Boson spectral function and the electron-phonon interaction (EPI) of high-temperature superconductors (HTSC)

EPI

VS

Coulomb (SFI,...)

M. L. Kulic* and E. G. Maksimov

*Goethe University Frankfurt/Main Lebedev Institute, Moscow

d-wave pairing

Review E. G. Maksimov, M. L. Kulic', O. V. Dolgov, arXiv:0810.3789

Content

I. Phononic (EPI) vs non - phononic mechanisms

- d-wave pairing $\rightarrow \Delta_{d_{x^2-y^2}}(\boldsymbol{k},\omega) \approx \Delta^0(\omega)(\cos k_x - \cos k_y)$

- bosonic spectral function $\alpha^2 F_B(\omega)$

II. Experiments related to $\alpha^2 F_B(\omega)$

- Reflectivity $R(\omega) \rightarrow \sigma(\omega) \rightarrow \Gamma_{tr}(\omega) \neq \Gamma(\omega) \equiv -2 \operatorname{Im} \Sigma(\omega)$
- ARPES \rightarrow I(**k**, ω) ~ n_F(ω)A(**k**, ω) \rightarrow Σ (**k**, ω)
- tunneling $\rightarrow I(V) \rightarrow \alpha^2 F_B(\omega)$ (for phonons)

III. $\sigma(\omega), I(V), A(\mathbf{k}, \omega) \rightarrow EPI$ is important and *there is characteristic phononic energy scale*

$$\rightarrow \alpha^2 F_{ph}(\omega) \rightarrow \lambda_{ep} = 2 - 3$$

IV. Challenge for the theory \rightarrow *EPI must be strongly momentum dependent*!

V. Concusions

Phononic vs non-phononic pairing – bosonic spectral function

$$\Sigma(\boldsymbol{k},\omega) = \int_{0}^{\infty} d\Omega \left\langle \alpha^{2} F_{B}(\boldsymbol{k},\boldsymbol{k}',\Omega) \right\rangle_{\boldsymbol{k}'} R(\omega,\Omega)$$
$$\alpha^{2} F_{B}(\boldsymbol{k},\boldsymbol{k}',\Omega) = N(0) \left| g_{\boldsymbol{k},\boldsymbol{k}'} \right|^{2} \operatorname{Im} B(\boldsymbol{k}-\boldsymbol{k}',\Omega)$$
$$B(\boldsymbol{q},\Omega) = D_{ph}(\boldsymbol{q},\Omega) \text{ or } V_{c}(\boldsymbol{q},\Omega) \text{ or } Im\chi(\boldsymbol{q},\Omega)$$

Inelastic magnetic neutron scattering and NMR hint against SFI mechanism

Big change in $Im\chi$ but small change in T_c !

Ph. Bourges et al. (1999)

$$I_{Q} = \lim_{\omega \to 0} \frac{Im\chi_{Q}(\omega)}{\omega}$$
$$O = (\pi, \pi)$$

Anticorrelation between I_Q and T_c !

M. Mehring (1993)

$\sigma(\omega)$ from reflectivity $R(\omega)$

Optical data can be naturally explained by strong EPI !

Low-temperature superconductors

- linearity in $\Gamma_{tr}(\omega, T=0) = \frac{2\pi}{\omega} \int_0^{\omega} d\Omega(\omega - \Omega) \alpha_{tr}^2(\Omega) F(\Omega)$ for $\omega > \omega_D$ is natural phenomenon ! For $\alpha_{tr}^2(\Omega) F(\Omega) = \frac{\lambda_{tr} \Omega_E}{2} \delta(\omega - \Omega_E) \implies \Gamma_{tr}(\omega, T=0) = \pi \lambda_{tr} \Omega_E \left(1 - \frac{\Omega_E}{\omega}\right)$

- only at
$$T = 0$$
 it holds

$$\alpha_{tr}^{2}(\Omega)F(\Omega) = \frac{\omega_{pl}^{2}}{8\pi^{2}} \frac{\partial^{2}}{\partial \omega^{2}} \left[\omega \operatorname{Re} \frac{1}{\sigma(\omega, T = 0)} \right]$$

 $\Gamma_{tr}^{*}(\omega) (\equiv 1/\tau^{*}) \text{ strongly depends on } \varepsilon_{\infty}$ - too small $\varepsilon_{\infty} \implies$ overestimated linearity of $\Gamma_{tr}^{*}(\omega)$!

