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Questions
How to synthesize kinetic theory of plasmas & QED?

I both theories describe interaction of photons & electrons
I kinetic theory based on self-consistent field

cooperative effects treated classically
I QED is a single-particle theory
I includes all relativistic quantum effects

How to rewrite kinetic theory in covariant notation?

I using formalism for the vacuum polarization tensor
I use forward-scattering to calculate response tensors

How to include plasma responses using QED?

I identify relevant Lagrangians
I generalization then almost trivial

How to include magnetic field into the theory?

I replace all wavefunctions and propagators with relevant
exact solutions of Dirac’s equation with B 6= 0



Classical covariant formulation
Non-covariant forms of the response

I induced current expanded in powers of electric field
Ji (ω, k) = σij(ω, k)Ej(ω, k) + nonlinear terms
Kij(ω, k) = δij + iσij(ω, k)/ε0ω

Covariant formulation of kinetic theory of plasmas

I induced 4-current in proportional to 4-potential
I linear polarization tensor: Jµ(k) = Πµν(k) Aν(k)
I charge-continuity & gauge-invariance:

kµΠµν(k) = 0 = kνΠ
µν(k)

I determines Πµν(k) in terms of response 3-tensor
D.B. Melrose (1973)

I allows covariant formulation of wave dispersion
I extension to nonlinear responses straightforward
I quadratic response Πµνρ(k, k1, k2), kµ = kµ

1 + kµ
2

=⇒ 3-wave coupling
I effective cubic response = cubic + 2 quadratic responses

Πµνρσ
eff (k, k1, k2, k3) =⇒ nonlinear wave equation



Forward scattering method

Linear response tensor
I forward scattering: k ′ = k, p′ = p
I all particles scatter in phase =⇒ 4-current Jµ(k)
I allows covariant derivation of linear response tensor
I straightforward generalization to nonlinear responses



Response tensors from QED

Linear response tensor
I forward scattering implicit in vacuum polarization tensor
I ‘cut’ diagram to include on-shell contribution Cutkovsjy (1960)

I statistical averages of Feynman propagators
generalization of thermal Green’s function

I linear response from statistical average of bubble diagram

Quadratic & cubic response tensors
I quadratic & cubic responses from triangle & box diagrams
I includes vacuum & plasma contributions



Three approaches to QPD

Density-matrix approach generalizes Harris’ (1967) method

I evolution of density matrix for electrons

I operator-based evolution = Heisenberg picture

I no non-quantum counterpart

Wigner-matrix approach developed by Hakim & Sivak

I Wigner-Moyal function in Schrödinger theory

I generalize to Wigner matrix in Dirac theory

I wave-function-based evolution = Schrödinger picture

I counterpart of non-quantum Vlasov approach

Green’s function approach Tsytovich (1961)

I S-matrix approach = interaction picture

I statistically averaged propagators (Green’s functions)

I ‘photon’ propagator includes all plasma wave modes

I particles & waves described by occupation numbers

I closely analogous method from quark-gluon-plasma approach
E. Braaten, D. Segel (1993)



Quantum plasma effects

Degeneracy
I included in early theories of solid state plasmas

Quantum recoil
I classical resonance condition ω − k · v = 0
I conservation of energy & momentum in emission
I ε→ ε′ = ε− ~ω, p→ p′ = p− ~k
I (m2c4 + |p− ~k|2c2)1/2 = (m2c4 + p2c2)1/2 − ~ω
I =⇒ quantum recoil term in resonance condition

ω − k · v − ~(ω2 − k2c2)

2ε
= 0

Nonrelativistic derivation of recoil
I ε→ mc2 + p2/2m =⇒ |p− ~k|2/2m = p2/2m − ~ω
I =⇒ quantum recoil term in resonance condition

ω − k · v +
~k2

2m
= 0 (no ω2-term!)

I nonrelativistic treatment valid only for ω2 � k2c2



Spin

I spin-polarized electrons modifies linear response to order ~
I unpolarized electrons =⇒ average over spins

I different from spin-0 particles (boson plasma)

Vacuum polarization & critical fields

I vacuum birefringent for B/Bc 6= 0

I vacuum quadratic nonlinear response for B/Bc 6= 0

One-photon pair creation (PC)

I PC included in vacuum polarization tensor: Im Πµν(k)

I electron gas partially suppresses PC (Pauli exclusion)

I PC introduces an additional source of dispersion in RQ plasma

I =⇒ existence intrinsically RQ ‘pair’ modes

Quantum diffusion & tunneling

I quantum phenomena in (t, x)

I must be included in ω, k description

I where specifically?



