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Abstract

The problem of rotation of spin is solved in full agreement with the basic
principles of quantum mechanics. In particular, complete system of wave
functions for a massive Dirac neutrino possessing anomalous magnetic
moment in dense matter and in strong electromagnetic field is obtained.
These functions describe neutrino with rotating spin and are
eigenfunctions of kinetic momentum operator. Using these wave functions
it is possible to calculate probabilities of various processes with neutrino in
the framework of the Furry picture. The dispersion law for the neutrino in
dense magnetized matter is found. It is shown that group velocity of
neutrino is independent of spin orientation.
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The principal goal of my talk is to answer the question — is it possible to
describe rotation of spin of the particles in full agreement with the basic
principles of quantum mechanics. Of course, the answer we get in our
works is positive. However, the problem is not so simple.
In practice, the quasi-classical Bargmann–Michel–Telegdi (BMT) equation
is used for describing spin precession. Note that for description of
ultra-relativistic particles quasi-classical approximation is a very good one.
However, the consistent quantum approach is needed, for example, for low
energy neutrinos playing an important role in several astrophysical
problems.
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Let us consider simple case — spin dynamics of neutral particle (neutrino)
possessing anomalous magnetic moment in a constant homogeneous
magnetic field. The Dirac–Pauli equation in this case is(

iγµ∂µ −
i

2
µ0F

µνσµν −m

)
Ψ(x) = 0, (1)

where Fµν is electromagnetic field tensor.
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In the studies of the influence of a stationary pure magnetic field on the
neutrino spin rotation in the pioneer paper

Fujikawa K and Shrock R E 1980 Phys. Rev. Lett. 45 963
as well as in others papers stationary solutions Ψpζ̃(x) first found in

Ternov I M, Bagrov V G, Khapaev A M 1965 Zh. Eksp. Teor. Fiz. 48
921

were used as wave functions of a particle. These solutions are the
eigenfunctions of the canonical momentum operator

pµ = i∂µ, (2)

with eigenvalues Pµ = {P0
ζ̃
,P} and of the spin projection operator

S̃tp =
γ5γµHµνpν√
pβHβαHαρpρ

, (3)

with eigenvalues ζ̃ = ±1. Here Hµν = −1
2eµνρλFρλ is dual

electromagnetic field tensor.
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Operator S̃tp has a simple physical meaning. It characterizes — up to the
sign — a particle spin projection on the direction of the magnetic field in
the rest frame of the particle.
The description of the neutrino spin rotation in the framework of the
standard approach to this problem based on solving the Cauchy problem
where the initial condition is chosen in a such way that the mean value of
neutrino helicity is equal to ±1. It was taken for granted that the solution
of the Cauchy problem can be expressed as a linear combination of the
above mentioned wave functions

Ψ(x) =
∑

ζ̃=±1

cζ̃(p)Ψpζ̃(x). (4)

Lobanov () Quantum states of particles May, 22 7 / 37



However, such an assumption is incorrect. The point is that, once in a
pure state the mean value of some spin operator is equal to ±1, then this
state is described by an eigenfunction of this operator. In general case, the
construction of the eigenfunction of the spin projection operator as a
superposition of only positive-energy solutions of equation (1) is possible
only when this spin projection operator commutes with the operator of the
sign of the energy. The standard helicity operator (Σp)/|p| does not
feature it.
The given phenomenon is a sort of the famous Klein paradox. To avoid
the indicated difficulties, in relativistic quantum mechanics only
self-adjoint operators in the subspace of wave functions with a fixed energy
sign can be treated as operators of observables. The choice of integrals of
motion as operators of observables is the necessary condition to satisfy this
requirement.

Landau L D and Peierls R 1931 Zs. f. Phys. 69 56
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In the case considered the canonical momentum operator is an integral of
motion. However, the conserved operator of the spin projection which
should set initial conditions to the Cauchy problem is uniquely — up to
the sign — determined by the form of the Dirac–Pauli equation. This
operator is S̃tp. Therefore, it is impossible to construct a wave function
describing a neutrino with rotating spin in the form of an eigenfunction of
the canonical momentum operator for its arbitrary eigenvalues.
The solutions

Ψ(x) =
∑

ζ̃=±1

cζ̃(p)Ψpζ̃(x).

can exist only when the special values of the canonical momentum are
chosen. So, if a particle moves parallel or perpendicular to a constant
homogeneous magnetic field, eigenfunctions of the helicity operator are
the superpositions of positive-energy solutions alone.

