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~ Apparently Disparate Things:

W(p. =2, p_ = 3): with the OPE

T(w)
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~ Apparently Disparate Things:
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Appar
but the “dual” QG is defined by

Eﬁi _ Ffi =0, K?2P+P- _ 1,
KEJ_FK_1 = qi-Ei? KFiK_1 = q;2FJ_F7
E<~,E7:E7E+7 F+F7:F7F+, E+F7:F7E+, E7F<~,:F+Ef7

KEPF: — KTPE
[Eia Fi] e Frr
9+ " —9+

and is a finite-dimensional algebra (dim = 2p3 p2).
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but the “dual” QG is defined by

EPt = F* =0, K2P+P- =1,
KELK™'=d3E:, KFLK™'=q3%Fi,
E+E7:E7E+, F+F7:F7F+, E+F7:F7E+, E7F+:F+E7,
i EE TD—
E., Fu)= =K

= 2= " Fpr  Frg
qi+—qi+

and is a finite-dimensional algebra (dim = 2p3 p2).

For (p,1) models, the QG is even simpler,

KEK ' =q°E, £ K=K
KFK~' =q2F, BEET
EP=0, FP=0, K?*=1,

dim = 2p3

v
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~ The correspondence

m Irreducible representations:
(p,1) models: W(p) irreps 45 Q6 irreps
(p,p') models: W(p,p') irreps «— Quantum Group irreps

m Modular transformation properties:

SL(2,Z) acting on (generalized) = SL(2,7) acting on QG center
characters '

—1)
(Bp'—1)(3p'—1)

(3p — 1) generalized characters dimZ = (3p
%(3p—1)(3p/ —1) gend characters dimZ = %
m Indecomposable representations:

FGST conjecture, recently refined/proved by Nagatomo—Tsuchiya

m Fusion:
BFGT, supported by statistical mechanics models
(Pierce—Rasmussen—Zuber, Rasmussen et al.)
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m Start with the algebra B of screenings and zero modes.

Kazhdan-Lusztig Duality in Logarithmic Conformal Field Theory



Drinfeld double
m Start with the algebra B of screenings and zero modes.

(p,1) example:
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and comultiplication: A(E) =1®E + E®K?, A(k) = k®k.
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How?

Drinfeld double
m Start with the algebra B of screenings and zero modes.

(p,1) example:

KE = qEk, EP =0, k*P =1; q=¢€//P
and comultiplication: A(E) =1®E + E®K?, A(k) = k®k.

m Take the dual space B*,
then (By, b) = (B, b')<r,b") and (A(B),a®b) ={B, ab).

(p,1) example:

—n
CFLETK = 8my . Ge, KT = Smoa ™7,

then »F = qFsx, FP=0, »*P=1; A(F)=°QF +F®1, A(x) = %xQ.

v
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Drinfeld double

m Start with the algebra B of screenings and zero modes.
m Take the dual space B*,

then (By, b) = (B, /)<y, b") and (A(p), a®b) = (B, ab).
m Some abstract nonsense:
B acts on B*: h—fp ={(B”, h)pB’ (left regular action)
B—h={B’, hyB" (right regular action)
B* actson B: p—a={p,a"»d

a—p=(,a)a"
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Drinfeld double

KE =qEk, EP=0, Kk* =1,

»F =qFsx, FP=0, %4p=1,

2_ .2
kx=xk, kfFk '=q 'F, xEx'=q'E, [E,F]=f,_qf1-

U

UqSt(2) at 2pth root of unity

K?E = qEK?, EP =0, k%=1,

k’F = q 2Fk®, FP =0,
k2_k72
q—q-1 "~

has all the remarkable properties, such as an SL(2,Z) representation
on the (3p— 1)-dimensional center.

[E7F] =

V.
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Can we have a manifestly QG-invariant description of LCFT?

What would be the QG analogue of the algebra of fields in such
description?

Assuming that the QG acts on fields, it has to act on products of fields:

ac(gy) =7
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Can we have a manifestly QG-invariant description of LCFT?

What would be the QG analogue of the algebra of fields in such
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Assuming that the QG acts on fields, it has to act on products of fields:
as(¢y) = (2 =¢)(d'=vy)

So we need a module algebra
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Can we have a manifestly QG-invariant description of LCFT?

What would be the QG analogue of the algebra of fields in such
description?

Assuming that the QG acts on fields, it has to act on products of fields:
as(¢y) = (2 =¢)(d'=vy)

So we need a module algebra
— to begin with, a module algebra over the Drinfeld double D(B)
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Anything

Can we have a manifestly QG-invariant description of LCFT?

What would be the QG analogue of the algebra of fields in such
description?

