Unfolded Description of AdS_4 Black Hole

arxiv: 0801.2213, 0901.2172 [hep-th]

A.S. Matveev

in collaboration with V.E. Didenko and M.A. Vasiliev

Lebedev Institute

Sc4, Moscow

May 19, 2009

Plan

Motivation. Unfolded formulation. Some important black hole properties

• Unfolded description of AdS_4 space-time

• Black hole as the deformation of AdS_4

• Integrating flow. Explicit coordinate-free BH metrics

Conclusions

Motivation

Gravity
$$s=2$$
 \Rightarrow Super-gravity \Rightarrow Higher spin gauge theory (HS) $s=0,1/2,1,\ldots,\infty$ (Vasiliev)

HS gauge theory:

Consistent theory of interacting massless fields $s=0,1/2,...\infty$ in AdS space-time. It is formulated at the level of equations of motion for all spins.

Unfolded formulation

 First order coordinate-free differential equations (differential forms formalism).

 Additional fields (infinitely many, in general) parameterize all on-shell derivatives of physical fields.

Example: free massless scalar in Minkowski space-time $\Box \phi(x) = 0$

Unfolding: ϕ , $\phi_{\mu} = \partial_{\mu}\phi$, ..., $\phi_{\mu_1...\mu_n} = \partial_{\mu_1}\phi_{\mu_2...\mu_n}$

Set of fields: ϕ , ϕ_{μ} , ... $\phi_{\mu_1...\mu_n}$

Consistency condition: symmetric $\phi_{\mu_1...\mu_n}$

Equations of motion: $\phi^{\mu}_{\mu\mu_3...\mu_n=0}$

4

Strategy

- 1. Write the unfolded equations for AdS_4 space-time and find objects relevant to black hole such as Kerr-Schild vectors
- 2. Find appropriate deformation of AdS_4 equations that leads to black hole

3. Find integrating flow with respect to deformation parameters mapping one system to another and try to integrate flow equations with AdS_4 initial data

Classical black hole properties

d = 4 Kerr solution in Minkowski space

1. $g_{\mu\nu} = \eta_{\mu\nu}(x) + M\varphi_{\mu\nu}(x)$ – no $O(M^2)$ terms \Rightarrow Einstein equations reduce to **free** s=2 Pauli-Fierz eqs.

$$\Box \varphi_{\mu\nu} - \partial_{\mu}\partial_{\lambda}\varphi^{\lambda}{}_{\nu} - \partial_{\nu}\partial_{\lambda}\varphi^{\lambda}{}_{\mu} = 0 \qquad (\varphi_{\mu}{}^{\mu} = 0)$$

2. Kerr-Schild form: $\varphi_{\mu\nu}=\frac{1}{U(x)}k_{\mu}(x)k_{\nu}(x)$, k^{μ} – Kerr-Schild vector

$$k_{\mu}k^{\mu} = 0$$
, $k^{\mu}D_{\mu}k_{\nu} = k^{\mu}\partial_{\mu}k_{\nu} = 0$

3. BH provides Fronsdal fields $\phi_{\mu_1...\mu_s} = \frac{M}{U} k_{\mu_1} \dots k_{\mu_s}$

$$\begin{array}{ll} \mathbf{s} = \mathbf{0} \Rightarrow \text{Klein-Gordon} & \Box \phi = \mathbf{0} \\ \mathbf{s} = \mathbf{1} \Rightarrow \text{Maxwell} & \Box \phi_{\mu} - \partial_{\lambda} \partial_{\mu} \phi^{\lambda} = \mathbf{0} \\ \mathbf{s} = \mathbf{2} \Rightarrow \text{Pauli-Fierz} & \Box \phi_{\mu\nu} - 2\partial_{\lambda} \partial_{(\mu} \phi_{\nu)}^{\ \lambda} = \mathbf{0} \\ \mathbf{s} = \mathbf{s} \Rightarrow \text{Fronsdal} & \Box \phi_{\mu_{1} \dots \phi_{\mu_{s}}} - s \partial_{\lambda} \partial_{(\mu_{1}} \phi^{\lambda}_{\mu_{2} \dots \mu_{s})} = \mathbf{0} \end{array}$$

4. Kerr-Schild presentation is also valid in AdS. Black hole massless fields $\phi_{\mu_1...\mu_s}$ satisfies free massless spin-s equations in AdS_4 .

