Tracing high energy radiation with molecular lines by the deeply embedded protostar L1634

Miriam Rengel

Max-Plack-Institut für Sonnensystemforschung Germany

GREGMARTIN INCARNATION WWW.ARTOFGREGMARTIN

Introduction Ionization fraction: a key parameter

	Agents of ionization	lonization regulates
Difuse clouds	UV radiation field	Rich chemistry
Dense cores	 Through low energy cosmic rays X-rays 	 Ion-neutral reactions Time scale for SF

Probing the cosmic-ray ionization rate

By observations of abundance ratios By modeling $\zeta_{\rm CR} = [10^{-16} - 10^{-17}] \, {\rm s}^{-1} \, {\rm per} \, {\rm H} \, {\rm atom}$

 $\zeta_{\rm CR}$ varies with location in the Galaxy

Molecular studies of SF regions are useful to measure the ionization rate across the Galaxy

Star Formation phases

Stages of evolution of a protostar

André & Montmerle, 1994, ApJ 420, 837

CEA/DAPNIA/SAP/Grosso N.

Moscow, 18/5/2009

Class 0 Sources

They are quite difficult to detect!

protostar dusty envelope flattened disk bipolar outflow

André, Ward-Thompson & Barsony, 1993, ApJ 406, 122

Moscow, 18/5/2009

Class 0 sources are highly obscured
 They are extremely rare (because they spend only a short time in their evolutionary phase ~ 10⁴ yr)

The observational identification of the earliest evolutionary stage is very difficult!

Methods applied to find Class 0 sources and deeply embedded source candidates

Searching for their powerful molecular outflows (Davis & Eislöffel, 1995, A&A 300, 851)

Large-scale mapping of potentially interesting star formation regions with bolometer arrays (Stanke et al., 2000, A&A 355, 639)

Comparing large-scale, high angular resolution sub-millimeter continuum maps of a star formation region with near-infrared surveys of the same region (Hurt et al., 2001, AAS 198)

Goal of the Project

To contribute to the understanding of the physical structure (dust density and temperature profiles) and processes in Class 0 sources

To examine closely the structure of Class 0 sources

To derive physically refined properties of Class 0 sources Geometry

density and temperature distributions as function of the radius of the envelope

- Masses
- Sizes
- temperatures and luminosities

Ages

Constraint ζ_{CR}

How?

Theory

By using an analytic theory of emission from protostars

Observations

Deriving information of the thermal emission of the dust

Modeling

Applying an envelope model, techiques (Blackbody fitting and Radiative Transfer), and an evolutionary scheme for protostars

2

3

Observed intensity for a spherical symmetric envelope

$$I_{\nu}(b) = 2\kappa_{\nu} \int_{b}^{r_{0}} B_{\nu}[T_{d}(r)] \rho(r) \frac{r}{\sqrt{r^{2}-b^{2}}} dr$$

if the emission is in the Rayleigh-Jeans limit, and if $r_{o} > b$,

$$I_{\nu} \propto b^{-m} \qquad \kappa \propto \nu^{\beta} \quad T_{d}(r) \propto r^{-q} \quad \rho(r) \propto r^{-p}$$

Abservations

$$m = p + q - 1$$

$$q = 2/(4 + \beta)$$

The standard envelope model suggests single power-law indices for the density, temperature and dust opacity distributions

Moscow, 18/5/2009

Adams, 1991, ApJ 382, 544

II.Thermal emission from the dust A.- Imaging of Class 0 sources Instrumentation -SCUBA camera

-James Clerk Maxwell Telescope (Hawaii)