Applications of QPD

Neutrino emission from compact stars

I neutrino losses: cooling mechanism for compact stars

I ‘plasma process’—plasmons decay into neutrino pairs

I dispersion of plasmons in relativistic, degenerate plasms

I inclusion of B/Bc in dispersion theory

Early Universe

I dispersion in hot dense plasma

I is one-photon pair creation possible?

I what role do pair modes play?

Pulsars and magnetars

I wave dispersion in pulsar magnetosphere

I interpretation of polarization of pulsar emission

I dispersion for B � Bc relevant for magnetars



Dispersion in RQ plasmas

Known results in relativistic degenerate plasma
I Friedel oscillations in relativistic degenerate plasma

due to Kohn singularity in KL(0, k), at |k| = 2pF

I Pauli spin paramagnetism : Landau diamagnetism = 3 : -1
A.A. Rudkadze, V.P. Silin (1960)

Dispersion of plasmons in completely degenerate plasma
I approximate dispersion relation known since the 1950s:

ω2 = ω2
p + 3

5v2
F + ~k4/4m2

e
I high-frequency turnover exists V.S. Krivitskii, S.V. Vladimirov (1991)

I relativistic case: Jancovici (solid) Lindhard (dashed):
pF/m = 0.5 pF/m = 5



Dispersion of L-waves in relativistic thermal plasmas

labels denote ρ = m/T
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Superdense plasmas

Cutoff frequency

I cutoff frequency, ωc : same for L & T waves

ω2
c =

4µ0e
2

3π2

∫
dε|p| n̄(ε)

3ε2 − |p|2 − 3ω2
c/4

4ε2 − ω2
c

I superdense plasmas ωp � m: cutoff above PC threshold?

I relevant to the early Universe when ωp � 2m?

I effect of macroscopic mass renormalization?

Landau damping
diss

ipatio
n fre

e

pair creation



Pair modes

Pair modes (B = 0)

I pair modes have ω >∼ 2m

I exist in degenerate spin 0 & spin 1 plasma V. Kowalenko, N.E. Frankel,

K.C. Hines (1985); D.B Melrose, D.R.M.Williams (1989)

I do not exist in degenerate electron gas

I exist for transverse mode in spin 1 plasma

Pair modes (B 6= 0)

I pair modes exist in magnetized electron gas

I associated with thresholds for pair creation

I Landau quantum numbers n, n′ for e± P. Pulsifer, G. Kalman (1992)

I like gyromagnetic modes associated with singularities response

Interpretation & implication of pair modes

I analogy with Cooper pairs? No

I physical implications of pair modes?



Generalization of QPD to B 6= 0

Dirac electron for B 6= 0

I discrete Landau levels with energy
εn(pz) = (m2 + p2

z + 2neB)1/2

I critical field Bc = mc2/~e = 4.4× 109 T

energy diagram for pz = 0, B/Bc = 1
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Choice of gauge and spin operator

I general forms for the response tensor long been available
D.B. Melrose, A.J. Parle (1983)

I depends on choice of gauge (for B) & spin operator

I relevant spin operator identified by A.A. Sokolov, I.M. Ternov (1968)

I gauge & spin independent result using method of Ritus
V.I. Ritus (1970); A.J. Parle (1985)

Simplified form for pulsar magnetospheres

I Gyromagnetic losses =⇒ n = 0 for all electrons

I highly relativistic, streaming, 1D, pair plasma with B ∼ 0.1Bc

I relevant response tensor used to derive wave properties

I polarization properties of particular interest



Quantum fluid theory (QFT)

QFT approach F. Haas, G. Manfredi, M. Feix (2000)

I derive fluid model incorporating quantum effects

I quantum effects included in Bohm potential

I QFT used to include quantum terms in linear waves

I QFT used to derive 1D quantum Zakharov equations

Comparison QFT & QPD

I QPD derivation establishes limits of QFT approach

I provides new physical insight

I QPD allows various generalizations

QPD approach

I derive relevant approximations for Πµν(k)

I apply to 1D longitudinal case

I compare with QFT

I derive quantum Zakharov equations



1D Wigner-Poisson system

I 1D Schrödinger equation

i~
∂ψ(x , t)

∂t
= − ~2

2m

∂2ψ(x , t)

