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The problem

Given: General local dynamical system.
It is de�ned by not necessarily variational or Hamiltonian
system of (di�erential) equations of motion

Find: The gauge symmetry of the system.

The motivation:

The methods have recently become available for the BRST
embedding and quantising of non-Lagrangian/non-Hamiltonian
systems.
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Classical BRST di�erential in non-variational dynamics.

In the general irreducible dynamics the proper BRST di�erential Q

[Q,Q]=0 gh(Q)=1, (1)

is subject to the boundary conditions

Q=Ea(x)
∂

∂ηa
+CαR i

α(x)
∂

∂x i
+ηaΓaA(x)

∂

∂ζA
+··· (2)

de�ned by (non-)variational eqs Ea(x)=0, generators of gauge
identities ΓaA(x), and generators of gauge symmetry transformations
R i
α(x):

ΓaAEa(x)≡0, R i
α(x)

∂Ea(x)

∂x i
=U(x)bαaEb(x) (3)

Γ's can be derived in many ways, but they don't de�ne R 's in
non-variational case. Hence, the procedure of deriving all the gauge
symmetries is a pre-requisite for constructing the classical BRST
embedding of the non-Lagrangian dynamics.



Quantization pre-requisites for non-variational dynamics.

1. Deformation quantization:

The equations of motion are to be of the form:

ẋ i=v i (x)+Z i
α(x)λα,Ta(x)=0; ZT∼T ,[Z ,Z ]∼Z+T ,[v ,Z ]∼Z+T

Weak Poisson bi-vector P should exist such that:

[Z ,P]∼Z+T , [v ,P]∼Z+T , [P,T ]∼Z+T , [P,P]∼Z+T

Bi-victor P turns the variety of on-shell gauge invariants into
Poisson algebra. The gauge generators and time drift di�erentiate
this algebra, not being Hamiltonian vector �elds. Upon BRST
embedding this is turned into the Poisson algebra of the
cohomology classes. Quantisation results in associative ∗ in the
cohomology. Quantum BRST operator and drift are the
di�erentiations of ∗, although not interior.
Hamiltonian constrained system:
P ij={x i ,x j}, [P,P]=0, v i={x i ,H(x)}, Z i

α={x i ,Tα}, α≡a



Quantization pre-requisites for non-variational dynamics.

2. Covariant quantization:

The equations Ea(x)=0 with known gauge symmetry;

TheLagrange anchor V i
a(x) should exist such that

V i
a(x)∂iEb(x)−V i

b(x)∂iEa(x)=C c
ab(x)Ec(x)

The BRST embedding converts the on-shell gauge invariants
converts into the BRST cohomology classes. The anchor is
promoted to the weak anti-bracket, satisfying Jacoby identity only
among the BRST invariants and modulo BRST exact terms. The
anti-bracket is di�erentiated by Q, which is not necessarily (·,S).
Upon quantisation, the classical BRST di�erential Q and the
anchor together give rise to the quantum BRST operator
Q̂=Q+ih̄(···),Q̂2=0 de�ning the probability amplitude Q̂Ψ(x)=0.
Lagrangian system:

a≡i , Ei=∂iS(x), V j
a=δja, Q̂=(·,S)+ih̄∆, Ψ=e

i
h̄
S



Primary normal form of local dynamics.

Any system of di�erential equations can be depressed to the �rst
order in the form of inhomogeneous constrained Pfa�an system:

θJi (x)ẋ i=VJ(x), Ta(x)=0

Let the vectors Z i
α(x) span the on-shell kernel of the Pfa�

one-forms Z i
α(x)θJi (x)∼T (x), then the equations can be rewritten

in the primary normal form:

ẋ i=v i (x)+Z i
α(x)λα, Ta(x)=0.

The vector �eld v is called a primary drift, and the vector
distribution Z=span{Zα} is called a primary characteristic

distribution. Z is not necessarily integrable, and it is not necessarily
tangential to the primary constraint surface.



Extension of Dirac-Bergmann algorithm: key steps

1.Derivation of compatibility conditions for primary eqs:

Checking the conservation of primary constraints.

Ṫa(x)≈v i (x)∂iTa+λ
αZ i

α(x)∂iTa=0

Results can be three-fold:
(i) some primary constraints can conserve identically;
(ii) determining some of the multipliers λ⊥ as functions of x ;
(iii) appearance of the secondary constraints T (2).

