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General introduction
Basic facts:

ds® = dt? — a%(t)(dx? + dy? + dz?),

a(t) - scale factor.
5 percent accuracy of no spatial curvature.
Gravity theory: Einstein.
1
R — Egm/R =Tw
T, is stress-tensor of matter.
Typical choice: ideal fluid

p = wp,

p is pressure, p is energy density.
Two main cosmological parameters:
evolution of scale factor a(t),
evolution of EoS: w = w(t)?



Proposed Universe evolution

Big Bang / String inflationary era / Quantum Gravity - Unknown
Era.

Inflationary Universe:

almost de Sitter space:

ds? = dt? — a?(t)(dx? + dy? + dz?)

where a(t) = e''t.

Scenarios: most popular

N\, - cosmological constant,

or Scalar field,

or ideal fluid p = —p.

possibility of quintessence and (or) phantom inflation.

Problems

a) enough e-folding to reach observable volume

b) inflationary exit and transition to radiation-dominated stage
(preheating, etc.)



Intermediate Universe:
a(t) = t“, radiation / matter dominance.
Einstein theory describes it perfectly.

Late Universe: Dark energy era.
Almost de Sitter a(t) = et

Scenarios:

Ap - cosmological constant,

scalar fields,

ideal fluid: p = wp, w ~ —1 (up to 2 percent).

Possibility of phantom w < —1 or quintessence: —1 < w < —%.
Oscillating Universe?



Possible future evolution

ACDM most probably continues to be ACDM epoch.

If p = f(p), where p is negative the following future singularity is
possible:

Type |. t — t5, a(t) — oo, p, |p| — o0, a(t) ~ (tlts

Type ll. t — t;, a— a5, p — ps, |p| = ©
Type lll. t — tg, a(t) — as, p — o0, |p| — oo,
Type IV. Only higher derivatives of H diverge.



|. Introduction

The modified gravity approach is extremely attractive in the
applications for late accelerating universe and dark energy. Indeed,
1. Modified gravity provides the very natural gravitational
alternative for dark energy. The cosmic speed-up is explained
simply by the fact of the universe expansion where some
sub-dominant terms (like 1/R) may become essential at small
curvature.

2. Modified gravity presents very natural unification of the
early-time inflation and late-time acceleration thanks to different
role of gravitational terms relevant at small and at large curvature.
Moreover, some models of modified gravity are predicted by
string/M-theory considerations.

3. It may serve as the basis for unified explanation of dark energy
and dark matter. Some cosmological effects (like galaxies rotation
curves) may be explained in frames of modified gravity.



4. Assuming that universe is entering the phantom phase, modified
gravity may naturally describe the transition from non-phantom
phase to phantom one without necessity to introduce the exotic
matter (like the scalar with wrong sign kinetic term or ideal fluid
with EoS parameter less than —1). In addition, often the phantom
phase in modified gravity is transient. Hence, no future Big Rip is
usually expected there.

5. Modified gravity quite naturally describes the transition from
decceleration to acceleration in the universe evolution.

6. The effective dark energy dominance may be assisted by the
modification of gravity. Hence, the coincidence problem is solved
there simply by the fact of the universe expansion.

7. Modified gravity is expected to be useful in high energy physics
(for instance, for the explanation of hierarchy problem or
unification of GUTs with gravity).

8. Despite quite stringent constraints from Solar System tests,
there are versions of modified gravity which may be viable theories
competing with General Relativity at current epoch.



10. Class of viable modified f(R) gravities describing
inflation and the onset of accelerated expansion,
arXiv:0712.4017

Let us recall that, in general, the total action for the modified
gravitational models reads

5= / d'xv/ =R+ F(R)] + Sim) . (4)

Here f(R) is a suitable function, which defines the modified

gravitational part of the model. The general equation of motion in

F(R) = R + f(R) gravity with matter is given by

1 / / / K2

§gpr(R)_ RMVF (R)_g/wDF (R)+VMVVF (R) = _TT(m),uz/ )
(5)

where T(,),,, is the matter energy-momentum tensor.



We investigate two classes of ‘viable’ modified gravitational models
what means, roughly speaking, they have to incorporate the
vanishing (or fast decrease) of the cosmological constant in the flat
(R — 0) limit, and must exhibit a suitable constant asymptotic
behavior for large values of R.

This simple model reads

f(R) = _2/\eff H(R - RO)v (6)

where O(R — Rp) is Heaviside's step distribution. Models in this
class are characterized by the existence of one or more transition
scalar curvatures, an example being Rg in the above toy model.



The other class of modified gravitational models that has been
considered contains a sort of ‘switching on’ of the cosmological
constant as a function of the scalar curvature R. A simplest
version of this kind reads

f(R) = 2Ag(e 2R —1). (7)

Here the transition is smooth. The two above models may be
combined in a natural way, if one is also interested in the
phenomenological description of the inflationary epoch. For
example, a two-steps model may be the smooth version of

F(R) = =2 O(R — Ro) — 2N\ 0(R — Ry) (8)

with Ry << Ry, the latter being the inflation scale curvature.



The typical, smooth behavior of f(R) associated with the one- and
two-step models is given, in the smooth case, in Figs. 1 and 2,
respectively.

Ro

Figure: Typical behavior of f(R) in the one-step model).



2N

- R
Ro Ry

Figure: Typical behavior of f(R) in the two-step model.



Let us recall the two sufficient conditions which often lead to
realistic models

f(0) =0, RII—T?l f(R)=—a, 9)
where « is a suitable curvature scale which represents an effective
cosmological constant, being R; >> Ry, with Ry > 0, the
transition point. The condition f(0) = 0 ensures the disappearance
of the cosmological constant in the limit of flat space-time.

