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The Heterotic Superstring

D-dimensions

σ0,1

Ψ ⇒ θA

no “ghosts”⇒ super-conformal

no “tachyon”⇒ GSO projection

⇒

⇒

⇒

Aa
I , E8 × E8

D = 10

supersymmetry
N = 1

gIJ , BIJ , Φ



Heterotic Compactifications

R4

X

D = 6

N = 1 SUSY

Rab = 0

Calabi-Yau manifold

Spacetime: D = 10 , gMN



Gauge Connection: D = 10 , Aa
M , E8

V,G

W,F

H1(V )F ⇒ matter

H1(V ∗)F ⇒ conjugate matter

H1(∧2V )F ⇒ Higgs

H1(V ⊗ V ∗)F ⇒ Bundle Moduli

• Heterotic Standard Model: V , G = SU(4) W , F = Z3 × Z3,

N = 1 SUSY

“Slope” stable

H = [E8, G]

H = [H,F ]



R4 Theory Gauge Group:

G = SU(4)⇒

F = Z3 × Z3 ⇒

E8 → H = Spin(10)

Spin(10)→ SU(3)C × SU(2)L × U(1)Y×U(1)B−L

rank Spin(10)=5 plus F Abelian ⇒ extra gauged     U(1)B−L .
Note that

Z2 (R− parity) ⊂ U(1)B−L

⇒ no rapid proton decay. But must be spontaneously 
broken above the scale of weak interactions.

Gauge connection

Wilson line

H =



R4 Theory Spectrum:

E8
V−→ Spin(10)⇒

248 = (1, )⊕ (4, )⊕ (4̄, )⊕ (6, )⊕ (15, )45 16 1̄6 10 1

The Spin(10) spectrum is determined from

45 n45 = h0(X,O) = 1

n16 = h1(X, V ) = 27

n10 = h1(X,∧2V ) = 4

n1 = h1(X, V ⊗ V ∗) = 117

n1̄6 = h1(X, V ∗) = 0

16

1

1̄6

10



Spin(10) F−→ SU(3)C × SU(2)L × U(1)Y × U(1)B−L ⇒

a) Find representation of Z3 × Z3 on
Example:

H1(X, UR(V )).
H1(X, V ) = RG⊕3 where

RG = 1⊕ χ1 ⊕ χ2 ⊕ χ2
1 ⊕ χ2

2 ⊕ χ1χ2 ⊕ χ2
1χ2 ⊕ χ1χ

2
2 ⊕ χ2

1χ
2
2

n16 = h1(X, V ) = 27⇒

b) Find action of Z3 × Z3 on representation R. Example:

16 = [χ1χ2
2(3, 2, 1, 1)⊕ χ2

2(1, 1, 6, 3)⊕ χ1
2χ2

2(3̄, 1,−4,−1)]
⊕[(1, 2,−3,−3)⊕ χ1

2(3̄, 1, 2,−1)]⊕ χ2(1, 1, 0, 3)

Tensoring and taking invariant subspace gives 3 families 
of quarks/leptons each transforming as

QL = (3, 2, 1, 1), uR = (3̄, 1,−4,−1), dR = (3̄, 1, 2,−1)

LL = (1, 2,−3,−3), eR = (1, 1, 6, 3), νR = (1, 1, 0, 3)

under SU(3)C × SU(2)L × U(1)Y × U(1)B−L.



Similarly we get 1 pair of Higgs-Higgs conjugate fields

H = (1, 2, 3, 0), H̄ = (1, 2̄,−3, 0)

That is, we get exactly the matter spectrum of the MSSM!
In addition, there are
bundle moduli

Supersymmetric Interactions:

The most general superpotential is

W =
3∑

i=1

(λu,iQiHui + λd,iQiH̄di + λν,iLiHνi + λe,iLiH̄ei)

Note B-L symmetry forbids dangerous B and L violating terms

LLe, LQd, udd

n1 = h1(X, V × V ∗)Z3×Z3 = 13 vector

φ = (1, 1, 0, 0)



Can we evaluate the Yukawa couplings from first principles?

Yes!
a) Texture:

W = . . .λLHr + . . .

⇒ a Yukawa coupling is the triple product 

H1(X, V ) ⊗H1(X,∧2V ) ⊗H1(X, V ) −→ CZ3 × Z3 Z3 × Z3 Z3 × Z3

Internal super-geometry (X elliptically fibered over dP9 base) ⇒
in flavor diagonal basis for each of u, d, ν, e

λ1 = 0, λ2,λ3 != 0

That is, naturally light first family and heavy second/third
families.



b) Explicit Calculation:

The triple product ⇒ 

where

∇2
∗∗ψ

∗ = λψ∗ ,λ = 0

⇒ need to calculate the metric and eigenfunctions of the  
Laplacian. Unfortunately, a Calabi-Yau manifold does not admit 
a continuous symmetry. ⇒ the metric, gauge connection 
and, hence, the Laplacian are unknown! Remarkably, these
can be well-approximated by numerical methods.