Cartan formalism

Lorentz connection 1-form
$$\Omega_{[ab]} = \Omega_{[ab],\mu} dx^{\mu}$$

Vierbein 1-form $h_a = h_{a,\mu} dx^{\mu}$, $a,b=1,\ldots,4$

$$R_{ab} = d\Omega_{ab} + \Omega_a{}^c \wedge \Omega_{cb}$$
 Riemann 2-form

$$R_a = dh_a + \Omega_a{}^b \wedge h_b = 0$$
 torsion 2-form

$$g_{\mu\nu} = h_{a,\mu} h_{b,\nu} \eta^{ab}$$

Two-component spinor notation

 $V^a \to V^{\alpha\dot{\alpha}}\,, \quad \alpha, \dot{\alpha} = 1, 2\,, \quad \text{indices raised and lowered with} \quad \epsilon_{\alpha\beta} = -\epsilon_{\beta\alpha}$

Maxwell
$$F_{ab} \rightarrow (F_{\alpha\alpha}, \bar{F}_{\dot{\alpha}\dot{\alpha}})$$

Weyl
$$C_{abcd} \rightarrow (C_{\alpha(4)}, \bar{C}_{\dot{\alpha}(4)})$$

Riemann $R_{ab} \rightarrow (R_{\alpha\alpha}, \bar{R}_{\dot{\alpha}\dot{\alpha}})$

AdS_4 space-time

Isometries: $o(3,2) \Rightarrow 10$ Killing vectors.

Let V^a be an AdS_4 Killing vector:

$$D_a V_b + D_b V_a = 0, \qquad \kappa_{ab} = D_a V_b = -\kappa_{ba}$$

$$DV_a = \kappa_{ab}h^b$$
, $D\kappa_{ab} = \lambda^2(V_ah_b - V_bh_a) \leftarrow$ unfolded equations

$$d\Omega_{ab} + \Omega_a{}^c \wedge \Omega_{cb} = \lambda^2 h_a \wedge h_b$$
, $dh_a + \Omega_a{}^b \wedge h_b = 0 \leftarrow$ consistency

Spinor form for AdS_4 equations:

$$DV_{\alpha\dot{\alpha}} = \frac{1}{2}h^{\gamma}{}_{\dot{\alpha}}\kappa_{\gamma\alpha} + \frac{1}{2}h_{\alpha}{}^{\dot{\gamma}}\bar{\kappa}_{\dot{\alpha}\dot{\gamma}}$$
$$D\kappa_{\alpha\alpha} = \lambda^2 h_{\alpha}{}^{\dot{\gamma}}V_{\alpha\dot{\gamma}}, \quad D\bar{\kappa}_{\dot{\alpha}\dot{\alpha}} = \lambda^2 h^{\gamma}{}_{\dot{\alpha}}V_{\gamma\dot{\alpha}}.$$

Properties of AdS system

1. AdS_4 covariant form

$$K_{AB} = K_{BA} = \begin{pmatrix} \lambda^{-1} \kappa_{\alpha\beta} & V_{\alpha\dot{\beta}} \\ V_{\beta\dot{\alpha}} & \lambda^{-1} \bar{\kappa}_{\dot{\alpha}\dot{\beta}} \end{pmatrix}, \quad \Omega_{AB} = \Omega_{BA} = \begin{pmatrix} \Omega_{\alpha\beta} & -\lambda h_{\alpha\dot{\beta}} \\ -\lambda h_{\beta\dot{\alpha}} & \bar{\Omega}_{\dot{\alpha}\dot{\beta}} \end{pmatrix}$$

$$D_0 K_{AB} = 0$$
, $R_{0AB} = d\Omega_{AB} + \frac{1}{2} \Omega_A{}^C \wedge \Omega_{CB} = 0$.