By using these conditions, some models in this class are seen to be
able to pass the local tests (with some extra bounds on the theory
parameters) and are also capable to explain the observed recent
acceleration of the universe expansion, provided that

a=N = 2H§, Hy being the Hubble constant at the epoch of
reference. However, they do not incorporate early-time inflation,
which comes into play at higher value of R.



Thus, one might also reasonably require that

f(0)=0, lim f(R)=—(a+q), (10)
R—R>

where a; >> « is associated with the inflation cosmological
constant, A;, and where R, >> R; >> Ry, R, being the
corresponding transition large scalar curvature.
Further restrictions, like small corrections to Newton's law and the
stability of planet-like gravitational solutions need to be fulfilled
too.



The starting point is the trace of the equations of motion, which is
trivial in the Einstein theory but gives precious dynamical
information in the modified gravitational models. It reads

3V2f'(R) = R+ 2f(R) — Rf'(R) — x*T. (11)

The above trace equation can be interpreted as an equation of
motion for the non trivial ‘scalaron’ f'(R) (since it is indeed
associated with the corresponding scalar field in the other frame).
For solutions with constant scalar curvature R, the scalaron field
is constant and one obtains the following vacuum solution:

R. + 2f(R.) — R.F'(R.) = 0. (12)



Furthermore, we can describe the degree of freedom associated
with the scalaron by means of a scalar field y, defined by

F'(R) =1+ f'(R) = e X. If we consider a perturbation around
the vacuum solution of constant curvature R,, given by

R = R, + 6R, where

1+ f'(Ry)

IR =~y

ox, (13)

then the equation of motion for the scalaron field is
2

1<1+f’(R*) B K

3\ Fm) R*>5X——6(1+f,(R*)T. (14)

Oox —

As a result, in connection with the local and with the planetary
tests, the following effective mass plays a very crucial role:

1 /1+f(R)
=1 <f”(R*) _ R*> . (15)



If M? < 0, a tachyon appears and this leads to an instability. Even
if M2 >0, when M? is small, it is R # 0 at long ranges, which
generates a large correction to Newton's law. As a result, M? has
to be positive and very large in order to pass both the local and
the astronomical tests.

Concerning the matter instability this might occur when the
curvature is rather large, as on a planet, as compared with the
average curvature of the universe R ~ (10733 eV) In order to
arrive to a stability condition, we can start by noting that the
scalaron equation can be rewritten in the form

PR o (L4 FP(RIR 2AR+F(R)
R Ry VeRVIRT 3mmR) T 3Ru(R) _6f”(R2T)'
16




If we now consider a perturbation, JR, of the Einstein gravity
. 2 .
solution R = R. = —% > 0, we obtain

0~ (—92 4+ U(R.))SR+ C, (17)

with the effective potential
= ( Re) F! ( Re)2 Re
= - R.VPRe + — —
U(RE) ( F”(Re) F"(Re)2 vﬂ ev et 3
_F’(Re)F”’(Re)Re F'(Re)

3FI(RZ  3F'(Re) T
2F(Re)F"(Re) — F"(Re)Re (18)
3F"(Re)? 3F"(Re)?

If U(Re) is positive, then the perturbation dR becomes
exponentially large and the whole system becomes unstable. Thus,
the matter stability condition is, in this case,

U(R.) < 0. (19)



We will here present some new viable f(R) models. We start with
a most simple one

f(R) = afe R —1). (20)
Since f(0) =0 and f(R) — —a for large R, conditions (9) are
satisfied. Moreover,
f'(R) = —bae PR f"(R) = bPae R, (21)

We have seen that in the discussion of the viability of modified
gravitational models, the existence of vacuum constant curvature
solutions plays a very crucial role, namely the existence of solutions
of Eq. (12). With regard to the trivial fixed point R, = 0, this
model has the properties

1+f(0)=1—ab, f"(0)=ab®. (22)
Thus, the effective mass for R, = 0 is
1—ab
M2(0) = —— 2

and then Minkowski space time is stable as soon as ab < 1. Such
condition is equivalent to 1+ f'(0) > 0.



A simple modification of the above model which incorporates the
inflationary era, namely the requirement (10), is

—_bR ebR -1
F(R) = a(e™™ —1) —as e (24)
or, as a two-step model,
bR bR
-1 -1
f(R) = —a; ; (25)

—O— s — 5 -
ebR + ebRo ebR + ebR,

Again, f(0) = 0 and, at the value R = Ry, there is a transition to a
higher constant value —(a + «) which can be related to inflation.
A possible modification of the previous model is the following:

bR—].

F(R) = —a(e ™™ — 1)+ RN -5

ebR | bR/’ (26)

with N > 2 and ¢ > 0. In this variant, during the inflationary era
at R > Ry, f(R), the model acquires also a power dependence on
the scalar curvature, which may help to exit from the inflationary
stage.