Borisov A V, Ternov A I and Zhukovsky V Ch 1988 Izv. Vyssh.
Uchebn. Zaved. Fiz. 31, (No 3) 64
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Indeed, the wave functions Ψpζ̃(x) are the complete system of plane-wave
solutions of equation (1). Therefore, any plane-wave solution is a linear
combination of this functions.
However, nobody can state that in this linear combination we must
choose plane waves with one and the same canonical momentum.

Moreover, group velocities vζ̃=±1
gr of particles with different spin

projections are different in general case:

vζ̃=1
gr =

∂P0
ζ̃=1

∂P
6=
∂P0

ζ̃=−1

∂P
= vζ̃=−1

gr . (5)

The particle beam that is described by this linear combination of wave
functions is not coherent, if we choose plane waves with the same
canonical momentum.
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We should emphasize that in the framework of non-relativistic quantum
mechanics, where any self-adjoint operator can be treated as operator of
observable, we have no problem in describing particle with rotating spin.
To solve the problem in relativistic case we should abandon the view that
eigenvalues of the canonical momentum operator always impose a
direction of the particle propagation. It is necessary to find a self-adjoint
operator pµ with eigenvalues qµ which obey the condition q2 = m2. This
operator can be interpreted as kinetic momentum operator of the particle.
Discuss now how to get this operator.
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A space of unitary representation is defined by the condition called “the
wave equation for a particle with mass m and spin s”. The wave equation
for particles with spin s = 1/2 is the Dirac equation

(iγµ∂µ −m)Ψ0(x) = 0. (6)

In this case the realization of generators of the Poincaré group and the
Pauli–Lubanski–Bargmann vector in the coordinate representation is

pµ = i∂ µ, mµν = i(xµ∂ν − xν∂µ) +
i

2
σµν ,

wµ =
i

2
γ5(γµγν∂ν − ∂µ).

(7)
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These operators commute with the operator of the Dirac equation and can
be identified with observables. They have a self-adjoint extension on the
subsets of solutions of the Dirac equation with fixed sign of the energy
with regard to the standard scalar product

(Φ, Ψ) =

∫
dxΦ†(x, t)Ψ(x, t). (8)

The above description of the particle characteristics cannot be directly
used in the presence of external fields, where the Dirac equation has the
form

(iγµDµ −m)Ψ(x) = 0, (9)

and operators pµ,mµν ,wµ are not necessarily integrals of motion.
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Since an irreducible representation of group is defined accurately up to an
equivalence transformation, it is reasonable to state the problem of finding
such realization of the Lie algebra of the Poincaré group for which the
condition of irreducibility of the representation leads to wave equation
describing a particle in a given external background. To solve this problem
it is necessary to find a unitary operator U(x , x0) which converts solutions
of the wave equation for a free particle Ψ0(x) to solutions Ψ(x) of
equation for the particle in external background:

U(x , x0)Ψ0(x) = Ψ(x). (10)

Thus, U(x , x0) is an intertwining operator in the sense of Darboux. This
operator should satisfy the equation

(iγµDµ) U(x , x0)− U(x , x0) (iγµ∂µ) = 0. (11)
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Therefore, operators

pµ = U(x , x0)p
µU−1(x , x0), mµν = U(x , x0)m

µνU−1(x , x0) (12)

commute with the operator of the wave equation.
As a consequence, the Pauli–Lubanski–Bargmann vector Wµ and the
components of the three-dimensional spin projection operator Si can be
constructed in the same way as in the case of a free particle:

Wµ = − 1

2
eµνρλmνρpλ, Si = − 1

m
WµSµ

i (p), (13)

The choice of unit vectors Sµ
i (p) is not unique, and it is possible to

construct operators that determine the spin projection on any direction in
an arbitrary Lorentz frame.
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The above statement may be reduced to the following: the wave function
of particle in an external background can be derived with the help of a
solution of the Dirac equation for a free particle and of some unitary
evolution operator. A complete set of integrals of motion may be
constructed with the help of operators pµ and mµ. The physical meaning
of eigenvalues of observables, i.e. quantum numbers, is clear enough then.
However, U(x , x0) is an integral operator and, so it is very difficult to find
explicit form of the evolution operator in general case.
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Discuss the model based on the Dirac–Pauli equation(
iγµ∂µ −

1

2
γµfµ(1 + γ5)− i

2
µ0F

µνσµν −m

)
Ψ(x) = 0, (14)

where f µ and Fµν are constant functions with the restriction

Fµν fν = 0. (15)

