2÷ 1.4) GeV for σf = 0.18 GeV2 [?, ?].

D(z) =
g4(N2

c − 1)
2

0.1σ2
fe−M

(2)
0 |z|, M

(2)
0 |z| À 1 (34)

where M0 = (2.5÷ 2.6) GeV.



Check of selfconsistency at small and large distances for
D(x), D1(x)

Since np parts of D(x), D1(x) are calculated in G(1), G(2) through
correlator 〈F (x)F (y)〉, i.e. via D(x), D1(x), one should check
selfconsistency.

At small distances: there are corrections to D1(x), D(x) from diagrams
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which yields for D1(x)

D1(z) =
4C2(f)αs

π

1
z4

+
g2

12
G2. (35)

It is remarkable that the sign of the np correction is positive.



For D(z) Fig.11, Fig.12 yield.

D(z) ≈ −4Ncα
2
s(µ(z))G2 + N2

c

α2
s(µ(z))
2π2

D(λ0) log2

(
λ0
√

e

z

)
(36)

D(0) =
N2

c

2π2
D(λ0)

(
2π

β0

)2

(37)

Since from (37) one can infer, that D(0) ≈ 0.15D(λ0) for Nc = 3,
where λ0 >∼ λE . So D(z) is an increasing function of z at small z,
z <∼ λ0, and for z À λ one observes exponential falloff. The qualitative
picture illustrating this solution for D(z) is shown in Fig. 12.

This pattern may solve qualitatively the contradiction between the values
of D(0) estimated from the string tension Dσ(0) ' σ

πλ2 ≈ 0.35 GeV4

and the value obtained in naive way from the gluon condensate

DG2(0) = π2

18 G2 ≈ (0.007÷ 0.012) GeV4. One can see that
Dσ(0) ≈ (30÷ 54)DG2(0). This seems to be a reasonable explanation of
the mismatch discussed in the introduction.



Now we shall show that in our approach of gluelumps as field correlators
one can establish connection between perturbative scale ΛQCD and
nonperturbative scale, say, σ. Indeed, following [?] we shall write the
large distance behaviour (??) of D(z) as

D(z) ≡ Dσ(0) exp(−M
(2)
0 |z|), Dσ(0) = g4 (N2

c − 1)
2

0.1σ2
f . (38)

On the other hand, from (33) one has integrating D(z) (and taking into
account that at small z, D(z) is smaller than (38), see Fig. ).

σf ≤ πDσ(0)

(M (2)
0 )2

= 0.17π3α2
s(µ)

(N2
c − 1)σ2

f

(M (2)
0 )2

(39)

Here µ corresponds to the average momentum (inverse radius) of the

two-gluon gluelump with mass M
(2)
0 . The latter was computed in [?] in

terms of σf M
(2)
0

∼= 5.6√σf , and one has from (39)

α2
s(µ) ≥ 0.16, µ =

√
〈k2

gl〉 ≈ 2
√

σf .



Or to the lowest order ΛQCD ≥ 0.17µ = 0.16 GeV.

This is in the correct ballpark, since realistic ΛQCD in MS scheme for
nf = 2 is around 0.25 GeV [?, ?], however for better accuracy one needs
to take into account NLO terms and nonasymptotic behaviour of D(z)
at small z, which will increase estimate of ΛQCD.

On general grounds, one may preview, that any connection of ΛQCD

with np scale will have the form: αs(µnp) = C, where µnp is defined by
np effects and scale, and C is a fixed number.



8. Conclusions

1. Field correlator Method provides the explicit dynamical theory for
Large-Distance QCD. The confinement is due to nonperturbative
correlators of colorelectric fields, and for a flat (minimal) surface the
lowest Gaussian correlator DE(x) plays the dominant role. Cluster
expansion in n-th order correlators behaves as ∼ (σλ2)n = (0.05)n.

2. Correlation length λ and correlators are calculated selfconsistently
via gluelumps, λE

D ≈ 0.1 fm. Thus one has a theory defined by the
only parameter say σ (in addition to current quark masses).

3. The leading pert. and np terms enter additively at small distances in
field correlators and selfconsistency is maintained both at small and
large distances. In particular, ΛQCD is connected to σ.

4. Within our method one can explain quantitatively all the mass scales
in QCD.