Restricted spectral weight W

 $W(\Omega_c, T)$ can be naturally explained by strong EPI !

 $W(\Omega_{c},T) = \int_{0}^{\Omega_{c}} Re\sigma(\omega)d\omega \propto \left\langle -\hat{T} \right\rangle; \quad \hat{T} = \sum_{p} \varepsilon_{p}\hat{n}_{p}$ $W(\Omega_{c},T) \approx \frac{\omega_{pl}^{2}}{8} \left[1 - \frac{\Gamma(T)}{W_{p}} \right] \qquad \Gamma(T) = \Gamma_{ep}(T)$

A. E. Karakozov, E. G. Maksimov (2006)

G. Deutscher et al. (2005)

ARPES kink at the nodal (N) -point

ARPES spectra can be explained by strong EPI !

Puzzle: $\omega_{kink}^{(s)} = \omega_{kink}^{(n)}$ isotropic EPI theory predicts: $\omega_{kink}^{(s)} = \omega_{kink}^{(n)} + \Delta_{max}$ \rightarrow FSP in $\alpha^2 F(q, \omega)$!

 $\Delta(k_N) = 0$ $\Delta(k_A) = \Delta_{\max}$

A. Lanzara et al. (2001)

ARPES kink at the anti-nodal (A) point

- shift at A-point $\rightarrow \omega_{kink}^{(s)} = \omega_{kink}^{(n)} + \Delta_{max}$, $\Delta_{max} \approx 30 \ meV$

T. Cuk et al. (2004)

Strong *EPI* and phononic structure $\alpha^2 F(k_N, \omega)$ is seen in ARPES self-energy $\Sigma(k_N, \omega)$

 $Re\Sigma(k_N,\omega)$, $Im\Sigma(k_N,\omega)$ and $\alpha^2 F(k_N,\omega)$ in $La_{2-x}Sr_xCuO_4$, x = 0.03

X. J. Zhou et al. (2005)

Isotope effect in ARPES at N-point

----- O¹⁶ ----- O¹⁸

G.-H. Gweon et al., Nature, **430**, 187 (2004)

 $Re\Sigma(k_N,\omega)$ obtained from ARPES in $Bi_2Sr_2CaCu_2O_8 \implies \lambda_{ep} = 2-3, \ \lambda_c \approx 1$

T. Valla et al. (2007) M.L.K., O. Dolgov (2007)

ARPES in 4-layered HTSC is against SFI

Theory of ARPES in the FSP model

- "local" Eliashberg equations due to FSP in charge scattering

$$\begin{split} \tilde{\omega}_{n,\varphi} &= \omega_n + \pi T \sum_m \frac{\lambda_{1,\varphi} (n-m) \tilde{\omega}_{m,\varphi}}{\sqrt{\tilde{\omega}_{m,\varphi}^2 + \tilde{\Delta}_{m,\varphi}^2}} + \Sigma_{n,\varphi}^c \\ \tilde{\Delta}_{n,\varphi} &= \pi T \sum_m \frac{\lambda_{2,\varphi} (n-m) \tilde{\Delta}_{m,\varphi}}{\sqrt{\tilde{\omega}_{m,\varphi}^2 + \tilde{\Delta}_{m,\varphi}^2}} + \tilde{\Delta}_{n,\varphi}^c \end{split}$$

$$\lambda_{1(2),\varphi}(n-m) = \lambda_{epi,\varphi}(n-m) + \delta_{mn}\gamma_{1(2),\varphi}^{imp}$$

$$\lambda_{epi,\varphi}(n) = 2\int_{0}^{\infty} d\omega \frac{\omega \alpha_{epi,\varphi}^{2} F(\omega)}{\omega^{2} + \omega_{n}^{2}}$$

M. L. K. & O. V. Dolgov, Phys. Rev. B 71 (2005)

$\alpha^2 F(\omega)$ and strong EPI from tunneling conductance

Extraction of $\alpha^2 F(\omega)$ from:

- planar junctions $Bi_2Sr_2CaCu_2O_8 GaAs$ (and Au)
- break-junctions from $Bi_2Sr_2CaCu_2O_8$

Fig. 58. The spectral function $\alpha^2 F(\omega)$ and the calculated density of states at 0 K (upper solid line) obtained from the conductance measurements on the Bi(2212)-Au planar tunneling junction; from [42].