This equation can be used for describing a Dirac neutrino dynamics in
dense magnetized matter. In this case f µ is effective four-potential

Wolfenstein L 1978 Phys. Rev. D 17, 2369
which is a linear combination of the currents and of the polarizations of
background fermions with the proper choice of coupling constants.
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Though the explicit form of a kinetic momentum operator for a particle
with spin interacting with dense matter and electromagnetic field is not
known beforehand, the correspondence principle allows us to construct
solutions characterized by its eigenvalues:

Ψqζ0(x) =
1

2

∑
ζ=±1

e−i(Pζx)(1−ζγ5γµSµ
tp(q))(1−ζ0γ5γµSµ

0 (q))(γµqµ + m)ψ0,

(16)

Pµ
ζ == qµ

(
1 + ζ

(f ϕ)

2
√

(ϕq)2 −m2ϕ2

)
+

1

2
f µ

(
1−

ζ
√

(ϕq)2 −m2ϕ2

(ϕq)

)
− ϕµ ζ(f ϕ)m2

2(ϕq)
√

(ϕq)2 −m2ϕ2
,

(17)

Sµ
tp(q) =

qµ(ϕq)/m − ϕµm√
(ϕq)2 − ϕ2m2

, (18)

where
ϕµ = f µ/2 + µ0H

µνqν/m.

Lobanov () Quantum states of particles May, 22 18 / 37



This system represents the complete system of solutions of equation (14)
characterized by kinetic momentum of the particle qµ and the quantum
number ζ0 = ±1 which can be interpreted as the neutrino spin projection
on the initial direction of polarization Sµ

0 (q).
This system is non-stationary in the general case. The solutions are
stationary only when the initial polarization vector Sµ

0 (q) is equal to the
vector of the total polarization Sµ

tp(q). In this case the wave functions are

eigenfunctions of the spin projection operator Stp = −γ5γµSµ
tp(q) with

eigenvalues ζ = ±1, and of the canonical momentum operator pµ = i∂µ

with eigenvalues Pµ
ζ .
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The orthonormal system of the stationary solutions, the basis of solutions
of equation (14), can be written in the form

Ψqζ(x) = e−i(Pζx)
√
|Jζ(q)|(1− ζγ5γµSµ

tp(q))(γµqµ + m)ψ0, (19)

where Jζ(q) is the transition Jacobian between the variables qµ and Pµ
ζ :

Jζ(q) =

(
1 + ζ

(f ϕ)

2
√

(ϕq)2 −m2ϕ2

)2(
1 + ζ

fµµ0H
µνqν/(2m)− 2I1√

(ϕq)2 −m2ϕ2

)
.

(20)
Here I1 = 1

4FµνFµν is the first invariant of the tensor Fµν .
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Note that to obtain complete system of solutions for
antineutrino it is necessary to change the sign of the
kinetic momentum qµ.
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Dispersion law for the neutrino in dense magnetized matter is different
from the one for the free particle and can be written as

P̃2 = m2 − f 2/4− 2I1 − 2ζ∆

√
(P̃Φ̃)2 − Φ̃2m2, (21)

where
P̃µ = Pµ

ζ − f µ/2, Φ̃µ = f µ/2 + µ0H
µνP̃ν/m,

∆ = sign

(
1 +

fµµ0H
µνP̃ν/m − 4I1

P̃2 −m2 + f 2/4 + 2I1 − (Φ̃f )

)
.

(22)

The appearance of the factor ∆ in equation (21) is a consequence of the
fact that ζ is projection of the particle spin on the direction defined by the
kinetic momentum instead of the canonical one.
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In spite of the modifications in the dispersion law described above we see
that the neutrino moving through dense matter and electromagnetic fields
may still behave as a free particle, i.e. its group velocity

vgr =
∂P0

ζ

∂Pζ
=

q

q0
(23)

is the same for both polarization states of the particle. However, in
interactions with other particles some channels of reactions which are
closed for a free neutrino can be opened due to the modification of the
dispersion law.
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Let us discuss now properties of non-stationary solutions in more detail.
Solution Ψqζ0(x) is a plane-wave solution of the Dirac–Pauli equation (14),
describing a pure quantum-mechanical state of a neutral particle with a
non-conserved spin projection on the fixed space axis. Solutions Ψqζ0(x)
do not form an orthogonal basis. However, the considered system is not
overcomplete, since the spectrum of the spin projection operator is finite.
So the system can be easily orthogonalized. Generalization of the
stationary basis (19) is

Ψ̃qζ0(x) =
1

2

∑
ζ=±1

e−i(Pζx)
√
|Jζ(q)|

×(1− ζγ5γµSµ
tp(q))(1− ζ0γ

5γµSµ
0 (q))(γµqµ + m)ψ0.