Assuming that the QG acts on fields, it has to act on products of fields:

a=(py) = (a=9)(d =)

So we need a module algebra
— to begin with, a module algebra over the Drinfeld double D(B)

Theorem

For a Hopf algebra B with invertible antipode, the Heisenberg double
H(B*) is a D(B)-module algebra.

v
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(the same vector space as D(B) = B*® B(!))
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Heise

H(B*) = B*4# B as a vector space

(the same vector space as D(B) = B*® B(!))
with the composition law

(a4 a)(B4#b)=a(d—pB)+ab, a,BeB*, abeB.
whereas in D(B),
(a®a)(B®b) = a(d ~p—S7(d")®a"b
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Heisen

H(B*) = B*4# B as a vector space

(the same vector space as D(B) = B*® B(!))
with the composition law

(a#a)(B#b)=ald@—p)#ab, a,feB*, abeB.
invented in: A Alekseev, L Faddeev, Commun. Math. Phys. 141 (1991) 413-422;

N Reshetikhin, M Semenov-Tian-Shansky, Lett. Math. Phys. 19 (1990) 133-142;
M Semenov-Tyan-Shanskii, Theor. Math. Phys. 93 (1992) 1292—-1307.
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Heise

H(B*) = B*4# B as a vector space

(the same vector space as D(B) = B*® B(!))
with the composition law

(a#a)(B#b)=a(@—pB)#ab, a,BeB*, abeB.

Interpretation:
View a, b € B as operators and «, 8 € B* as functions: “Leibnitz rule” J
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Heisen

H(B*) = B*4# B as a vector space

(the same vector space as D(B) = B*® B(!))
with the composition law

(a#a)(B#b)=ald@—p)#ab, a,BeB*, abeB.

Theorem (continued):
The D(B) action on 3 (B*) is given by
(u@m)e(asa) = (Lem)—a)# (L®@mM)"=a),
u®meD(B), aiaecH(B*),
where
(H@m)—o = p"(m—0)S*~ (i),
(L@m)=a=(maS(m")—S"" (u).

v
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Backtollyst(2)

Recall that we had

D(B)

{
UqsL(2)

dimU,st(2) = 2p°,

Basis: E, F, k2,
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Backtollyst(2)

Recall that we had

D(B)
U
UqsL(2)
dim,st(2) = 2p°,

Basis: E, F, k2,

K°E =qEK?, EP=0, k%=1,
k?F = q~2Fk®, FP =0,
k2_k—2
E.Fl=—+
[ ’ ] q_q—1
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Backtollyst(2)

Recall that we had Dually, we have
D(B) H(B)
ol I
UqyS6(2) Fyst(2)
dimU,s(2) = 2p°, dim¥,s¢(2) = 2p°
Basis: E, F, k2, Basis: 1, 2, 0
AP =1, Az=2zA, A0 =0A,
zZP=0, o°P=0,

K°E =qEK?, EP=0, k%=1,

k2,_-:q—2,_-k27 Fp:O, 0z = (q_q71)1 +q722(’}
[E,F] = Lk__f Hysl(2) =
a-d (CIA)/ (A% = 1)) ®Cy| 2, 7]
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CHst)

The reduced Heisenberg double:

Hysl(2) = (C[A]/(A% —1)) ®Cq[2,4],
AP =1, Az=2zA, A0 =0A,
=0, =0,
0z=(q—q N1+q220

with the U, s¢(2) action

Ecd=— 2z Ked=q'A,  FeA=-——102,
q+1 q+1
EozM=— — qm[m]zm+1’ k2 =zM = q2mzm7 FozM— [m]q1fmsz1’
Esol = l:l1fn[n]anf17 k2 =0 = q72n8n, Feol = _qn[n]anﬂ
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CHest)

The reduced Heisenberg double:

Hys0(2) = (C[A]/ (A% —1)) ®Cq[2,4],
AP =1, Az=2zA, A0 =0A,
ZP =0, =0,
0z=(q—q N1+q220

with the U, s¢(2) action

Ecd=— 2z Ked=q'A,  FeA=-——102,
q+1 q+1
EezT = _qm[m]zmﬂ’ k2>2m — q2mzm7 FozM= [m]q1fmsz1’
E=ol = q1fn[n]anf17 k2 =0 = q72n8n, Feol = _qn[n]anﬂ
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CHest)

The reduced Heisenberg double:
Hqs0(2) = (C[A]/(A% = 1)) ©C4[2, 0],
AP =1, Az=2zA, A0 =0A,
zZP=0, 0P =0,
0z=(q—q N1+q220

)

with the U, s¢(2) action

Eed=—'"2z Keod=q 2, Feld=-02,
q+1 q+1

EozM=— _qm[m]zmﬂ’ k2>2m — q2mzm7 FozM= [m]q1fmsz1’

E>6n:q17n[n]5nf1, k2>an:q72nan, Feol = _qn[n]anﬂ

— algebra of g-differential operators on a line.
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I
N

{z,z} =0, {0,0} =0,
{0,z} =2i

Ecz=0, kK’°cz=—-2z, Foz=1,
Ec0=1, kK’cd=-0, F=0=0

Kazhdan-Lusztig Duality in Logarithmic Conformal Field Theory



o
I
N

{z,z} =0, {0,0} =0,
{0,z} =2i

finite-dimensional counterpart of free fermions, which are known to
describe the (p = 2,1) logarithmic conformal field model.
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Con

m Kazhdan-Lusztig duality with LCFT is based on the pair

(D(B), H(B*))
(quantum group, its module algebra)
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m Kazhdan-Lusztig duality with LCFT is based on the pair

(D(B), H(B"))
(quantum group, its module algebra)

m D(B): well known (a serendipitous finding of FGST (2005))
m H(B*): new
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