All phonons contribute to T_c

No neak	$\omega [meV]$	λ.	$\Delta T[K]$
D1		1.00	$\Delta I_{c}[\Lambda]$
P1	14.3	1.26	7.4
P2	20.8	0.95	11.0
P3	31.7	0.48	10.5
P4	35.1	0.28	6.7
P5	39.4	0.24	7.0
P6	45.3	0.30	10.0
P7	58.3	0.15	6.5
P8	63.9	0.01	0.6
P9	69.9	0.07	3.6
P10	73.7	0.06	3.3
P11	77.3	0.01	0.8
P12	82.1	0.01	0.7
P13	87.1	0.03	1.8

D. Shimada eta al. (1997, 2007)

Magnetic resonance mode is ineffective for pairing

- Resonance energy E_r vs doping in Bi2212; Y. Sidis (2004) tunneling junctions: Bi₂Sr₂CaCu₂O₈
Y. G. Ponomarev et al. (2008)

Tunneling in $La_{2-x}Sr_xCuO_4$ spectra reproduce phononic structure

G. Deutscher et al. (1994)

H. Shim et al. (2008)

Constraints on EPI imply strong q-dependence

1. **d** - wave pairing $\Rightarrow \Delta(k, \omega) \approx \Delta^0(\omega)(\cos k_x - \cos k_y)$

2. high $T_c \approx 160 K$

- 3. rather **large EPI** coupling $\Rightarrow \lambda_{epi} = 2-3$
- 4. small $\lambda_{tr} \sim 0.4 1 \quad (\rho(T) \sim \lambda_{tr} T)$

Assumption: pairing is due to high-energy non - phononic boson \Rightarrow EPI is pair-breaking

Question - how large is the **bare** T_{c0} due to the boson?

$$Z(\omega)\Delta(k,\omega) = \int d^3q \int \frac{d\Omega}{\Omega} V_{sfi}(k - q, \Omega)\Delta(q, \omega) th \frac{\xi(q)}{2T_c} \implies \ln \frac{T_c}{T_{c0}^{sfi}} = \Psi(\frac{1}{2}) - \Psi(\frac{1}{2} + \frac{\Gamma_{epi}}{2\pi T_c})$$

$$\Delta(k,\omega) = \Delta(\omega)[\cos k_x - \cos k_y] \quad \text{and} \quad Z(\omega) \approx 1 + i\Gamma_{epi}$$

for $T_c \approx 160 \ K \implies T_{c0}^{bos} \approx (400 - 1100) \ K \ !$

Way out \Rightarrow forward scattering peak (**FSP**) in EPI $\lambda_{epi}(q)$

Theory: EPI must be strongly momentum dependent

Long range EPI (forward scattering peak) due to:

- long range due to the Madelung energy $\Rightarrow \frac{g_{ep}^0(\boldsymbol{k},\boldsymbol{q})}{\varepsilon(\boldsymbol{q})}$

- long range due to strong correlations $\Rightarrow \gamma_c(\mathbf{k},q)$ (vertex)

M.L.K., R.Zeyher, O. Dolgov...

Strong Correlations without Slave Bosons

Hubbard model:
$$\hat{H} = \sum_{ij,\sigma} \varepsilon_{a,i} n_{i,\sigma} - \sum_{ij,\sigma} t_{ij} c_{i,\sigma}^{\dagger} c_{j,\sigma} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow} + \hat{H}_{EP}$$

 $U \gg t \rightarrow$ no doubly occupancy $\rightarrow n_i = 0,1$ Hubbard operators $\hat{X}^{\alpha\beta}$

$$[\hat{X}_{i}^{\alpha\beta}, \hat{X}_{j}^{\gamma\lambda}]_{\pm} = \delta_{ij} [\delta_{\gamma\beta} \hat{X}_{i}^{\alpha\lambda} \pm \delta_{\alpha\lambda} \hat{X}_{i}^{\gamma\beta}] \qquad \hat{X}_{i}^{00} + \sum_{i} \hat{X}_{i}^{\sigma\sigma} = 1$$

 $\overline{\sigma}=1$

$$\begin{split} \hat{H} &= -\sum_{i,j,\sigma} t_{ij} \hat{X}_{i}^{\sigma 0} \hat{X}_{j}^{0\sigma} + \sum_{i,j} J_{ij} (\hat{S}_{i} \cdot \hat{S}_{j} - \frac{1}{4} \hat{n}_{i} \hat{n}_{j}) + \hat{V}_{LR-Coulomb} \\ &+ \sum_{i,\sigma} \varepsilon_{a,i}^{0} \hat{X}_{i}^{\sigma \sigma} + \hat{H}_{ph} + \hat{H}_{EPI} \end{split}$$