For the sharp, theta models, besides the problem of antigravity, for
Ry << a and R; << «y, they posses, generically, two De Sitter
critical points, one around the transition point R, ~ 57":“0 and the
other being

Rio ~2a. (27)

We can also investigate the matter instability. For the two-step
model (25), we now assume

Ro<R~R.<R;. (28)

Then f(R) in (25) can be approximated as

f(R) ~ —a {_1 + (1 + e—bR0> e—b(R—Ro)} abR

T iR ()



We may assume
arb

1+ ebRi

since bR, could be very large. Then we find

<1, (30)

ob(Re—Ro)

U(Re) = " 3ab? (1 + e bRo)

(31)

which is negative and there is no instability.
As a model which is able to describe both the inflation and the late
acceleration epochs, we can consider the following two-step model:

) = oo oo (2 ) (50
-y <tanh <b’(R2_R’)> + tanh <b’2R’>> . (32)



We now assume
Ri>Ry, ay>apg, b<by, (33)

and
bR >1. (34)

When R — 0 or R < Ry, Ry, f(R) behaves as
agbo ayby

fR) = - 2 cosh? (%) i 2 cosh? <@) o 32)

and find f(0) = 0 again. When R > R;, we find

f(R) — —2/\[ =

= —ag [ 1+ tanh M —ay | 14 tanh @ ~
2 2
bR
~—ay (1 + tanh (’2’)> . (36)



On the other hand, when Ry <« R < Ry, we find

boR bR
f(R) — —ap [l—i—tanh( 0 0)] — ik ~=2N\g =
2 2 cosh? (—b’f’)
= —ap [1 + tanh (bo2R0>] . (37)

Here we have assumed (34). We also find

B apbg _ arby
2 cosh? <7b°(R2_R°)) 2 cosh? (7b’(R2_R’)) 7

f'(R) = (38)

which has two valleys when R ~ Ry or R ~ R;. When R = Ry, we
obtain

ayby

F1(Ro) = —aghy —
( 0) OZObO 2cosh2 (bI(RO2_RI))

> —ayb; — agbyp . (39)




On the other hand, when R = Ry, we get

o bg

FI(R)) = —asby —
( I) Dy 2cosh2 (bo(R%*R[))

> —ay by — agbg . (40)

Then, in order to avoid the antigravity period, we find
arby + agby < 2. (41)

The existence of the de Sitter critical points in this two-step model
is much more difficult to investigate. However, in order to get the
acceleration of the Universe expansion it is sufficient that

1
Weff < —3-



We now investigate the correction to the Newton's law and the
matter instability issue. In the solar system domain, on or inside
the earth, where R > Ry, f(R) can be approximated by

F(R) ~ —2Neg + 2ae™b(R=Ro) (42)

On the other hand, since Ry < R < Ry, by assuming Eq. (34),
f(R) in (32) could be also approximated by

f(R) ~ —2Ag 4 2ae™bo(R=Ro) (43)

which has the same expression, after having identified Ag = Aeg
and by = b. Then, we may check the case of (42) only.



We find that the effective mass has the following form
eb(R—FRo) 1
~ bz (44)

which could be very large again, as in the last section, and the
correction to Newton's law can be made negligible. We also find
that U(Rp) in (18) has the form

_ 1 1Y\ —b(R—Ry)
UR) =5 <2A+ b) e , (45)

which could be negative, what would suppress any instability.
The perturbations story?



la. Modified non-local-F(R) gravity as the key for the
inflation and dark energy

The starting action of the non-local gravity is given by

1
S = /d4x\/—g {2/@2R (1 + f(D_lR)) + Ematter} . (46)
Here f is some function and [ is the d'Almbertian for scalar field.

The above action can be rewritten by introducing two scalar fields
¢ and £ in the following form:

5 = [ atvTE e IR A0) + €(06— R} + Lo
= / d*x/—g [ 2{R(1+f(¢))—8M58“¢—£R}+Lmatte@7)



Varying (47) with respect to the metric tensor g, gives
1
0 = SguwiR(1+f(0) =€)~ 9pt0"d} — Ruy (1 +(9) — &)
1
+5 (06006 + 0,60,€) — (8D = V,u V) (F(6) = €) + 1 T48)

On the other hand, the variation with respect to ¢ gives

0=0¢+ f'(P)R . (49)
Now we assume the FRW metric
ds? = —dt? + a(t)? Z (dx")2 , (50)
i=1,2,3

and the scalar fields ¢ and & only depend on time. Then Eq.(48)
has the following form:

0 = 3 (L+1(6) &)+ 28— 3H (F(0)6 ) +
0 = (2H+3H2)(1+f(¢)—5)+;é¢%+(5t2+2Hd>(f(¢) &)



On the other hand, scalar equations are:
0 = ¢+3Hp+6H+12H?, (53)
0 = £+3HE— (6H+12H2) F(9) . (54)

We now assume deSitter solution H = Hp, then Eq.(53) can be
solved as

¢ = —4Ho — goe 0" 4 ¢y (55)
with constants of integration, ¢g and ¢1. For simplicity, we only

consider the case that ¢g = ¢1 = 0. We also assume f(¢) is given
by

f(¢) = foe®® = foe™#r0? . (56)
Then Eq.(54) can be solved as follows,
3f6 —4bHpt 50 —3Hpt
-0 S0 . 57
$= T3 m° T 3R & (57)

Here &y and &; are constants. For the deSitter space a behaves as
a = age™t. Then for the matter with constant equation of state
w, we find

p= poe*3(w+1)Hot . (58)



Then by substiruting (55), (57), and (58) into (51), we obtain

0= —3H2(1 +&1) + 6H2fy (2b — 1) e~4Hobt | 12 5 o=3(w+)Hot

(59)
When pp = 0, if we choose
1
b:§7 51:_13 (60)
deSitter space can be a solution. Even if p # 0, if we choose
3 K2po
b=-(1 fo=—5—"— =-1 61
4( +W)7 0 3Hg(1+3W) ) {1 ) ( )

there is a deSitter solution.
In the presence of matter with w # 0, we may have a deSitter
solution H = Hy even if f(¢) given by

f(¢) = foe?/? + f3W T/ (62)



