Miracle of Conformal Bootstrap in 4-Dimensions

Slava Rychkov

(Scuola Normale Superiore, Pisa)

- with **R.Rattazzi**, **E.Tonni**, **A.Vichi** 0807.0004 (JHEP 0812)
- with **A.Vichi** 0905.2211

Status of CFT in 4D

- Abstract theory scaling operators, OPEs, conformal partial waves
- Few (non-SUSY) concrete examples
- E.g. conformal windows of SU(N_c) gauge theories with N_f flavors. Evidence from
 - large N Belavin, Migdal'74
 - SusySeiberg'94
 - lattice simulations $N_c=3$, $N_f=12$: Appelquist et al, Deuzeman et al'09
- No theoretical control over these fixed points

Why want to know more?

- curiosity
- what if plays a role in Nature?
 - UnparticlesGeorgi'07
 - Conformal Technicolor Luty, Okui'04
 - Conformal SUSY-breaking sectors

Roy, Schmaltz'08

CTC - Ideal theory of EWSB

$$y_{ij} H \overline{q}_i q_j$$

Standard Model y_{ij} $H \overline{q}_i q_j$ unwanted flavor effects decouple $\frac{1}{\Lambda^2_{init}} \overline{q}_i q_j \overline{q}_k q_l$

$$[H]=1$$

very relevant operator $\Lambda_{UV}^2 \mid H \mid^2$ Hierarchy $\Lambda_{UV} \to \infty$ problematic

$$\Lambda_{\it UV}
ightarrow \infty$$
 problematic

Usual Technicolor

no relevant singlet scalar

$$H_{TC} \sim \overline{\psi} \psi$$

$$[H_{TC}]=3$$

$$y_{ij} \frac{\boldsymbol{H}_{TC}}{\Lambda_{uv}^2} \overline{\boldsymbol{q}}_i \boldsymbol{q}_j$$

Yukawas $y_{ij} \frac{H_{TC}}{\Lambda_{TW}^2} \overline{q}_i q_j$ as relevant as $\frac{1}{\Lambda^2} \overline{q}_i q_j \overline{q}_k q_l$

«Conformal Technicolor»

Luty, Okui 2004

(based on earlier «walking TC» idea Holdom'81)

Flavor: $[H] \approx 1$

Hierarchy: $[H^+H] \ge 4$

$$[H^+H] \ge 4$$

- We do not know of any such theories
- Is this at all possible?

→ A concrete question

In arbitrary unitary CFT, take a Hermitean scalar operator, with OPE

$$\varphi \times \varphi = 1 + O + \dots$$
leading scalar $O \sim \varphi^2$

- Is there any *upper bound* on [O], the dimension of O, in terms of $[\varphi]$?
 - In particular, is it true that $[O]\rightarrow 2$ as $[\varphi]\rightarrow 1$?

Recall unitarity bound:

 $[\varphi] \ge 1$ for any scalar operator in a unitary CFT If $[\varphi] = 1$, the scalar is free, and in particular $O = : \varphi^2 :, [O] = 2$

Conformal Boostrap – our only weapon

OPE + crossing symmetry

Polyakov'74 Belavin, Polyakov, Zamolodchikov'84

A germ of an idea:

• The Unit Operator exchange is NOT crossing-symmetric

$$\frac{1}{x_{12}^{2d}x_{34}^{2d}} \neq \frac{1}{x_{14}^{2d}x_{23}^{2d}}$$

- Exchanges of scalars and higher spins should restore crossing
- Can it be that higher spins cannot do it by themselves, if all scalars are decoupled?

Conformal block decomposition – divide and conquer

$$\langle \phi(x_1) \phi(x_2) \phi(x_3) \phi(x_4) \rangle = \frac{g(u, v)}{|x_{12}|^{2d} |x_{34}|^{2d}}$$
 $d = [\varphi]$

$$g(u,v) = 1 + \sum_{\Delta,l} (\lambda_{\Delta,l})^2 g_{\Delta,l}(u,v)$$

4D Conformal Blocks in closed form [Dolan, Osborn, 2001] It makes you feel powerful!

$$g_{\Delta,l}(u,v) = \frac{z\overline{z}}{z - \overline{z}} [f_{\Delta+l}(z)f_{\Delta-l-2}(\overline{z}) - (z \leftrightarrow \overline{z})]$$

$$f_{\beta}(z) = z^{\beta/2} {}_{2}F_{1}(\frac{\beta}{2}, \frac{\beta}{2}, \beta; z)$$

$$u = z\bar{z}, \quad v = (1-z)(1-\bar{z})$$

Crossing Symmetry – can we balance the budget deficit?

$$v^d g(u,v) = u^d g(v,u)$$

crossing deficit from unit operator

$$u^{d} - v^{d} = \sum_{\Delta,l} (\lambda_{\Delta,l})^{2} [v^{d} g_{\Delta,l}(u,v) - u^{d} g_{\Delta,l}(v,u)]$$

Sum Rule:

$$1 = \sum_{\Delta,l} \lambda_{\Delta,l}^2 F_{d,\Delta,l}(u,v)$$

$$F_{d,\Delta,l}(u,v) := \frac{v^d g_{\Delta,l}(u,v) - u^d g_{\Delta,l}(v,u)}{u^d - v^d}$$

Sum rule ⇒ **Results**

Theorem (with Rattazzi, Tonni, Vichi): OPE $\varphi \times \varphi$ must contain at least one scalar O of dimension [O]<f([φ])

• Numerical fit: $f(d) \approx 2 + 0.7\sqrt{d-1} + 2.1(d-1) + 0.43(d-1)^{3/2}$

• f(d)→2 as d→1

How can this be at all possible?

0.25

0.5

0.75

4-D versus 2-D

•In 2D, the bound is saturated by Minimal Models and Free Scalar, interpolating in between

•We hope that also in 4D CFTs near-saturating the bound must exist

Conclusions/Подведем итоги

OPE

2D and 3D examples

show that $\gamma_{\phi^2} >> \gamma_{\phi}$ is not impossible.

Ising model: $\sigma \times \sigma = 1 + \varepsilon$

2-dimensions (Onsager)	$[\sigma] = 1/8, [\varepsilon] = 1$
3-dimensions (<i>ϵ</i> - and high-T expansions, Monte-Carlo)	$\gamma_{\sigma} \approx 0.02, \gamma_{\varepsilon} \approx 0.4$

<u>OPE</u>

$$\phi(x)\phi(0) = \frac{1}{x^{2d}} + \sum_{l=0,2,4...} \sum_{\Delta} \lambda_{\Delta,l} [C(x)O(0) + ...]$$
descendants

NB. Only even spins appear

Convergence at finite separation:

should converge if no other operators with |x'|<|x|

Sum rule convergence in free scalar theory

$$\phi \times \phi = \sum_{l=2n} \phi \, \vec{\partial}^{2n} \phi$$

twist 2 fields only

$$\lambda_l^2 = 2^{l+1} \frac{(l!)^2}{(2l!)^2}$$

Monotonic convergence

-Paradox in 4-epsilon dimensions

Naive extrapolation of our 4d bound:

$$\gamma_{\phi^2} \leq 0.7 \sqrt{\gamma_{\phi}} \qquad (\gamma_{\phi} << 1)$$

to 4-epsilon is in contradiction with Wilson-Fischer fixed point anomalous dimensions for N=1,2:

$$\gamma_{\phi} = \frac{N+2}{4(N+8)^2} \varepsilon^2$$

$$\gamma_{\phi^2} \equiv \gamma_T = \frac{2}{N+8} \varepsilon$$