 $K_{AB} - AdS_4$ global symmetry parameter \rightarrow two Casimir invariants

$$C_2 = \frac{1}{4}K_{AB}K^{AB}, \qquad C_4 = \frac{1}{4}\text{Tr}K^4.$$

2. The existence of source-free Maxwell tensor

$$F_{\alpha\alpha} = -\lambda^{-2} G^3 \kappa_{\alpha\alpha}, \, G = \frac{\lambda^2}{\sqrt{-\kappa^2}} = (-F^2)^{1/4}$$

 $F_{lphalpha}$ and $ar{F}_{\dot{lpha}\dot{lpha}}$ satisfy source free Maxwell equations and Bianchi identities

$$D_{\gamma\dot{\alpha}}F_{\alpha}{}^{\gamma}=0, \qquad D_{\alpha\dot{\gamma}}\bar{F}_{\dot{\alpha}}{}^{\dot{\gamma}}=0.$$

3. AdS_4 Killing-Yano tensors

$$Y_{\alpha\alpha} = iG^{-3}F_{\alpha\alpha}, \quad *Y_{\alpha\alpha} = G^{-3}F_{\alpha\alpha}$$

in vector notation:
$$D_{(m}Y_{n)p} = 0$$
, $D_{[m}*Y_{np]} = 0$

4. AdS_4 unfolded equations in terms of Maxwell field

$$DV_{\alpha\dot{\alpha}} = \frac{1}{2}\rho h^{\gamma}{}_{\dot{\alpha}}F_{\gamma\alpha} + \frac{1}{2}\bar{\rho} h_{\alpha}{}^{\dot{\gamma}}\bar{F}_{\dot{\alpha}\dot{\gamma}}, \quad \rho = -\lambda^2 G^{-3},$$
$$DF_{\alpha\alpha} = -\frac{3}{2G}h^{\beta\dot{\gamma}}V^{\beta}{}_{\dot{\gamma}}F_{(\beta\beta}F_{\alpha\alpha)}.$$

5. Two first integrals

$$I_1 = V^2 - \frac{\lambda^2}{2} \left(\frac{1}{G^2} + \frac{1}{\overline{G}^2} \right) ,$$

$$I_{2} = \frac{1}{G^{3}\bar{G}^{3}}V^{\alpha\dot{\alpha}}V^{\alpha\dot{\alpha}}F_{\alpha\alpha}\bar{F}_{\dot{\alpha}\dot{\alpha}} - V^{2}\left(\frac{1}{G^{2}} + \frac{1}{\bar{G}^{2}}\right) + \frac{\lambda^{2}}{4}\left(\frac{1}{G^{2}} - \frac{1}{\bar{G}^{2}}\right)^{2},$$

AdS₄ Casimir invariants:
$$C_2 = I_1$$
, $C_4 = I_1^2 + \lambda^2 I_2$

6. The existence of Kerr-Schild vectors

$$\Pi^{\pm}_{\alpha\beta} = \frac{1}{2} (\epsilon_{\alpha\beta} \pm \frac{1}{G^2} F_{\alpha\beta}), \qquad \bar{\Pi}^{\pm}_{\dot{\alpha}\dot{\beta}} = \frac{1}{2} (\epsilon_{\dot{\alpha}\dot{\beta}} \pm \frac{1}{\bar{G}^2} \bar{F}_{\dot{\alpha}\dot{\beta}}).$$

The projectors allow one to build null vectors for any given vector $V_{\alpha\dot{\alpha}}$

real:
$$\xi_{\alpha\dot{\alpha}}^{+} = \Pi_{\alpha}^{+\beta}\bar{\Pi}_{\dot{\alpha}}^{+\dot{\beta}}V_{\beta\dot{\beta}}, \quad \xi_{\alpha\dot{\alpha}}^{-} = \Pi_{\alpha}^{-\beta}\bar{\Pi}_{\dot{\alpha}}^{-\dot{\beta}}V_{\beta\dot{\beta}}$$

$$\text{complex:} \quad \xi_{\alpha\dot{\alpha}}^{+-} = \Pi_{\alpha}^{+\beta}\bar{\Pi}_{\dot{\alpha}}^{-\dot{\beta}}V_{\beta\dot{\beta}}, \quad \xi_{\alpha\dot{\alpha}}^{-+} = \Pi_{\alpha}^{-\beta}\bar{\Pi}_{\dot{\alpha}}^{+\dot{\beta}}V_{\beta\dot{\beta}}$$

$$e_{I,\alpha\dot{\alpha}} = (k_{\alpha\dot{\alpha}}, n_{\alpha\dot{\alpha}}, l_{\alpha\dot{\alpha}}^{+-}, l_{\alpha\dot{\alpha}}^{-+})$$

$$e_{I,\alpha\dot{\alpha}}e_{I,\alpha\dot{\alpha}}=0$$
, $e_{I,\alpha\dot{\alpha}}D_{\alpha\dot{\alpha}}e_{I,\beta\dot{\beta}}=0$ (no summation over I)