Then the following solution exists:

b= —aHot, &= 143fe 2y e stire 3G DHoh +21)Hgf]
: (63)

Note that Hp in (55) can be arbitrary and can be determined by an

initial condition. Since Hy can be small or large, the theory with

function NLdS2 with b = 1/2 could describe the early-time

inflation or current cosmic acceleration. Motivated by this, we may

propose the following model:

foe?/? 0>¢>¢1
f(¢) =< foeh/? $1>¢> P . (64)
foeld—d2+¢1)/2 b < o

Here ¢1 and ¢, are constants. We also assume that matter could
be neglected when 0 > ¢ > ¢1 or ¢ < ¢2. Since the above
function f(¢) is not smooth around ¢ = ¢; and ¢,, one may
replace the above f(¢) with a more smooth function. When

0> ¢ > ¢1 or ¢ < ¢, the universe is described by the deSitter
solution although corresponding Hy might be different.



When ¢1 > ¢ > ¢, since f(¢) is a constant, the universe is
described by the Einstein gravity, where effective gravitational
constant kg is given by

1 1
— ¢1/2
K2 K2 <1 +foc”/ ) ' (65)

Then due to the matter contribution there could occur matter
dominated phase. In this phase, the Hubble rate H behaves as

H= ﬁ with a constant ty and the scalar curvature is given by
= _—% _ Now we assume that the universe started at t = 0
3(to+t)

with a rather big but constant curvature R = R; = 12H,2 with a
constant Hj, that is, the universe is in deSitter phase. Then in the
model (64), by following (55), ¢ behaves as ¢ = —4Ht.
Subsequently, at t = t; = —¢1/4H,, we have ¢ = ¢;1 and the
universe enters into the matter dominated phase. If the curvature
is continuous at t = t1, tp can be found by solving
4 2
R=——— =12H} . (66)
3(to+ t1)



If ¢ and ¢ are also continuous, when ¢ > ¢ > ¢, ¢ is given by
solving (53) as

o= —g In (ttl>—¢(t —t)+p1, &=—4H;(to+ t1)2+% (to+t1) .

(67)
When ¢ = ¢», the deSitter phase, which corresponds to the
accelerating expansion of the present universe, could have started.
The solution corresponds to deSitter space (with some shifts of
parameters) and Hy = H; could be given by solving

4

12H? = —
T3t + )2

(68)
if the curvature is continuous at ¢ = ¢». In (68), t, is defined by
@(t2) = ¢2. Thus, we got the cosmological FRW model with

inflation, radiation/matter dominated phase, and current
accelerating expansion.



Unification of the inflation with cosmic acceleration in the
non-local-F(R) gravity
The starting action is:

1
S = /d4X\/ —8 {2I€2R (1 + f(D_lR)) + F(R) +£matter}
(69)
Here F(R) is some function of R. FRW equations look like

0 = —3H2(1+f(¢)—&)+ %édﬁ ~3H (F(6)6 - €)

~F(R)+6 (H?+ H) F'(R) - 36 (4H2H + HH) F"(R) + k170)
0 = (2H+30) (1+£0) -+ 566+ (o +2HD ) ()~ 9)

F(R) -2 (H+3H2) F'(R)+ K%p . (71)

Here R = 12H2 4 6H.



We may propose several scenarios. One is that the inflation at the
early universe is generated mainly by F(R) part but the current
acceleration is defined mainly by f (O"!R) part. One may consider
the inverse, that is, the inflation is generated by f (D_lR) part
but the late-time acceleration by F(R).

For instance, for the first scenario one can take: F(R) = BR?.
Here 3 is a constant. We choose f((J71R) part as in (56) with

b =1/2 but fy is taken to be very small and ¢ starts with ¢ = 0.
Hence, at the early universe f (D_lR) is very small and could be
neglected. Then due to the F(R)-term (71), there occurs (slightly
modified) R2-inflation. After the end of the inflation, there occurs
the radiation/matter dominance era. In this phase, ¢ behaves as in

(67): ¢ = —%In (%) — (t—1) + $». However, the constants

to, qgl, and ngSQ should be determined by the proper initial
conditions, which may differ from that in (67). We now assume ¢;
is very small but negative. ;jFrom the expression of (56) it follows
f(¢) becomes large as time goes by and finally this term
dominates. As a result, deSitter expansion occurs at the present
universe.



Il. The modified f(R) gravity

Let us start from the rather general 4-dimensional action:

5= [ dxV/ELF(R) + Lo} - (72)

Here R is the scalar curvature, f(R) is an arbitrary function and

Ly, is a matter Lagrangian density. The equation of the motion is

given by

0= %gw,f(R) — Ruwf'(R) = V.V, f'(R) — g, V2f'(R) + %TW :
(73)

With no matter and for the Ricci tensor R, being covariantly

constant, the equation of motion corresponding to the action (72)

B 0 =2f(R) — Rf'(R) , (74)

which is the algebraic equation with respect to R. If the solution
of Eq.(74) is positive, it expresses deSitter universe and if negative,
anti-deSitter universe.