(24)
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Thus we have just established that unitary intertwining operator U(x , x0)
in this case is the Fourier integral operator and it acts on elements of the
plain-wave basis of solutions of the free particle Dirac equation in the
following way

Ψ̃qζ0(x) = U(x , x0)Ψ0(x) =
1

2

∑
ζ=±1

e−i((Pζ−q)x)
√
|Jζ(q)|

×(1− ζγ5γµSµ
tp(q))Ψ0(x).

(25)

Action of the inverse operator is defined by the formula

Ψ0(x) = U−1(x , x0)Ψ̃qζ0(x) =
1

2

∑
ζ=±1

e i((Pζ−q)x) 1√
|Jζ(q)|

×(1− ζγ5γµSµ
tp(q))Ψ̃qζ0(x).

(26)

Since the intertwining operator is defined on the elements of the basis, its
action on an arbitrary solution is defined as well. Hence, the explicit form
of this operator as a function of coordinates and differential operators can
be easily obtained.
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Let us find the explicit forms of the kinetic momentum operator pµ and
the spin projection operator Stp in the coordinate representation.
The stationary solutions Ψqζ(x) are classified by eigenvalues of the
operators pµ and Stp, so

pµΨqζ(x) = qµΨqζ(x), StpΨqζ(x) = ζΨqζ(x). (27)

Since this solutions are also eigenfunctions of the canonical momentum
operator pµ = i∂µ with eigenvalues Pµ

ζ , we have

pµΨqζ(x) = Pµ
ζ Ψqζ(x). (28)

Now we should express eigenvalues of the kinetic momentum operator qµ

in terms of eigenvalues of the canonical momentum operator Pµ
ζ :

qµ = P̃µ +
P̃µ(Φ̃f )− f µ(f P̃)/2− 2mµ0H

µνΦ̃ν

P̃2 −m2 + f 2/4 + 2I1 − (Φ̃f )
. (29)
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The vector of total polarization in terms of the new variable is

Sµ
tp(q) = ∆

qµ(Φ̃P̃)/m − Φ̃µm√
(Φ̃P̃)2 −m2Φ̃2

. (30)

We can interpret Pµ
ζ as a result of action of operator pµ = i∂µ on the

wave function. So by changing P̃µ ⇒ pµ − f µ/2 and
Φ̃µ ⇒ f µ/2 + µ0H

µν(pν − fν/2)/m in formulas (29), (30), we obtain
kinetic momentum operator pµ and spin projection operator
Stp = −γ5γµSµ

tp(q) in the explicit form. These operators are
pseudodifferential ones and are determined on the solutions of equation
(14) with fixed mass m.
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To extend the domain of definition of constructed operators, we need to
replace mass m in (29) and (30) by the matrix operator from the
Dirac–Pauli equation. Unfortunately, the result of this substitution cannot
be written as a compact formula, so we do not present it here. However,
even if we do not know a covariant form of the operator pµ, we may
conclude that on the solutions of equation (14) the relations

p2 = m2, γµpµ = m, (31)

should hold.
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Consider now special cases where the presented technique looks quite
clear. Discuss the influence on the neutrino dynamics of the
electromagnetic field alone, i.e. assume that f µ = 0. In this case the
covariant form of the kinetic momentum operator is

pµ = pµ + γ5µ0H
µαHανp

νHβαpαγβ

pβHβαHαρpρ
, (32)

and the spin projection operator Stp is defined by the formula

Stp = sign
(

1 +
2µ0I1γ

5γµHµνpν

pβHβαHαρpρ

)
S̃tp. (33)

Here

S̃tp =
γ5γµHµνpν√
pβHβαHαρpρ

, (34)

just the spin projection operator that was used in

Ternov I M, Bagrov V G, Khapaev A M 1965 Zh. Eksp. Teor. Fiz. 48
921
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When electromagnetic field is absent, but f µ is non-trivial, the covariant
forms of the kinetic momentum and spin projection operators are

pµ = pµ − f µ

2
− γ5 pµf 2 − f µ(fp)

2((pf )2 − p2f 2)
σµν fµpν , (35)

Stp =
γ5σµν fµpν√
(pf )2 − p2f 2

. (36)