Deformation of $AdS_4 \rightarrow BH$ unfolded system

Keep the same form of the unfolded equations

$$\mathcal{D}\mathcal{V}_{\alpha\dot{\alpha}} = \frac{1}{2}\rho \,\mathbf{h}^{\gamma}{}_{\dot{\alpha}}\mathcal{F}_{\gamma\alpha} + \frac{1}{2}\bar{\rho} \,\mathbf{h}_{\alpha}{}^{\dot{\gamma}}\bar{\mathcal{F}}_{\dot{\alpha}\dot{\gamma}}, \quad \mathcal{D}\mathcal{F}_{\alpha\alpha} = -\frac{3}{2\mathcal{G}}\mathbf{h}^{\beta\dot{\gamma}}\mathcal{V}^{\beta}{}_{\dot{\gamma}}\mathcal{F}_{(\beta\beta}\mathcal{F}_{\alpha\alpha)},$$

Unlike the AdS_4 case ρ is assumed to be arbitrary $\rho = \rho(\mathcal{G}, \overline{\mathcal{G}})$

Consistency: $\mathcal{D}^2 \sim \mathcal{R}$, $\mathcal{DR} = 0$ fix $\rho(\mathcal{G}, \overline{\mathcal{G}})$ uniquely in the form

$$\rho(\mathcal{G}, \bar{\mathcal{G}}) = \mathcal{M} - \lambda^2 \mathcal{G}^{-3} - q \bar{\mathcal{G}}$$

Curvature 2-form is given by

$$\mathcal{R}_{\alpha\alpha} = \frac{\lambda^2}{2} \mathbf{H}_{\alpha\alpha} - \frac{3(\mathcal{M} - \mathbf{q}\,\bar{\mathcal{G}})}{4\mathcal{G}} \mathbf{H}^{\beta\beta} \mathcal{F}_{(\beta\beta} \mathcal{F}_{\alpha\alpha)} + \frac{\mathbf{q}}{4}\,\bar{\mathbf{H}}^{\dot{\beta}\dot{\beta}}\bar{\mathcal{F}}_{\dot{\beta}\dot{\beta}} \mathcal{F}_{\alpha\alpha}, \quad \mathbf{H}^{\alpha\alpha} = h^{\alpha}{}_{\dot{\alpha}} \wedge h^{\alpha\dot{\alpha}}$$

Black hole Weyl tensor is of D-Petrov type i.e., $C_{\alpha(4)} \sim F_{\alpha\alpha}F_{\alpha\alpha}$

10

Properties of the BH unfolded system

1. AdS_4 -Kerr-Newman-Taub-NUT black hole (rotated, EM and NUT-charged)

$$\mathbf{M} = \mathbf{Re} \ \mathcal{M} - \mathbf{BH} \ \mathrm{mass}, \quad \mathbf{N} = \mathbf{Im} \ \mathcal{M} - \mathbf{NUT} \ \mathrm{charge},$$
 $\mathbf{q} = e^2 + \mathbf{g}^2 - \mathrm{sum} \ \mathrm{of} \ \mathrm{squared} \ \mathrm{electric} \ \mathrm{and} \ \mathrm{magnetic} \ \mathrm{charges}$