In the following, the metric is assumed to be in the FRW form:

3
ds® = —dt® + 4(t)* ) (dxi)2 . (75)
i=1
Here we assume that the spatial part is flat as suggested by the
observation of the Cosmic Microwave Background (CMB)
radiation. Without the matter and in FRW background, Eq.(73)
gives

d

f"(R) .
p” (R)

1 : H
0= —5F(R)+3 (H2 + H) f/(R)—6f"(R)~18H>

(76)
Here R is given by R = 12H? + 6H. Our main purpose is to look
for accelerating cosmological solutions of the following form: de
Sitter (dS) space, where H is constant and a(t) o e/t
quintessence and phantom like cosmologies:

B { aotho, when hy > 0 (quintessence) (77)

ao (ts — t)™,  when hy < 0 (phantom)



Introducing the auxiliary fields, A and B, one can rewrite the
action (72) as follows:

s= [dxvg {12 (B(R—A)+ F(A)} + Lmatter] ()
One is able to eliminate B, and to obtain
s— / 0*xv/ 8 5 {F(A) (R~ )+ F(A)} + Loasr]  (79)

and by using the conformal transformation g, — €?g,,,

(o = —Inf’(A)), the action (79) is rewritten as the Einstein-frame
action:
4 1 3 po o
Se=|[d x\/—g{? R — 58 0,00,0 — V(o) | + Ematter} .
(80)
Here,
A f(A)

V(o) =e"G(e77) — e f (G(e7)) =




The action (79) is called the Jordan-frame action. In the
Einstein-frame action, the matter couples with the scalar field o.
One may define the effective EoS parameter w,g in Jordan frame as

P 2H
e :—:—1—7 , 82

The scale factor in Einstein frame (when the two frames appear) is
denoted as a(t).



A. Modified gravity with negative and positive powers of

the curvature

As the first gravitational alternative for dark energy we consider
the following action

¢ L b(R-N)". (83)

f(R)= R~ (m—

Here we assume the coefficients n, m, ¢, b > 0 but n, m may be
fractional.
For the action (83), Eq.(74) has the following form:

(n+2)c

0=—R+ 2
(R— A1)

+(m-2)b(R—A)™ . (84)

Especially when n =1 and m = 2, one gets

A1 £ /A2 +12¢
R=R.— ' . (85)

2




If ¢ > 0, one solution corresponds to deSitter space and another to

anti-deSitter. If —/1\—; < ¢ < 0and A; > 0, both of solutions express
the deSitter space. Hence, the natural possibility for the unification
of early-time inflation with late-time acceleration appears.

By assuming the FRW universe metric (75), one may define the
Hubble rate by H = 5/2}. The contribution from matter may be
neglected. Especially when n=1, m =2, and A; = /A, =0 in (83)
and the curvature is small, we obtain

3 oc t2. We now consider the more general case that f(R) is given

by (83) when the curvature is small. Neglecting the contribution
. . A (n+1)(2n+1)
from the matter again, solving (73), we obtain 3ot =2 .



B. In R gravity

Other gravitational alternatives for dark energy may be suggested
along the same line. As an extension of the theory of the previous
section, one may consider the model containing the logarithm of
the scalar curvature R:

R
f(R):R—i—a'lnE—i—ﬁRm. (86)

We should note that m = 2 choice simplifies the model.

We can consider late FRW cosmology when the scalar curvature R
is small. Solving (73), it follows that the power law inflation could
occur: 4 oc t2. Since 4> 0 but 3 < 0, the deccelerated expansion

occurs.

One may discuss further generalizations

f(R)=R+~R™" (In ;)m . (87)

Here n is rectricted by n > —1 (m is an arbitrary) in order that the
second term could be more dominant than the Einstein term when
R is small.



For this model, we find
(n+1)(2n+1)
d~t 2 (88)

This does not depend on m. The effective weg is given by

6n°+7n—1
= — _ 89
Well 3(n+1)(2n+1) (89)

Then weg can be negative if

—74+ V73
>7

=0.1287--- . (90
15 (90)

1
—1l<n<-—-=o0
n 2 rn

From (88), the condition that the universe could accelerate is
(t1)@rHL) 1 that is:

n+2
-1 3

o =0.366- - . (91)

Clearly, the effective EoS parameter w may be within the existing
bounds.



C. Modified gravity coupled with matter

The ideal fluid is taken as the matter with the constant w:
p = wp. Then from the energy conservation law it follows

p = poa3+W) In a some limit, strong cuvature or weak one,

f(R) may behave as f(R) ~ foR®, with constant fy and a.. An
exact solution of the equation of motion is found to be

2a

SR (R

_ 6foho
Po

ap =

(—6ho +12h2) " {(1 = 2a) (1 — ) — (2 — @) ho} B

When a = 1, the result hg = ﬁ in the Einstein gravity is

reproduced. The effective weg may be defined by hy = m.
By using (92), one finds the effective weg (82) is given by
1+w
Weff = -1+

(93)

a



Hence, if w is greater than —1 (effective quintessence or even
usual ideal fluid with positive w), when « is negative, we obtain
the effective phantom phase where weg is less than —1.

One may now take f(R) as

1 _
f(R) = - (R=9R™"+nR?) . (94)
When the cuvature is small, the second term becomes dominant
and one may identify fy = — % and a = —n. Then from (93), it
follows weg = —1 — HTW Hence, if n > 0, an effective phantom
era occurs even if w > —1.



D. The equivalence with scalar-tensor theory

It is very interesting that f(R) gravity is in some sense equivalent
to the scalar-tensor theory with the action:

S= / d“x\/fg{z;R = %w(dﬂ%qﬁa"qﬁ - V(¢)} )
o) =~ SH(6) . V(6) = 5 (30 +H(9) - (95)

Here h(¢) is a proper function of the scalar field ¢. Imagine the
following FRW cosmology is constructed:

o=t, H=h(t). (96)

Then any cosmology defined by H = h(t) in (96) can be realized
by (95).



