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The Heterotic Superstring

D-dimensions gr7, Brj, ®
U = g4 = A%, Egx Fs

no “ghosts” = super-conformal = D =10

no “tachyon” = GSO projection = N =1

supersymmetry




Heterotic Compactifications

Spacetime: /) — 10, gu/n

l x

D=6 Ry, =0

Calabi-Yau manifold

N =15US5Y




Gauge Connection: /) — 10, A7, . g

V,G
Q “Slope” stable

H = |Eg, G] W.F
N =1SUS8Y H' (V)| = matter
HY (VY |= conjugate matter
H=[H,F HY(A\*V)Y | = Higgs
H' (V@ V*)"|= Bundle Moduli

® Heterotic Standard Model: V' . G = SU(4), W [ F' = Zs X Zs




R* Theory Gauge Group:

Gauge connection
H = Spin(10)
Wilson line F' = Z3 X Z3 =

szn(lo) — H = SU(S)C X SU(Z)L X U(l)yXU(l)B_L

rank Spin(10)=5 plus F Abelian = extra gauged U(1)5_1.
Note that

Ly (R —parity) CU(1)p-r

= no rapid proton decay. But must be spontaneously
broken above the scale of weak interactions.




R* Theory Spectrum:

FEs — Spin(10) =
248 = (1,45) @ (4,16) @ (4,16) & (6,10) & (15,1 )
The Spin(10) spectrum is determined from

4_5 n45:hO(X,C’)):1

& nNie — hl( ) = 27
16 Nie = hl(X V*) =
|_0 nNio — hl (X /\ V)

ny =h'(X,VeV*) =117




Spin(10) == SU(3)c x SU(2), x U(1)y x U(1)p_1 =
a) Find representation of Zjz x Z3 on H'(X,Ug(V)).
Example: nig =h'(X,V)=27= HY(X,V)=RG® where

RG=1®x1®x2 @ X D X2 D x1x2 D Xix2 ® X1X2 O XiX3
b) Find action of Zs x Z3 on representation R. Example:

16 = [x1x2%(3,2,1,1) @ x22(1,1,6,3) @ x12x2%(3,1, —4, —1)]
@[(17 27 _37 _3) P, XIQ(ga 17 27 _1)] S, X2(17 17 07 3)

Tensoring and taking invariant subspace gives 3 families
of quarks/leptons each transforming as

Vrp = (1, 1,0,3)
under SU(B)C X SU(Q)L X U(l)y X U(l)B_L.




Similarly we get | pair of Higgs-Higgs conjugate fields

H=(1,2,3,0), H=(1,2,-3,0)

That is, we get exactly the matter spectrum of the MSSM!
In addition, there are vector

bundle moduli

Supersymmetric Interactions:

The most general is

3
W = Z(Au,iQiHUi + X QiHd; + N\ ;LiHv; + Ao ;LiHe;)
1=1
Note B-L symmetry forbids dangerous B and L violating terms

LLe, LQd, udd




Can we evaluate the Yukawa couplings from first principles!?

Yes!

a) Texture:
W=...ALHr+ ...

= a Yukawa coupling is the triple product

Zs3 X 73 Zs3 X L3 Zs3 X 73

Internal super-geometry (X elliptically fibered over dP9 base) =
in flavor diagonal basis for each of

)\1207 >\27)\3#O

That is, naturally light first family and heavy second/third

families.




b) Explicit Calculation:
The triple product =

A:/ \/gwl%lbg’c]wg%bcdd%
X

where

= need to calculate the metric and eigenfunctions of the

Laplacian. Unfortunately, a Calabi-Yau manifold does not admit
a continuous symmetry. = the metric, gauge connection

and, hence, the Laplacian are unknown! Remarkably, these
can be well-approximated by




Ricci-Flat Metrics and Scalar Laplacians
on Calabi-Yau Threefolds

Let s, . a=0,..., N, —1 be degree-k polynomials on the CY
and hg‘fl a specific matrix. Defining
Ne—1
ggsimg = /%Ta’iaj In Z hgfﬁs&gﬁ
then @,3=0

(k) k—oco (Y
Ywaryi; —  Yij

Expressed this way, ggsil)ﬁ at any finite k is not very enlightening.

More interesting is how closely they approach QS-Y for large k.