Ṫ (2)≈0⇒ further secondary (`tetriary') constraints T (3), more
�xed multipliers, identical conservation. Ṫ (3)≈0⇒...

The iterative procedure ends when the new constraints stop
appearing and/or all the multipliers are determined.



2. Complete normal form of the local dynamics.

After excluding determined multipliers and �nding all the secondary
constraints, the equations take the complete normal form:

ẋ i=ṽ i (x)+λα‖ Z
i
α‖, T̃ (x)=0, T̃=(T ,T (2),T (3),...)

The primary distribution is decomposed into tangential and
transverse sub-distributions w.r.t. the complete constraint surface:

Z=Z⊥⊕Z‖, Z‖T̃ (x)≈0, dimZ⊥=rankZαT̃a

The complete constraint set is also decomposed into transverse and
tangential subsets w.r.t. to Z:

T̃=(T⊥,T‖) ZT‖≈0, Z⊥T⊥=D, detD 6=0

Complete drift ṽ i=v i−v j∂jT⊥a(D−1)abZ i
b⊥ is tangential to the

complete constraint surface, ṽ T̃≈0. Conservation of the transverse
constraints determines all the multipliers corresponding to the
transverse sub-distribution: λa⊥=−(D−1)abvT⊥b.



3. Gauge symmetry of the complete normal form.

Given the equations in the complete normal form

ẋ i−v i (x)−λαZ i
α(x)=0, Ta(x)=0; ZT≈0, vT≈0 (4)

they are fully consistent, having no further consequences.
Let us �nd all the in�nitesimal local gauge transformations for (4):

δεx
i=

p∑
n=0

R i

(p−n)
(x,λ,λ̇,λ̈,...)

(n)

ε , δελ
α=

p+1∑
n=0

Uα
(p+1−n)

(x,λ,λ̇,λ̈,...)
(n)

ε ,

such that the equations are left invariant in the sense that their
variations vanish on shell with ε being arbitrary function of time.
The �rst fact we �nd about the transformations is that the number
of the independent parameters coincides to the dimension of Z,
and the choice is always possible δεx

i=Z i
α

(p)

εα+···, δελ
α=

(p+1)

ε α

where ··· stand for the lower order derivatives of the parameter.



4. Gauge distribution.

The lower order terms can be iteratively found for the gauge
transformation, and their general structure is as follows.

The derivatives of all the orders from the parameters are
involved in the transformation without gaps, and with linear
independent coe�cients;

The coe�cients at the derivatives
(n)

εα in the transformation
span and are spanned by the gauge distribution

span{R
(0)
}∪···∪span{R

(p)
}=ZV

The gauge distribution is a closure of the primary
characteristic distribution

ZV =Z∪[Z,Z]∪[Z,v ]∪···,

where ··· mean higher iterated commutators Z and v



5. Local gauge invariants.

The physical observables are the on-shell gauge invariants:

δεO(x,λ,λ̇,λ̈,...)≈0

As δελ=
(p+1)

ε +..., the local physical observables are de�ned as the
phase space on-shell invariants of the gauge distribution:

ZO(x)|T (x)=0=0, ∀Z∈ZV ⇔ δεO(x)|T (x)=0=0

The observables are considered equivalent if their di�erence
vanishes on shell,

O1∼O2 ⇔ (O1−O2)T (x)=0=0.

The time evolution of the equivalence classes is consistent with the
invariance, and only the invariants evolve causally:

Ȯ=vO+λαZαO, T (x)=0; δεȮ≈0 ⇔ ZVO≈0



6. The involutive normal form of the local dynamics.

The complete normal form is su�cient for classical BRST
embedding and covariant quantisation. But it is insu�cient for the
deformation quantization. Introduce the involutive normal form

ẋ i=v i (x)+Z i
Vα(x)λ

α, Ta(x)=0

where independent λ's are included entire gauge distribution ZV .
These equations involve more variables than the complete normal
equations, and even for the original variables, they have di�erent
gauge symmetry transformations:

δεx
i=ZVαε

α

These transformations involve more parameters, but without time
derivatives. The involutive normal form is equivalent to the
complete normal form in the sense that the gauge invariants remain
the same, and have the same time evolution.