λ =
∫

X

√
gµνψa

Lψ[b,c]
H ψd

r εabcdd
6x



Ricci-Flat Metrics and Scalar Laplacians
on Calabi-Yau Threefolds

Let sα,α = 0, . . . , Nk − 1 be degree-k polynomials on the CY

.and hαβ̄
bal a specific matrix. Defining

g(k)
(bal)ij̄

=
1
kπ

∂i∂j̄ ln
Nk−1∑

α,β̄=0

hαβ̄
balsαs̄β̄

then

g(k)
(bal)ij̄

k→∞−→ gCY
ij̄

Expressed this way, g(k)
(bal)ij̄ at any finite k is not very enlightening.

More interesting is how closely they approach gCY
ij̄ for large k. 

This can be estimated using

σk

(
Q̃

)
=

1
V olCY

(
Q̃

)
∫

Q̃

∣∣∣∣∣∣
1−

ω3
k

/
V olK

(
Q̃

)

Ω ∧ Ω̄
/

V olCY

(
Q̃

)

∣∣∣∣∣∣
dV olCY
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Figure 1: The error measure σk for the metric on the Fermat quintic, com-
puted with the two different point generation algorithms described in
Subsection 2.3. In each case we iterated the T-operator 10 times,
numerically integrating over Np = 200,000 points. Then we eval-
uated σk using 10,000 different test points. The error bars are the
numerical errors in the σk integral.
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Fermat quintic:



Scalar Laplacians:

Given a metric gµν ⇒
∆ = − 1

√
g
∂µ(gµν√g∂ν)

Solve the eigen-equation

∆φm,i = λmφm,i , i = 1, . . . µm

where is the multiplicity from continuous/finite symmetry.µm

Choose a basis {fa}⇒ the eigen-equation becomes
∑

b

〈
fa

∣∣∆
∣∣fb

〉
〈fb|φ̃m,i〉 =

∑

b

λm〈fa|fb〉〈fb|φ̃m,i〉

Numerical Solution:
1) Choose a finite sub-basis

let alone solving for the infinite number of eigenvalues and eigenfunctions, is not
possible. Instead, we greatly simplify the problem by choosing a finite subset of
slowly-varying functions as an approximate basis. For simplicity of notation, let us
take {fa|a = 1, . . . , k} to be our approximating basis. The k×k matrices (∆ab)1≤a,b≤k

and 〈fa|fb〉1≤a,b≤k are then finite dimensional and one can numerically solve eq. (11)
for the approximate eigenvalues and eigenfunctions. It is important to note that
this procedure generically violates any underlying symmetries of the manifold and,
hence, each eigenvalue will be non-degenerate. Finally, we successively improve the
accuracy of the approximation in two ways: 1) for fixed k the numerical integration of
the matrix elements is improved by summing over more points and 2) we increase the
dimension k of the truncated space of functions. In the limit where both the numerical
integration becomes exact and where k → ∞, the approximate eigenvalues λn and
eigenfunctions φn converge to the exact eigenvalues λ̂m and eigenfunctions φm,i with
multiplicity µm.

3 The Spectrum of ∆ on P3

{sec:CP3}
In this section, we use our numerical method to compute the eigenvalues and eigen-
functions of ∆ on the complex projective threefold

P3 = S7
/
U(1) = SU(4)

/
S
(
U(3)× U(1)

)
(13) {eq:CP3def}

with a Kähler metric proportional to the Fubini-Study metric, rescaled so that the
total volume is unity. As mentioned above, since this is a symmetric space of the form
G/H, the equation ∆φ = λφ can be solved analytically. The results were presented
in [33]. Therefore, although P3 is not a phenomenologically realistic string vacuum,
it is an instructive first example since we can check our numerical algorithm against
the exact eigenvalues and eigenfunctions. Note that, in this case, the metric is known
analytically and does not need to be determined numerically.