Note that if the matter is at rest and non-polarized (f = 0), then

Stp = sign(f 0)
(Σp)

|p|
, (37)

in other words Stp is equal to the standard helicity operator up to the sign.
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We can find now spin projection operators for non-stationary wave
functions Ψ̃qζ0(x) and Ψqζ0(x). For this purpose introduce operators S±
that act on the elements of stationary system of solution as follows

S+Ψqζ(x) =
(1− ζ)

2
Ψq(−ζ)(x), S−Ψqζ(x) =

(1 + ζ)

2
Ψq(−ζ)(x). (38)

Then operators S1 = 1
2(S+ + S−), S2 = 1

2i (S+ −S−) and S3 = 1
2Stp

correspond to elements of the Lie algebra of SU(2) group. Commutation
relations for these operators are

[Si ,Sj ] = ieijkSk . (39)

To determine the explicit realization of operators S± on eigenfunctions of
operator pµ let us choose the basis Sµ

i (q) in the form
Sµ

tp(q),Sµ
1 (q),Sµ

2 (q). Here space-like unit vectors Sµ
1 (q),Sµ

2 (q) are

Sµ
1 (q)=

Sµ
0 (q) + Sµ

tp(q)(S0(q)Stp(q))√
1− (S0(q)Stp(q))2

, Sµ
2 (q)=

eµνρλqνS0ρ(q)Stpλ(q)

m
√

1− (S0(q)Stp(q))2
.

(40)
Lobanov () Quantum states of particles May, 22 31 / 37



As a result we have

S± = −1

2

√
|Jζ=±1(q)|√
|Jζ=∓1(q)|

e±2iθγ5γµ (Sµ
1 (q)± iSµ

2 (q)) , (41)

where

θ = ζ((qµ + f µ/2− Pµ
ζ )x)

√
(ϕq)2 − ϕ2m2/m. (42)

Lobanov () Quantum states of particles May, 22 32 / 37



Operators Stp and S± are integrals of motion. So the spin projection
operator S̃0 that has eigenfunctions Ψ̃qζ0(x) and eigenvalues ζ0 = ±1 is a
linear combination of these operators:

S̃0 = −(S0(q)Stp(q))Stp +
√

1− (S0(q)Stp(q))2 [S+ + S−] . (43)
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Similarly one can construct the integral of motion S0 with eigenfunctions
Ψqζ0(x) and eigenvalues ζ0 = ±1:

S0 = −(S0(q)Stp(q))Stp

+
√

1− (S0(q)Stp(q))2

[√
|Jζ=−1(q)|√
|Jζ=+1(q)|

S+ +

√
|Jζ=+1(q)|√
|Jζ=−1(q)|

S−

]
.

(44)
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Note that operator (44) is not self-adjoint operator with respect to the
standard scalar product. It seems quite natural, since wave functions
Ψqζ0(x) do not form an orthogonal system. However, the system of wave
functions is orthonormalized to the condition “one particle in the unit
volume”. In this sense wave functions Ψqζ0(x) minimize the uncertainty
relation for spin projection operators:

〈(S1 − 〈S1〉)2〉〈(S2 − 〈S2〉)2〉 =
1

4
〈S3〉2. (45)

Therefore, these wave functions describe spin-coherent states of neutrino.
The given system of spin-coherent states is parameterized by four-vector
Sµ

0 .
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Spin-coherent states have very simple quasi-classical interpretation. We
can introduce effective electromagnetic fields

H ⇒ B = H + M, D ⇒ E = D− P, (46)

where
M = (f 0q− q0f)/(2m), P = −

[
q× f

]
/(2m). (47)

In the rest frame of the particle its spin vector precesses around the
direction of effective magnetic field B0 with the frequency
ω = 2mµ0|B0|/q0, the angle between B0 and the vector of spin being
ϑ = arccos((B0ζ0)/|B0|), where

ζ0 = S0 −
qS0

0

q0 + m
. (48)
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Conclusions

Consequently, the problem of neutrino spin rotation in dense matter and in
strong electromagnetic field is solved in full agreement with the basic
principles of quantum mechanics. Using the wave functions of stationary
basis or the wave functions of non-stationary basis it is possible to
calculate probabilities of various processes with neutrino in the framework
of the Furry picture. When choosing one or another type of the basis, it is
necessary to take into account, that due to the time-energy uncertainty,
stationary states of the neutrino can be generated only when the linear
size of the area occupied by the electromagnetic field and the matter is
comparable in the order of magnitude with the formation length of the
process.

Lobanov () Quantum states of particles May, 22 37 / 37