∂x2
− eφ(x , t)ψ(x , t) = 0

I 1D Wigner function defined by

f (x , p, t) =

∫
dy ψ∗(x − 1

2y , t)ψ(x + 1
2y , t) exp

(
−ipy

~

)
I 1D Poisson equation

d2φ(x , t)

dx2
=

e

ε0

[∫
dp

2π~
f (x , p, t)− ne

]
I 1D Vlasov-like equation G. Manfredi, F. Haas (2001)[

∂

∂t
+

p

m

∂

∂x

]
f (x , p, t)− ie

~

∫
dp′dy ′

2π~
[φ(x − 1

2y ′, t)

−φ(x + 1
2y ′, t)] exp

(
i(p − p′)y ′

~

)
f (x , p′, t) = 0



1D quantum fluid equations

I zeroth and first moments =⇒
I continuity: ∂ne/∂t + ∂(neue)/∂x = 0

I equation of fluid motion for electrons

due

dt
= − e

me
E − 1

neme

∂Pe

∂x
+

~2

2m2
e

∂

∂x

[
1
√

ne

∂2√ne

∂x2

]
I Pe = nemeV

2
e ‘classical’ pressure term

I ‘quantum’ pressure term is the Bohm term

Role of Bohm potential

I linearizing and Fourier transforming (k is 1D wavenumber)

I Langmuir: ω2 = ω2
p + k2V 2

e + ~2k4/4m2
e

I ion sound: ω2 = k2v2
s + ~2k4/4memi

I Bohm term corresponds to quantum recoil



Linear response tensor in QPD

Derivation of recoil terms from exact theory

I QPD form for Πµν(k):

Πµν(k) = −2e2

∫
d3p

(2π)3
n̄(p)

ε

(ku)2

(ku)2 − (k2/2m)2
aµν(k, u),

aµν(k, u) = gµν − kµuν + kνuµ

ku
+

k2uµuν

(ku)2
.

I differs from relativistic classical form by

1

γ2(ω − k · v)2
→ 1

γ2(ω − k · v)2 − ~2(ω2 − k2c2)2/4m2c4

I nonrelativistic approximation: γ → 1

I ”strictly” nonrelativistic approximation: c →∞
=⇒ denominator → (ω − k · v)2 − ~2k4/4m2



Nonrelativistic thermal quantum plasma

Quantum recoil in Langmuir

I including quantum recoil, susceptibilities become

χL(ω, k) = −
ω2

p√
2|k|V

1

2∆

[
φ(y−)

y−
− φ(y+)

y+

]
,

y± = (ω ±∆)/
√

2|k|V , ∆ = ~(k2 − ω2/c2)/2m

I for y2 � 1, φ(y) ≈ 1 + 1/2y2

χL(ω, k) = −
ω2

p

ω2 −∆2

[
1 +

(
3ω2 + ∆2

)
k2V 2

(ω2 −∆2)2

]
I =⇒ Langmuir waves with quantum recoil

ω2 → ω2
L(k) + ∆2

e + · · · ,

I Landau damping (He = ~ωL(k)/4meV
2
e )

γL(k) ' ωL(k)

√
π

2

(
ωL(k)

|k|Ve

)3 sinhHe

He
exp

(
−
ω2

L(k) + ∆2
e

2 |k|2 V 2
e

)
.



Quantum recoil in ion sound waves

I for y2
± � 1, φ(y±) ≈ 2y2

± − 4y4
±/3

χL(ω, k) =
ω2

p

k2V 2

[
1− 3ω2 + ∆2

3k2V 2

]
,

I assume y2
e± � 1, y2

i± � 1

KL(ω, k) = 1 +
1

k2λ2
De

[
1− 3ω2 + ∆2

e

3k2V 2
e

]
−

ω2
pi

ω2 −∆2
i

I =⇒ ion sound waves with quantum recoil

ω2 → ω2
s (k)

[
1 +

∆2
e

3k2V 2
e (1 + k2λ2

De)

]
+ ∆2

i ,

I for k2λ2
De � 1 simplifies to

ω2 → k2v2
s +

∆2
ei

3
, ∆2

ei =
~2(k2 − ω2/c2)2

4memi



Zakharov equations (standard form)

Nonlinear correction to Langmuir waves (V. Zakharov 1972)

I fluctuation δne(t, x) in electron density modifies ωp

I correction to dispersion relation for Langmuir waves

ω = ωp +
3k2V 2

e

2ωp
+
δne

2ne
ωp − i

γL

2
I slowly varying envelope for Langmuir turbulence

E(t, x) = Ẽ(t, x) e−iωpt + Ẽ∗(t, x) e iωpt

I equation for the envelope[
i
∂

∂t
+

3V 2
e

2ωp
∇2 + i

γL

2

]
Ẽ(t, x) =

ωpδne(t, x)