3.1 Analytic Results
{sec:CP3analytic}

Let us begin by reviewing the known analytic results [33]. First, recall the Fubini-
Study metric is given by gFS

ī = ∂i∂̄̄KFS with

KFS(z, z̄) =
1

π
ln

(
|z0|2 + |z1|2 + |z2|2 + |z3|2

)
. (14) {eq:K_FS}

With respect to this metric the volume of P3 is

VolFS(P3) =

∫

P3
det

(
gī

)
d6x =

∫

P3

ω3
FS

3!
=

1

6
, (15) {eq:K_FSvol}
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2) Calculate the finite-dimensional matrices 
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and
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3) Solve numerically for λn and φn

4) For fixed k let nφ let k →∞nφ →∞ / for fixed 
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Figure 8: Eigenvalues of the scalar Laplace operator on the Fermat quintic.
The metric is computed at degree kh = 8, using nh = 2,166,000
points. The Laplace operator is evaluated at degree kφ = 3 using a
varying number nφ of points. {fig:SpecQtFNp
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Fermat quintic:



Tabulating the results

4.3 Symmetry Considerations
{sec:fermatsymmetry}

Recall from Figure 7 that the eigenvalues of the scalar Laplace operator condense
to a smaller number of degenerate levels as nφ → ∞, that is, in the limit where
the numerical integration becomes exact. The same phenomenon is clearly visible
at different values of kφ, see Figure 8. Of course the eigenvalues are never exactly
degenerate due to numerical errors, but counting the nearby eigenvalues allows one to
determine the multiplicities. Averaging over the eigenvalues in each cluster yields an
approximation to the associated degenerate eigenvalue. Using the data from Figure 8,
we list the low-lying degenerate eigenvalues and their multiplicities8 in Table 2. As

m 0 1 2 3 4 5

λ̂m 1.18× 10−14 41.1± 0.4 78.1± 0.5 82.1± 0.3 94.5± 1 102± 1

µm 1 20 20 4 60 30

Table 2: The degenerate eigenvalues λ̂m and their multiplicities µm on the Fer-
mat quintic, as computed from the numerical values calculated with
kh = 8, nh = 2,166,000, kφ = 3, nφ = 500,000. The errors are the
standard deviation within the cluster of µn numerical eigenvalues. {tab:QtFresult}

discussed previously, multiplicities in the spectrum of the Laplace-Beltrami operator
results must follow from some symmetry. In Section 3, we saw that the SU(4) symme-
try of P3 leads to degenerate eigenspaces of the scalar Laplacian. However, a proper
Calabi-Yau threefold never has continuous isometries, unlike projective space. Nev-
ertheless, a suitable non-Abelian9 finite group action is possible and, in fact, explains
the observed multiplicities, as we now show.

First, note that for each distinct eigenvalue the corresponding space of eigenfunc-
tions must form a representation10 of the symmetry group. Clearly, the degeneracies
of the eigenvalues observed in Figure 7 and Figure 8 must arise from an isometry of
Q̃F . In fact, the Fermat quintic does have a large non-Abelian finite symmetry group.
To see this, note that the zero set of eq. (60) is invariant under

• Multiplying a homogeneous coordinate by a fifth root of unity. However, not
all (Z5)5 phases act effectively because the projective coordinates are identified

8Interestingly, the correct multiplicity µ1 = 20 was derived by a completely different argument
in [37].

9An Abelian symmetry group would only have one-dimensional representations and, hence, need
not lead to degenerate eigenvalues. Note that any finite group has a finite number of irreducible
representations and, therefore, one expects only a finite number of possible multiplicities for the
eigenvalues of the Laplace operator. This is in contrast to the aforementioned P3 case, where the
multiplicities grow without bound.

10An actual linear representation, not just a representation up to phases (projective representa-
tion).
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The non-trivial multiplicity⇒ there must be a symmetry. 
CY manifolds have no continuous symmetry, but they can
have a finite isometry. For the Fermat quintic this is

Aut
(
Q̃F

)
=

(
S5 × Z2

)
!

(
Z5

)4

with irreducible representations

d 1 2 4 5 6 8 10 12 20 30 40 60 80 120

# of irreps
in dim d

4 4 4 4 2 4 4 2 8 8 12 18 4 2

Table 3: Number of irreducible representations of Aut(Q̃F ) = Z2 ! Aut(Q̃F )
in each complex dimension. {tab:AutBarQF}

under the rescaling

[
z0 : z1 : z2 : z3 : z4

]
=

[
λz0 : λz1 : λz2 : λz3 : λz4

]
. (64)

Only (Z5)5
/
Z5 ! (Z5)4 acts effectively.

• Any permutation of the 5 homogeneous coordinates. The symmetric group S5

acts effectively.

• Complex conjugation Z2.

The first two groups act by analytic maps, and together generate the semidirect
product

Aut
(
Q̃F

)
= S5 !

(
Z5

)4
(65)

of order 75, 000. Our notation and the relevant group theory is discussed in Ap-
pendix B. The full discrete symmetry group, including the complex conjugation Z2,
is

Aut
(
Q̃F

)
= Z2 ! Aut

(
Q̃F

)
=

(
S5 × Z2

)
!