Indeed, if one defines a new field ¢ as

o= / don/[o()] (97)

the action (95) can be rewritten as
. 1 1, . -
S= [ dxV-g{53RF 000" = V(e)p . (98)

In case the sign in front of the kinetic term of ¢ in (98) is —, we

. :I:figp\/E
can use the conformal transformation g, — e 3gu, and
make the kinetic term of ¢ vanish. Hence, one obtains

2
eimp\/g

S= / d'xV=g{ 5.2 R—eizw\/g\N/(cp) . (99)

The action (99) may be called as Jordan frame action and the
action (98) as the Einstein frame action.



Since ¢ becomes the auxiliary field, one may delete ¢ by using an
equation of motion:

R = ei'w\/g <4/@2 V(p) + 2&\/3\7'(90)) , (100)

which may be solved with respect to R as ¢ = ¢(R). One can
rewrite the action (99) in the form of f(R) gravity :

S = /d“x\/%f(R),

+rp(R)y /2 5
f(R) = GMR—eﬁW(RV@vw(R)). (101)



II1. String-inspired Gauss-Bonnet gravity as dark energy

We consider a model of the scalar field ¢ coupled with gravity. As
a stringy correction, the term proportional to the GB invariant
G=R?- 4R, R* + Ry R*P? is added. The starting action is
given by

1
S= /d“x\/fg{MR - gauqba“qb — V(o) + f(¢)G} :
V= Voe 0, F(¢)=fer . (102)

Here v = +1.



For the canonical scalar, v = 1 but at least when GB term is not
included, the scalar behaves as phantom only when v = —1.
Starting with FRW universe metric (82) in sect.37 and assuming
(77) in sect.37, the following solutions may be obtained

1 y¢2k? (1 — 5ho)
Vot? - {3h3(1—h 0
oh 52(1+h0){30( 0)+ 2 )
48ﬂ)hg 6 Y K>
= ————— | hp— . 103
t12 K2 (l + ho) 0 2 ( )
Even if v = —1, there appear the solutions describing

non-phantom cosmology coresponding the quintessence or matter.



As an example, we consider the case that hy = —8—30 < —1, which
gives weg = —1.025. Simple tuning gives other acceptable values
of the effective w in the range close to —1. This is consistent with
the observational bounds for effective w Then from (103), one

obtains
1 /531200 403
V0t12 = 2 (+7¢0/€2> )

231 ' 154
1/ 9 27 ,

L . 104
2 2 (49280 T 78848007 °" ) (104)

Therefore even starting from the canonical scalar theory with
positive potential, we may obtain a solution which reproduces the
observed value of w.

If ¢ and H are constants: ¢ = g, H = Hp, this corresponds to
deSitter space. Then the solution of equations of motion gives:

_Zﬂ
e 0
H = —— . 1
0 8f0/€2 ( 05)

Therefore in order for the solution to exist, the condition is fy < 0.
In (105), o can be arbitrary.



IV. Modified gravity: non-linear coupling, cosmic
acceleration
A. Gravitational solution of coincidence problem

As an example of such theory, the following action is considered:

5:/d“x\/fg{;ﬁur <52>aLd} . (106)

Here Ly is matter-like action (dark energy). The choice of
parameter 1 may keep away the unwanted instabilities which often
occur in higher derivative theories.

By the variation over g;,,,, the equation of motion follows:

1 65 1{1

R R 4 TV 107
\/ 6g,u, T Q2 2 }+ (107)



Here the effective EMT tensor 7]“, is defined by

1

Fuv e {—aR* R Lg+ o (VIVY - g"'V?) (R*'Lg) + R*T
T = L 0 </ d4X\/_7ng>
V=8 0guw

Let free massless scalar be a matter
1
Ly = —Eg‘“’%(ﬁ&,qﬁ . (109)

Then the equation given by the variation over ¢ has the following
form:

Ou (R*V—gg""o,9) . (110)

i



The metric again corresponds to FRW universe with flat 3-space.
If we assume ¢ only depends on t (¢ = ¢(t)), the solution of
scalar field equation (110) is given by

¢ =qa 3R . (111)

. . . 2
Here g is a constant of the integration. Hence R*Ly = 2327?,

which becomes dominant when R is small (large) compared with
the Einstein term %R if « > —1 (a < —1). Thus, one arrives at
the remarkable possibility that dark energy grows to asymptotic
dominance over the usual matter with decrease of the curvature.
At current universe, this solves the coincidence problem (the
equality of the energy density for dark energy and for matter)
simply by the fact of the universe expansion.



Substituting (111) into (107), the (u,v) = (t, t) component of
equation of motion has the following form:

3 364> 1) - 1.
0 = —SH+ >3 a+2{a(a4+ )HH+a: 2
& 120036 (6H n 12H2)
13 AW ’ 4
+ 1+Ia+a HH* + 1+§a H* % . (112)
The accelerated FRW solution of (112) exists
2,2 _ _
a:aotaT+1 (H:a;_1> , agz na (2;11 12)(a D) i
t p2e3 (a+ 1) (5 (2a — 1))

(113)



Eq.(113) tells that the universe accelerates, that is, 3 > 0 if a > 2.
If @ < —1, the solution (113) describes shrinking universe if t > 0.
If the time is shifted as t — t — ts (ts is a constant), the
accelerating and expanding universe occurs when t < ts. In the
solution with az < —1 there appears a Big Rip singularity at t = t;.
For the matter with the relation p = wp, where p is the pressure
and p |s the energy density, from the usual FRW equation, one has

a o< t3w+) W+1 . For a oc tho it follows w = —1 + 3h , and the
acceleratlng expansion (hg > 1) of the universe occurs if
—1 < w < —1. For the case of (113), one finds

_1—a
Cl4a

(114)

Then if a < —1, we have w < —1, which is an effective phantom.
For the general matter with the relation p = wp with constant w,
the energy E and the energy density p behave as E ~ a=3" and

p ~ a 3WFD)  Thus, for the standard phantom with w < —1, the
density becomes large with time and might generate the Big Rip.