2ne
Ẽ(t, x)

Evolution of density fluctuations

I δne assumed ion-sound like (ω2 − k2v2
s + iωγs = 0)[

∂2

∂t2
− v2

s∇2 + γs
∂

∂t

]
δne(t, x) =

ε0
mi
∇2|Ẽ(t, x)|2

I driver = ponderomotive force due to Langmuir turbulence



Zakharov equations from kinetic theory

Nonlinear wave equation

I nonlinear wave equation involves effective cubic response

I QPD form for ΠL
eff(k, k1, k2, k3) simplifies if beat at

k − k1 = k2 + k3 slow and longitudinal

I ΠL
eff(k, k1, k2, k3) depends only on linear responses

I quantum recoil terms included in linear responses

I nonlinear wave equation becomes

KL(k)E(k) =
e2

m2
eω

4
p

∫
dλ(3) |k−k1|2D−1(k−k1)E(k1)E(k2)·E(k3)

D−1(k − k1) =
1 + χL

e (k − k1) + χL
i (k − k1)

χL
e (k − k1)[1 + χL

i (k − k1)]



Factorization of nonlinear wave equation

I nonlinear wave equation becomes

KL(k)E(k) =
e2

ε0meω2
p

∫
dλ(2) δne(k1)E(k2)

I with the identification

δne(k) =
ε0

meω2
p

D(k) k2

∫
dλ(2) E(k1) · E(k2)

I assume slowly varying envelope of Langmuir turbulence
E(x) = 1

2

[
Ẽ(x)e−iωpt + Ẽ∗(x)e iωpt

]
I invert Fourier transforms, introducing operators

I high frequency (ω ≈ ωp): KL(k)→ ÔL
h (x)

ÔL
h (x) ≈ 1

2ωp

[
i
∂

∂t
+

3V 2
e

2ωp
∇2 + i

γL

2
− QRTe

2ωp

]
I QRTe = quantum recoil term for electrons



Ion sound approximation

I with k ′ = k − k1, assuming |k′|Vi � ω′ � |k′|Ve =⇒

χL
e (k

′) ≈ 1

k′2λ2
De

, χL
i (k

′) ≈ −
ω2

pi

ω′2

I ion-sound dispersion relation

ω2
s (k

′) =
k′2v2

s

1 + k′2λ2
De

, vs = ωpiλDe

I beat is ion-sound-like disturbance

1 + χL
e (k

′) + χL
i (k

′) ≈
1 + k′2λ2

De

k′2λ2
Deω

′2 [ω′2 − ω2
s (k

′)]

I low frequency (ω′ � ωpi , k′2λ2
De � 1): D(k ′)→ −ÔL

i (x)

ÔL
i ≈

1

ω2
pi

[
∂2

∂t2
− v2

s∇2 + γs
∂

∂t
+ QRTei

]
I QRTei = quantum recoil correction for ion sound waves



Quantum Zakharov equations

I nonlinear equations become[
i
∂

∂t
+

3V 2
e

2ωp
∇2 + i

γL

2
− QRTe

2ωp

]
Ẽ(x) = ωp

δne(x)

ne
Ẽ(x)

[
∂2

∂t2
− v2

s∇2 + γs
∂

∂t
+ QRTi

]
δne(x) =

ε0ω
2
pi

4meω2
p

∇2|Ẽ(x)|2

I quantum Zakharov equations includes recoil terms

QRTe =
~2

4m2
e

(
1

c2

∂2

∂t2
−∇2

)2

QRTei =
me

3mi
QRTe

I (1/c2)(∂2/∂t2) absent in strictly nonrelativistic theory

I factors of 3 not correct in QFT counterpart



Discussion & conclusions
Discussion of QPD

I QPD synthesizes QED and plasma response theory
I provides a basis for treating all quantum plasma effects

Applications of QPD

I interiors of compact stars
I early Universe
I pulsar & magnetar magnetospheres

Application to QFT

I Bohm potential equivalent to quantum recoil for k2 � ω2/c2

Bohm potential wrong for ω2 >∼ k2c2

I quantum Zakharov equations in QFT?
derived from nonlinear wave equation in QPD

Further development of QPD
I inclusion macroscopic mass renormalization
I ‘self-consistent’ Dirac field
I different masses for electrons & positrons
I do new solutions (‘plasmino’) exist?
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