6 regions observed at 450 and 850 µm in Orion and Perseus

HH 211	L 1448
L1455	<u>L 1634</u>
NGC 1333	<u>L 1641</u>

(>3o) 36 sources found

9 Class 0 sources investigated in detail Rengel M., Eislöffel J., Hodapp K, 2003, ANS 324, 10

Moscow, 18/5/2009 sources detected for the first time

360-degree Milky Way Panorama

Picture: courtesy of Axel Mellinger

300 pcL1448350 pcL1455, NGC 1333, HH211

460 pc L1634 390 pc L1641

Moscow, 18/5/2009

1 pc = 30.85678 x 10¹⁵ m

Example of the contour map of L 1448 at 850 μ m

Moscow, 18/5/2009

Rengel M., Eislöffel J., Hodapp K, 2003, ANS 324, 10

more observed regions

Moscow, 18/5/2009

Rengel 2004, PhD Thesis

Radial profiles

Normalized radial profiles Intensity map 850 µm L1448C 0 -1D = 5052 AU-2log [1(b)/1(0)] 3.5 $\mathbf{2.5}$ 5 4.5 4 X L1448C 450 μm Û $I_{ u} \propto b^{-m}$ -1Intensity profile Intensity [Jy] D = 2946 AU-22.5 6 3.5 4 4.5 log b (AU) × [arcsec] b₀ normalization factor to q =the peak emission $m=1.74 \pm 0.02$ $4 + \beta$ $\frac{I_v(b)}{I_v(0)} = \left(\frac{b}{b_0}\right)^2$ q=0.42 ± 0.04 Result consistent with $\log \frac{I_{v}(b)}{I_{v}(0)} = -m \log \left(\frac{b}{b_{0}}\right)$ other works Moscow, 18/5/2009 1 AU = 1.496 x 10¹¹ m

B.- Deriving physical properties

From observations

Rengel 2004, PhD Thesis

B.- Deriving physical properties By the blackbody fitting R $S[Jy] = \Sigma \Omega \cdot \left(1 - e^{- au}
ight) \cdot B(\lambda,T)$ $\Sigma \Omega$ effective solid angle Eβ sub-mm slope of the spectral energy distribution 19 L_o [18.8-19.2] L_o Best obtained fit to the Spectral Energy Distribution for L 1634 $S \tau = \tau_{100} \cdot \left(\frac{\lambda}{100 \mu m}\right)$ = $4 \pi D^2$ [Spectral Energy Distribution (v) dv dust optical depth 1000L1634 100 *D* distance to the object v frequency 10 0.1 S 0.01100 1000 10 10 42.1 K 2.0 ± 0.1 Cool object! Moscow, 18/5/2009 Evolutionary indicator L_{sub-mm}/L_{bol} > 0.005

A more detailed physical interpretation on the internal structure of these objects requires radiative transfer modeling ...

III.- The Envelope Fitting Procedure

Temperature profile

Spectral Energy Distribution

Intensity map

stellar luminosity effective temperature outer radius density distribution density power-law index sublimation radius mass of the envelope

optical stribution: silicate (62.5%), graphite (37.5%) oral of larges: 0.005-0.25 μm Optical constants: Draine & Lee, 1984

Moscow, 18/5/2009

Basic assumed model

Wolf, S., Henning, T., Stecklum, B., 1999, A&A, 349, 839

Changes in envelope mass

Variations in the spectral energy distribution due to changes in the envelope mass

Moscow, 18/5/2009

1 Jy=10⁻²⁷ W m⁻² Hz⁻¹

Modelled spectral energy distributions

Inner radius

p

Moscow, 18/5/2009

Modelling observations: Radiative Transfer

R

F

S

S

1 AÜ

Rengel, Froebrich, Wolf, Eislöffel, 2004, Baltic Astronomy, 13, 449

Observed intensity map

45:00 30 I) ¢. 44:(R Ε 43:30 -2 -2 S 36 42 3:25:40 4.5 3 5 2.5 2,5 Right ascension U E III I) Modeled intensity 1 malo 2 S F., 3.5 4.5 5 7 $l_{\nu} \propto^{0} b^{-m}$. . **i**. 1) 850 ym

Observed and simulated radial profiles

Rengel 2004, PhD Thesis

۲. I

NGC 1333 iras

61 H E

ha ge ha ne l

4.5

· 1 5

III. An evolutionary scheme for Class 0 Sources

Model based on simple assumptions about the physics and dynamics of the protostellar system

 $\dot{M}_{acc} = \dot{M}_{o} \left(\frac{e}{\alpha}\right)^{\alpha} \left(\frac{t}{t_{o}}\right)^{-\alpha} e^{-t_{o}/t}$

 $\varepsilon(t) = \eta$

dusty

t= 20 – 30 x 10 ³ yr

*circumstellar disk

- M_{acc} envelope material accreted per year
- ε escaped mass through jets per year
- M_{inf} total material accreted per year
- M₀ envelope initial mass
- α power-law index
- t dissipation timescale
- to zero point of time
- η peak outflow efficiency
 - maximum jet ejection fraction

Smith 2000, IAJ, 27,25

Mass and age determination

Stellar Systems, and the Sun", Hamburg (Germany), 5-9 July 2004, F.Favata et al., eds.