B. Dynamical cosmological constant theory: an exact
example

the following action similar to the one under consideration has
been proposed:

(K40, p0Mp)?

— R? -V
2 TR 2grAf(R)?9-1 ()|

/ d4xﬁ

(115)
where f(R) is a proper function. When the curvature is small, it is

assumed f(R) behaves as
f(R) ~ (k*R?)" . (116)

Here m is positive. When the curvature is small, the vacuum
energy, and therefore the value of the potential becomes small.
Then one may assume, for the small curvature, V() behaves as

V(g) ~ Vo(p —wc) - (117)

Here V and ¢, are constants. If g > 1/2, the factor in front of
the kinetic term of ¢ in (115) becomes large.



There is an exactly solvable model which realizes the above
scenario. Let us choose

f(R)=BR*>, V(p)=Vole—¢c) - (118)

Here 3 is a constant. R? term is neglected by putting ag = 0 in
(115) since the curvature is small. Searching for the solution (77)
in sect.37 and choosing ¢ = @ + o/t or

© = e + o/ (ts — t)?, the following restrictions are obtained

o2 5481 2ho)* hg Vo = & 3ho + 1
0~ 2 ’ - .
w2 (12h5 — 2ho — 1) /652 (1218 — 2ho — 1) (—1 + 2ho
(119)
Since gpg should be positive, one finds
1-+1 1 1 1
when >0, 1;/>3<h0<+1;/>30rh022,
1—-+1 1 1 1
when <0, ho < 1;/>3 or +1;/>3 < hy < 5 (120)



For example, if hp = —1/60, which gives weg = —1.025, we find

19 [15
Vo = £/ = = £0.388722... . 121
KVo = 20/ 57 = +0.3887 (121)

For ho > 0 case, since R = 6H + 12H2, the curvature R decreases
as t—2 with time t and ¢ approaches to ¢, but does not arrive at
¢ in a finite time, as expected .

As H behaves as hy/t or hyo/(ts — t) for (77) in sect.37, if we
substitute the value of the age of the present universe

10%%years~ (10733eV) ! into t or ts — t, the observed value of H
could be reproduced, which could explain the smallness of the
effective cosmological constant A ~ H2. Note that even if there is
no potential term, that is, Vy = 0, when 3 < 0, there is a solution

1 1-+13
ho=—- < ——=-0.2171... 122
0 3 < 12 3 ( )
which gives the EoS parameter : w = —3, although w is not

realistic. Playing with different choices of the potential and
non-linear coupling more realistic predictions may be obtained.



V. Late-time cosmology in modified Gauss-Bonnet gravity
A. f(G) gravity

Our next example is modified Gauss-Bonnet gravity. Let us start
from the action :

1
S= /d4x«/—g <MR + f(G) + cm) . (123)
Here L, is the matter Lagrangian density and G is the GB

invariant: G = R? — 4R, RM + RW&,RW&U. By variation over
8uv one gets:

1 1
0= L (—grw + Zg"R ) + T + Zg"f(G) — 2f'(G)RR*
252 2 2
+4f'(G)RH,R"? — 2f'(G)RM*?TRY,,. — 4f'(G)RM7VRyy + 2 (VIV

—2g"" (V*f'(G)) R — 4 (V,V*f'(G)) R"? — 4 (V,Vf'(G)) R
+4 (V2F'(G)) R + 4g" (V,V,f'(G)) R — 4 (V,V,f'(G)) R

where TH is the matter EM tensor.



By choosing the spatially-flat FRW universe metric (75) in sect.37,
the equation corresponding to the first FRW equation has the
following form:

3

0=—=
RZ

H? 4+ Gf'(G) — f(G) — 24Gf"(G)H?* + pm ,  (125)
where pp, is the matter energy density. When p,, = 0, Eq. (125)
has a deSitter universe solution where H, and therefore G, are
constant. For H = Hp, with constant Hp, Eq. (125) turns into

3

0:—?

H3 + 24Hg f' (24Hg) — f (24Hg) . (126)

For a large number of choices of the function f(G), Eq. (126) has
a non-trivial (Hp # 0) real solution for Hy (deSitter universe).



We now consider the case p,, # 0. Assuming that the EoS
parameter w = pp,/pm for matter (pp, is the pressure of matter) is
a constant then, by using the conservation of energy:
pm + 3H (pm + Pm) = 0, we find p = pga—3(1+%) The function
f(G) is chosen as

f(G)=1hH1G|", (127)

with constant fy and 5. If 5 < 1/2, f(G) term becomes dominant
compared with the Einstein term when the curvature is small. If
we neglect the contribution from the Einstein term in (125), the
following solution may be found

ho = P 20 = [ (ﬁ)(ﬁ

B :
T 3(1+w)’ ho—1)p {24‘/70 —1+ ho)|}" (ho — 1+ 4/

(128)



Then the effective EoS parameter weg (82) in sect.37 is less than
—1if 3<0,and forw > —1is
weﬁ=—1+3i0=—1+l2+ﬂw, (129)
which is again less than —1 for 5 < 0. Thus, if 3 < 0, we obtain
an effective phantom with negative hy even in the case when
w > —1. In the phantom phase, there might seem to occur the
Big Rip at t = ts [?]. Near this Big Rip , however, the curvature
becomes dominant and then the Einstein term dominates, so that
the f(G) term can be neglected. Therefore, the universe behaves
as a = apt?/3(w+1) and as a consequence the Big Rip does not
eventually occur. The phantom era is transient.