(
Z5

)4
(66) {ddd}

and of order 150,000. Note that even though the Z2 acts as complex conjugation
on the base space, the whole Aut(Q̃F ) acts linearly on the the basis of complex
functions on Q̃F and, hence, on the eigenfunctions. There are 80 distinct irreducible
representations occurring in 14 different dimensions, ranging from 1 to 120. We list
them in Table 3.

We conclude by noting that the multiplicities listed in Table 2 also occur in Table 3.
That is, the eigenspaces of the degenerate eigenvalues of the scalar Laplacian on Q̃F ,
computed using our numerical algorithm, indeed fall into irreducible representations
of the finite symmetry group

(
S5 × Z2

)
!

(
Z5

)4
, as they must. This gives us further

confidence that our numerical computation of the Laplacian spectrum is reliable.

4.4 Donaldson’s Method
{sec:Donaldson}

Donaldson [22] conjectured a method to compute the eigenvalues of the scalar Laplace
operator that is completely independent of our approach. His calculation of the spec-
trum of the scalar Laplacian is very much tied into his algorithm for computing
balanced (Calabi-Yau) metrics. In our algorithm, on the other hand side, any metric

30

Match perfectly!



Supersymmetry Breaking, the Renormalization Group 
and the LHC

Soft Supersymmetry Breaking:

N=1 Supersymmetry is spontaneously broken by the moduli 
during compactification ⇒ soft supersymmetry breaking 
interactions. The relevant ones are

V2f =
1
2
M3λ3λ3 + . . .

V2s = m2
ν3

|ν3|2 + m2
H |H|2 + m2

H̄ |H̄|2 − (BHH̄ + hc) + . . .

At the compactification scale MC ! 1016GeV these parameters 
are fixed by the vacuum values of the moduli. For example

m2
ν3

= m2
ν3

(〈φ〉)



However, at a lower scale µ measured by t = ln(
µ

MC
) these 

parameters change under the renormalization group. 

For example,

Solving this, at a scale µ ! 104GeV ⇒ tB−L ! −25

mν3(tB−L)2 = mν(0)2−(3.10× 10−2)S
′

1(0)

Including another effect

meffν3(tB−L)2 = mν3(tB−L)2 +
√

3
4
g4ξB−L

⇒
meffν3(tB−L)2 = −4mν(0)2

Therefore, we expect the spontaneous breaking of B-L at tB−L.

16π2 dm2
ν3

dt
! 3

4
g4

2S
′

1, S
′

1(0) = 61.5 mν(0)2



Result:

The vacuum expectation value at      

〈ν3〉 =
2mν(0)√

3
4g4

tB−L is

⇒ a B-L vector boson mass of 

MAB−L = 2mν(0)

At this scale, no other symmetry is broken.

〈ν3〉

ν3

V



Similarly, under the renormalization group

mH(t)2 ! mH(0)2e
− 3

4π2
R 0

t λ2
3(1+[

− 2
3π2

R t′
0 g2

3|M3|2

m2
H

])

mH̄(t)2 ! mH̄(0)2

At the electroweak scale µ ! 102GeV ⇒ tEW ! −29.6

meffH′ (tEW )2 ! −ε2mH(0)2

tanβ2 mH̄′ (tEW )2 ! mH(0)2,

where tanβ =
〈H〉
〈H̄〉

and 
symmetry is broken by the expectation valuetEW electroweak

⇒ a Z-boson mass of 

〈H
′0〉 =

2εmH(0)

tanβ
√

3
5g2

1 + g2
2

MZ =
2εmH(0)

tanβ
! 91GeV

ε < 1 . Therefore, at is related to M3(0)



It follows that there is a B-L/EW gauge hierarchy given by

MAB−L

MZ
! tanβ

ε

Our approximations are valid for the range 6.32 ≤ tanβ ≤ 40 .
For ε =

1
2.5 ,  the B-L/EW hierarchy in this range is

We conclude that this vacuum exhibits a natural hierarchy
O(10) O(100)of to ⇒

1.42× 103GeV ! MAB−L ! 0.91× 104GeV

15.8 ! MAB−L

MZ
! 100

All super-partner masses are related through intertwined
renormalization group equations. ⇒ Measuring some
masses predicts the rest!



For example, if

This then requires   

M3(0) = .216 mH(0), mH(0) ! 7.19× 102GeV

which, using the scaling equation for M3(t) predicts

M3(tEW ) ! 3.83× 102GeV

tanβ ! 6.32,
MAB−L

MZ
! 15.2 ⇒ ε ! 1

2.5