Slave Boson method: $\hat{X}^{0\sigma} = c_{i,\sigma}(1 - n_{i,-\sigma}) = f_{\sigma}b^{\dagger}$

Results of X-method in O(1) order

1. coherent quasiparticles $(t \rightarrow \delta \cdot t)$ (doping $\delta = 1 - n$)

$$g_{0}(\mathbf{k},\omega) \equiv G_{0}(\mathbf{k},\omega)/Q_{0} = \frac{1}{\omega - (\epsilon_{0}(\mathbf{k}) - \mu)},$$

$$\epsilon_{0}(\mathbf{k}) = \epsilon_{c} - q_{0}t_{0}(\mathbf{k}) - \frac{1}{N_{L}}\sum_{\mathbf{p}} J_{0}(\mathbf{k} + \mathbf{p})n_{F}(\mathbf{p}),$$

$$\epsilon_{c} = \frac{1}{N_{L}}\sum_{\mathbf{p}} t_{0}(\mathbf{p})n_{F}(\mathbf{p}),$$

$$Q_{0} = \langle \hat{X}_{i}^{00} \rangle = Nq_{0} = N\frac{\delta}{2}.$$

 $q_0 = \delta/2 \implies$ band narrowing!

2. large Fermi surface ~ 1- δ and QP residuum ~ δ

3. sum rule $\int d\omega \sigma(\omega) \sim \delta \Rightarrow$ unusual Fermi liquid !

4. no spin-charge separation in the X-method ! \Rightarrow in O(1/N) SB and X-method are different

$$1-\delta=2\sum_{\boldsymbol{p}} n_{\mathrm{F}}(\boldsymbol{p})$$
.

"Pseudogap" phenomena due to internal Cooper pair fluctuations

- pairing Hamiltonian:

 $T_c \sim \frac{T_c^{MF}}{(r_c/\mathcal{E})}.$

$$\begin{split} H &= \sum_{\mathbf{k}\sigma} 2\xi_{\mathbf{k}} S_{\mathbf{k}\sigma}^z - \frac{1}{2} \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k}-\mathbf{k}'} (S_{\mathbf{k}}^+ S_{\mathbf{k}'}^- + S_{\mathbf{k}'}^+ S_{\mathbf{k}}^-) \\ &= \sum_{\mathbf{k}\sigma} 2\xi_{\mathbf{k}} S_{\mathbf{k}\sigma}^z - \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k}-\mathbf{k}'} (S_{\mathbf{k}}^x S_{\mathbf{k}'}^x + S_{\mathbf{k}'}^y S_{\mathbf{k}}^y), \end{split}$$

$$S_{\mathbf{k}\sigma}^{\mathbf{z}} = \frac{1}{2} (c_{\mathbf{k}\uparrow}^{\dagger} c_{\mathbf{k}\uparrow} - c_{-\mathbf{k}\downarrow}^{\dagger} c_{-\mathbf{k}\downarrow} - 1), \qquad S_{\mathbf{k}\sigma}^{+} = c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger}.$$

BCS theory $\Rightarrow V_{\mathbf{k}-\mathbf{k}'} = V_{0'} \Rightarrow "longe - range" in k-space <math>\Rightarrow$ MFA exact

FSP model $\Rightarrow V_{\boldsymbol{k}-\boldsymbol{k}'} = V_0 \delta(\boldsymbol{k}-\boldsymbol{k}') \Rightarrow T_c^{MF} = V_0 / 4 \text{ and } \Delta_0 = 2T_c^{MF}$

 \Rightarrow "*short*-*range*" in k-space \Rightarrow low-energy bound states (spin-waves)

$$r_c = q_c^{-1} \sim a / 2\delta$$

M. L. K., in Lectures of Physics of Highly Correlated Systems VIII, AIP Proceedings 715 (2004)

Conclusions

- Tunneling, ARPES, optics... \Rightarrow EPI important for pairing in HTSC
- EPI strongly momentum dependent in order to be conform with d-wave
- Momentum dependence due to the Madelung energy and strong correlations
- EPI copupling constant $\lambda_z = 2 3$ and $\lambda_d < \lambda_z$
- all phonons contribute to $\lambda_{\rm Z}$
- T_c is dominated by EPI
- Coulomb interaction (and spin fluctuations) trigger d-wave pairing

M.L.K., R.Zeyher, O. Dolgov...