2. Two integrals of motion

$$\mathcal{I}_{1} = \mathcal{V}^{2} - \mathcal{M}\mathcal{G} - \bar{\mathcal{M}}\bar{\mathcal{G}} - \frac{\lambda^{2}}{2} \left(\frac{1}{\mathcal{G}^{2}} + \frac{1}{\bar{\mathcal{G}}^{2}} \right) + q \mathcal{G}\bar{\mathcal{G}},$$

$$\mathcal{I}_{2} = \frac{1}{\mathcal{G}^{3}\bar{\mathcal{G}}^{3}} \mathcal{V}^{\alpha\dot{\alpha}} \mathcal{V}^{\alpha\dot{\alpha}} \mathcal{F}_{\alpha\alpha}\bar{\mathcal{F}}_{\dot{\alpha}\dot{\alpha}} - 2 \left(\frac{\mathcal{M}}{\mathcal{G}} + \frac{\bar{\mathcal{M}}}{\bar{\mathcal{G}}} \right) - \mathcal{I}_{1} \left(\frac{1}{\mathcal{G}^{2}} + \frac{1}{\bar{\mathcal{G}}^{2}} \right) - \frac{\lambda^{2}}{4} \left(\frac{1}{\mathcal{G}^{4}} + \frac{1}{\bar{\mathcal{G}}^{4}} \right) - \frac{3\lambda^{2}}{2\mathcal{G}^{2}\bar{\mathcal{G}}^{2}}$$

- 3. Inherits all AdS unfolded system properties
 - $\mathcal{F}_{\alpha\alpha}$ is a source-free Maxwell tensor
 - Killing projector construction allows to build two real and two complex
 Kerr-Schild vectors

10

Integrating flow: $AdS_4 \Rightarrow BHUS$

Let the deformation parameters $\psi = (\mathcal{M}, \overline{\mathcal{M}}, \mathbf{q})$ run \Rightarrow one has corresponding flows $\frac{\partial}{\partial \psi}$.

Example: due to completeness of $e_{I,\alpha\dot{\alpha}}$ basis and under gauge fixing

$$\partial_{\mathcal{M}} \mathcal{V}_{\alpha \dot{\alpha}} = \sum_{I=1}^{4} \phi_{I} \hat{e}_{I,\alpha \dot{\alpha}}, \quad \partial_{\mathcal{M}} \mathbf{h}_{\alpha \dot{\alpha}} = \sum_{I=1}^{4} \phi_{I} \hat{e}_{I,\alpha \dot{\alpha}} \hat{e}_{I,\beta \dot{\beta}} \mathbf{h}^{\beta \dot{\beta}}.$$

Applying the integrability conditions to BHUS:

$$[d, \frac{\partial}{\partial \psi}] = [\frac{\partial}{\partial \psi}, \frac{\partial}{\partial \psi'}] = 0$$

we fix coefficients

$$\phi_1 = \frac{\mathcal{G} + \bar{\mathcal{G}}}{4} \alpha_1(r) , \qquad \phi_2 = \frac{\mathcal{G} + \bar{\mathcal{G}}}{4} \alpha_2(r) ,$$

$$\phi_3 = \frac{\mathcal{G} - \bar{\mathcal{G}}}{4} \beta_1(y) , \qquad \phi_4 = \frac{\mathcal{G} - \bar{\mathcal{G}}}{4} \beta_2(y)$$

with "canonical" (Frolov) coordinates

$$r = \operatorname{Re} \frac{1}{\mathcal{C}}, \quad y = \operatorname{Im} \frac{1}{\mathcal{C}}, \quad \alpha_1 + \alpha_2 = \beta_1 + \beta_2 = 1.$$

- 1

Kerr-Schild vectors:

$$\hat{k}_{\alpha\dot{\alpha}} = k_{\alpha\dot{\alpha}} \left(\frac{\Delta_r}{\widehat{\Delta}_r}\right)^{\alpha_2}, \quad \hat{n}_{\alpha\dot{\alpha}} = n_{\alpha\dot{\alpha}} \left(\frac{\Delta_r}{\widehat{\Delta}_r}\right)^{\alpha_1},$$

$$\hat{l}_{\alpha\dot{\alpha}}^{+-} = l_{\alpha\dot{\alpha}}^{+-} \left(\frac{\Delta_y}{\widehat{\Delta}_y}\right)^{\beta_2}, \quad \hat{l}_{\alpha\dot{\alpha}}^{-+} = l_{\alpha\dot{\alpha}}^{-+} \left(\frac{\Delta_y}{\widehat{\Delta}_y}\right)^{\beta_1},$$