This can be estimated using

wﬁ/V()lK (Q)
QAQ [ Voley (Q)

dVolcy

_ 1 :
7e(@) = VOZCY(Q) -/(2 :




Fermat quintic:
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The error measure o for the metric on the Fermat quintic, com-

puted with the two different point generation algorithms




Scalar Laplacians:

Given a metric g, =
1

A =
V9

0 (9""\/90y)
Solve the eigen-equation

where (1, is the multiplicity from continuous/finite symmetry.

Choose a basis {/.} = the eigen-equation becomes

> (fal Alfo)Soldmi) = D Am{fal fo) (foldm.i)
b

b
Numerical Solution:

1) Choose a finite sub-basis {/sla =1,... &}
2) Calculate the finite-dimensional matrices (Qab)i<ab<r and (falfo)i<ap<

3) Solve numerically for A, and ¢,
4) For fixed k let ng — oo [ for fixed ny let k — oo




Fermat quintic:
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n
Eigenvalues of the scalar Laplace ¢0pemt0r on the Fermat quintic.
The metric 1s computed at degree ky = 8, using np = 2,166,000
points. The Laplace operator is evaluated at degree ky = 3 using a
varying number ng of points.




Tabulating the results

m 0 1 2 3 4 5
Am | 118 x 1071 411404 781405 821403 945+1 102+1
L 1 20 20 4 60 30

The non-trivial multiplicity —. there must be a symmetry.
CY manifolds have no continuous symmetry, but they can
have a isometry. For the this is

Aut(Qp) = (S5 x Zy) x (Zs)"
with irreducible representations

d 1 2 4 5 6 8§ 10 12 20 30 40 60 80 120

gpotitreps |4 4 4 4 2 4 4 2 8 8 12 18 4 2
in dim d

Match perfectly!




Supersymmetry Breaking, the |
and the LHC

Soft Supersymmetry Breaking:

N=1| Supersymmetry is spontaneously broken by the moduli
during compactification = soft supersymmetry breaking

interactions. The relevant ones are

Vos = ng\VS\Q +my|H|? +m%‘ﬁ‘2 — (BHH + he) + ...

At the compactification scale M ~ 10'°GeV these parameters
are fixed by the vacuum values of the moduli. For example




However, at a lower scale ;© measured by ¢ = ln(ML) these

L C
parameters change under the renormalization group.

For example,

dm2 3 / /
1672 e 194251, S, (0) = 61.5 m, (0)°

Solving this,at a scale /2~ 10°GeV = 15 ~ —25

My, (te—1)% = m,(0)2 —(3.10 x 10~2)S, (0)
Including another effect

Meffrq (tB—L)2 = My, (tB—L)2

Meffrg (tB—L)2 = —4m,, (0)2

Therefore, we expect the spontaneous breaking of B-L at t5_ ;.




Result:

The vacuum expectation value at t5_; is
2m,, (0)

\/%94

= a B-L vector boson mass of

(v3) =

At this scale, no other symmetry is broken.




Similarly, under the renormalization group

/
2 t 2 2
372 Jo 931M3]|

m

_47%2 fto )\3(14—[

)
mpy(t)* ~ my(0)%e

mp ()" =~ mp(0)°

At the electroweak scale /1 ~ 10°GeV = gy ~ —29.6

Zm O 2
Megry (tEW)? = —° H(g) . mg (tew)® =~ mp(0)?
tan
where (unj = % and ¢ < 1 is related to 1/5(0).Therefore, at

tew electroweak symmetry is broken by the expectation value

QGmH(O)

tanB\/ 293 + 93

(H?) =

= a Z-boson mass of




It follows that there is a B-L/EVV gauge hierarchy given by

May_,, _ tanp
MZ o €
Our approximations are valid for the range

For «—= 2—15 , the B-L/EWV hierarchy in this range is

My
15.8 < P <100

We conclude that this vacuum exhibits a natural hierarchy
of O(10) to O(100) =

All super-partner masses are related through intertwined
renormalization group equations. = Measuring some
masses predicts the rest!




For example, if

This then requires
Ms5(0) = .216 mg(0), mg(0) ~7.19 x 10°GeV

which, using the scaling equation for 1;(t) predicts

Ms(tgw) ~ 3.83 x 10°GeV