Infall Evolution

 $M_{env} = M_{core}$

 Class 0 sources grow by accretion at rate that is initially high, but declines with time

 Mass infall rate strongly time-dependent

Peaking at t ~ 17000 yr

 Mass infall dominated by Class 0 phase, thus determining protostellar evolution
 1 M_o = 1.9891 x 10³⁰ kg

* Protostars analized here

Moscow, 18/5/2009

X starting time of the Class 0 stage Rei

Rengel 2004, PhD Thesis

Evolution of the protostellar core and envelope masses

Core still growing in mass in Class 0 phase by accretion of envelope material, gradually reaching final size and mass. Envelope is lossing its material. $1 M_{\odot} = 1.9891 \times 10^{30} \text{ kg}$

Rengel 2004, PhD Thesis

Line profiles of molecular transitions

Instruments: heterodyne receivers SESIS 100 [78 – 116 GHz] IRAM 115 [80-116 GHz] SESIS, 150 [128-170 GHz] IRAM 230 [210 – 238 GHz] 14940; 0 L1641 H13C0+1-0 SEST115HRS-B 0:09-JAN-2003 R:09-JAN-2003 R:05:36:19:000 DEC:-06:22:13:00 Eq 2000.0 Offs: +0.0 +0.0 Unknown Tau: -0.525 Tsys: 158. Time: 40. EI: 48.5 N: 1000 I0: 501.0 V0: 20.0 Dv 0.147 LSR F0: 86754.2940 Df: -4.2602E-02 Fi: 89739.9286

 14625;
 0
 L1641
 N2H+1-0
 SEST115HRS-B
 0:09-JAN-2003
 R:09-JAN-2003

 RA:05:36:19.000
 DEC:-06:22:13.00
 Eq
 2000.0
 Offs:
 +0.0
 +0.0

 Unknown
 Tou:-0.618
 Tays:
 159.
 Time:
 47.
 EI:
 64.9

 N:
 1000
 00:
 501.0
 V0:
 20.0
 Dv'
 0.137
 LSR

 F0:
 93173.8300
 Df:-4.2602E-02
 Fi:
 96158.5178

N_2H^+ abundance depends solely on the N_2 abundance

Maret et al. 2006, Nature 442

 N_2H + abundance ~ 1 x 10 -10

H¹³CO+ abundance ~ 2 x 10 -7

As a first aproximation:

 $\zeta_{\rm CR}\, \alpha$

~ 2 x 10 ^{- 17} s⁻¹

Standard , caused by CR since there is not known to be a potent X-ray in the vecinity

Moscow, 18/5/2009

A version of today's Sun

Summary and Conclusions

• With the SCUBA camera, thermal dust emission of 36 embedded sources (nine Class 0 sources and 12 new sub-mm objects) in Orion and Perseus were detected.

• The fundamental physical structure of a Class 0 envelope is characterized by two radial distributions: $T(r) \propto r^{-q}$, and $\rho(r) \propto r^{-p}$. From Interpretation of observations, $q=0.42 \pm 0.04$ and $p=2.1 \pm 0.1$ (450 µm) and 2.3 ± 0.1 (850 µm). These values are expected for all theoretical models and numerical studies of collapse.

 I have modelled nine Class 0 envelopes using single powerlaw density and temperature distributions → embedded systems can be modelled with the standard envelope model. I have shown that a 1D spherically symmetric model reproduces well the observed properties of Class 0 sources. → It fits the SEDs and the radial profiles for the sample.

 Deviations can be due to non-spherical geometry of sources and outflows, between others.

• From molecular studies of young protostars it is possible to constraint abundance of metals and fraction of ionization.

Acknowledments

• Jochen Eislöffel, Klaus Hodapp, Sebastian Wolf, Javier Goicoechea

SEST staff

CS4 Organizing Committee