where

$$\hat{\Delta}_r = 2Mr + r^2(\lambda^2 r^2 + \mathcal{I}_1) + \frac{1}{2}(-q + \frac{\mathcal{I}_2}{2})$$

$$\hat{\Delta}_y = 2Ny + y^2(\lambda^2 y^2 - \mathcal{I}_1) + \frac{1}{2}(q + \frac{\mathcal{I}_2}{2}),$$

and

$$\Delta_{r,y} = \hat{\Delta}_{r,y} \Big|_{\mathcal{M},\overline{\mathcal{M}},\mathbf{q}=\mathbf{0}}, \qquad e_{I,\alpha\dot{\alpha}} = \hat{e}_{I,\alpha\dot{\alpha}} \Big|_{\mathcal{M},\overline{\mathcal{M}},\mathbf{q}=\mathbf{0}}.$$

Black hole metrics

• General case (Carter-Plebanski)

deformation parameters: M – black hole mass, N – NUT charge, ${\bf q}=e^2+g^2$ – EM charges

$$ds^{2} = ds_{0}^{2} + \frac{2Mr - q/2}{r^{2} + y^{2}} (\alpha_{1}(r)K + \alpha_{2}(r)N)^{2} - \frac{2Ny + q/2}{r^{2} + y^{2}} (\beta_{1}(y)L^{+-} + \beta_{2}(y)L^{-+})^{2}$$
$$+4\alpha_{1}(r)\alpha_{2}(r)\frac{r^{2} + y^{2}}{\Delta_{r}\hat{\Delta}_{r}} (2Mr - q/2)dr^{2} - 4\beta_{1}(y)\beta_{2}(y)\frac{r^{2} + y^{2}}{\Delta_{y}\hat{\Delta}_{y}} (2Ny + q/2)dy^{2},$$

where

$$K = k_{\mu}dx^{\mu}$$
, $N = n_{\mu}dx^{\mu}$, $L^{+-} = l_{\mu}^{+-}dx^{\mu}$, $L^{-+} = l_{\mu}^{-+}dx^{\mu}$ are AdS_4 Kerr-Schild 1-forms, $\alpha_1 + \alpha_2 = \beta_1 + \beta_2 = 1$.

4 -

• Kerr-Newman case (rotated and charged black hole)

$$ds^{2} = ds_{0}^{2} + \frac{2Mr - \frac{q}{2}}{r^{2} + y^{2}}k_{\mu}k_{\nu}dx^{\mu}dx^{\nu}.$$

$$C_2 = 1 + \lambda^2 a^2$$
, $C_4 = C_2^2 + 4\lambda^2 a^2$.

• Reissner-Nordström (static charged black hole)

$$C_4 = C_2^2 \neq 0$$
, $(K_A{}^C K_C{}^B = C_2 \delta_A{}^B)$

Double Kerr-Schild solution (complex form of BH)

$$\alpha_1 = \beta_1 = 1, \quad \alpha_2 = \beta_2 = 0$$

$$ds^2 = ds_0^2 + \frac{2Mr - q/2}{r^2 + y^2} KK - \frac{2Ny + q/2}{r^2 + y^2} L^{+-}L^{+-}$$

1 ~

Conclusions

• It is shown that a wide class of black hole metrics (Carter-Plebanski) admits simple unfolded description in terms of Killing and source-free Maxwell fields. The system is obtained as a parametric deformation of AdS_4 global symmetry equation. Two deformation parameters $\mathcal{M} \in \mathbb{C}$ and $\mathbf{q} \in \mathbb{R}$ are associated with black hole mass $\mathbf{M} = \mathrm{Re}\ \mathcal{M}$, NUT charge $\mathbf{N} = \mathrm{Im}\ \mathcal{M}$ and electro-magnetic charges $\mathbf{q} = e^2 + \mathbf{g}^2$. Black hole kinematic characteristics are expressed via two first integrals of the unfolded system

• Type of a black hole whether it is rotated or not is defined by the values of AdS_4 invariants (Casimir operators). In particular, static black hole is defined by

$$C_4 = C_2^2$$

ullet The proposed formulation gives rise to a **coordinate-free description** of the black hole metric in AdS_4

Black hole Fronsdal fields result as a simple consequence in the unfolded system

4 -