B. (G, R) gravity

It is interesting to study late-time cosmology in generalized
theories, which include both the functional dependence from
curvature as well as from the Gauss-Bonnet term :

S= /d4x\/—g(f(G,R)+£m) : (130)
The following solvable model is considered:

f(G,R) = Rf(li), ?(é’;) 212+f0<§2>. (131)

The FRW solution may be found again:

ho e~ 200+ /8f (o — 53)
, ho= 5 : (132)
t 2 12

Then, for example, if kK2fy < —3, there is a solution describing a
phantom with hg < —1 — v/2 and a solution describing the
effective matter with hg > —1 + /2. Late-time cosmology in other
versions of such theory may be constructed.



Inhomogeneous equation of state of the universe dark fluid

Let us remind several simple facts about the universe filled with
ideal fluid. By using the energy conservation law
0=p+3H(p+ p), when p and p satisfy the following simple EOS
p = wp with constant w, we find p = pga—3(1*"). Then by using
the first FRW equation (3/k2)H? = p, the well-known solution

2 2
follows a = ag (t — t1)3w ) (w > —1) or ag (to — )3+ w # —1
(w < —1) and a = ape"*V 7 when w = —1, which is the deSitter
universe. Here t; and t> are constants of the integration. When
w < —1, there appears a Big Rip singularity in a finite time at
t = to.



In general, the singularities in dark energy universe may behave in
a different way. Type | ("Big Rip") : For t — t5, a — 00, p — o0
and |p| — oo Type Il (“sudden”) : For t — t5, a — as, p — ps OF
0 and |p| — oo Type lll : For t — t5, a — a5, p — oo and

|p| — oo Type IV : For t — ts, a— as, p — 0, |p| — 0 and higher
derivatives of H diverge. This also includes the case when p (p) or
both of them tend to some finite values while higher derivatives of
H diverge. Here t5, as and ps are constants with as # 0.



The singularities in the inhomogeneous EoS dark fluid

universe
One may start from the dark fluid with the following EOS:

p=—p—"f(p), (133)

where f(p) can be an arbitrary function in general. The choice
f(p) ox p* with a constant o was proposed. Then the scale factor

is given by
1 / dp >

a=aexp|= | =— ), 134
(3 f(p) (134)

and the cosmological time may be found

dp

t= , (135)

/ rV/3pf(p)

As an example we may consider the case that

f(p) = Ap™ . (136)



Then we find :

> In case a = 1/2 or a = 0, there does not appear any
singularity.

» In case a > 1, when t — ty, the energy density behaves as
p — oo and therefore |p| — oo. Then the scale factor a is
finite even if p — oco. Therefore o > 1 case corresponds to
type Il singularity.

» In o =1 case, if A > 0, there occurs the Big Rip or type |
singularity but if A <0, there does not appear future
singularity.

> In case 1/2 < aw < 1, when t — ty, all of p, |p|, and a diverge
if A > 0 then this corresponds to type | singularity.



> In case 0 < a < 1/2, when t — tp, we find p, |p| — 0 and
a — ag but

a—1
Ina~ |t —to|o172 . (137)

Since the exponent (o —1)/(a — 1/2) is not always an integer,
even if a is finite, the higher derivatives of H diverge in
general. Therefore this case corresponds to type IV singularity.

» In case a < 0, when t — tg, we find p — 0, a — ap but

|p| — oo. Therefore this case corresponds to type |l
singularity.



At the next step, we consider the inhomogeneous EOS for dark
fluid, so that the dependence from Hubble parameter is included in
EOS. This new terms may origin from string/M-theory, braneworld
or modified gravity

p=—p+f(p)+ G(H). (138)

where G(H) is some function.

In general, EOS needs to be double-valued in order for the
transition (crossing of phantom divide) to occur between the
region w < —1 and the region w > —1. Then there could not be
one-to-one correspondence between p and p. In such a case, we
may suggest the implicit, inhomogeneous equation of the state

F(p,p,H)=0. (139)



The following example may be of interest:

(bt ) — Cof? (1 - ’,*j) 0. (140)

Here Cy and Hy are positive constants. Hence, the Hubble rate

looks as
16

H= .
9C3Ho (t — t_) (t4 — t)

(141)

and

33 28

= pd1+>O(t—t))y, p= .
P p{ 4Ho ( 0)} g 3BCIHRR2 (t — t)? (£ — t)?
(142)



In (141), since t_ < tg < ty, as long as t_ < t < t;, the Hubble
rate H is positive. The Hubble rate H has a minimum H = Hyp
when t = tg = (t_ + t;) /2 and diverges when t — t1. Then one
may regard t — t_ as a Big Bang singularity and t — t; as a Big
Rip one. As clear from (142), the parameter w = p/p is larger
than —1 when t_ < t < ty and smaller than —1 when ty < t < t;.
Therefore there occurs the crossing of phantom divide w = —1
when t = ty thanks to the effect of inhomogeneous term in EOS.
In principle, the more general EOS may contain the derivatives of
H, like H, H, ... More general EOS than (139) may have the
following form:

F(,;,;;,H,H,H,--.):o. (143)



