The Squashed, Stretched and Warped Gets Perturbed

Igor Klebanov

PCTS and Department of Physics

Talk at 4th Sakharov Conference May 22, 2009

Introduction

 The gauge theory on coincident M2 branes has been a hot topic over the past year.

 This is a long-standing problem: how to find the world volume theory on coincident supermembranes in 11-dimensional M-theory. This is harder than the description of D-branes in string theory that is known explicitly at small string coupling.

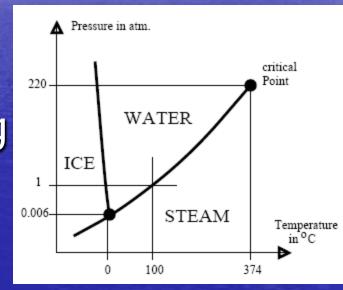
 But M-theory is inherently strongly coupled: one can think of it as the strong coupling limit of a 10-dimensional superstring theory. What to do?

- The research on AdS₅/CFT₄ has rekindled interest in the maximally super-symmetric 4-d gauge theory and provided a host of information about its strongly coupled limit. See the January 2009 Physics Today article by I.K., J.Maldacena.
- This conformal gauge theory is becoming `The Harmonic Oscillator of 4-d Gauge Theory' in that it may be exactly solvable.
- It has provided a `hyperbolic cow' approximation to various phenomena at strong coupling.

AdS_4/CFT_3

 Besides describing all of known particle physics, Quantum Field Theory is important for understanding the vicinity of certain phase transitions, such as the allimportant water/vapor transition.

 Here we are interested in a 3-d (Euclidean) QFT.



- This transition is in the 3-d Ising Model Universality Class.
- Other common transitions are described by 3-d QFT with O(N) symmetry.
- 3-d theories are also very important in describing 2-d quantum systems, such as those in the Quantum Hall effect, high-Tc superconductors, etc.
- Can we find a `Harmonic Oscillator' of 3-d Conformal Field Theory ?

O(N) Sigma Model

 Describes 2nd order phase transitions in statistical systems with O(N) symmetry.

$$S = \int d^3x \left[\frac{1}{2} (\partial_\mu \phi^a)^2 + \frac{\lambda}{2N} (\phi^a \phi^a)^2 \right]$$

IR fixed point can be studied using the Wilson-Fisher expansion in *ε*=4-d.
 The model simplifies in the large N limit since it possesses conserved currents

 $J_{(\mu_1\cdots\mu_s)} = \phi^a \partial_{(\mu_1}\cdots\partial_{\mu_s)} \phi^a + \dots$

Higher Spin Gauge Theory

- An AdS₄ dual of the large N sigma model was proposed. IK, Polyakov (2002)
- It is the Fradkin-Vasiliev gauge theory of an infinite number of interacting massless higher-spin gauge fields.

 There is no small AdS curvature limit. This makes the theory difficult to study in the dual AdS formulation. This is an interesting problem for the future.

M2 Brane Theory

The theory on N coincident M2-branes has $\mathcal{N}=8$, the maximum possible supersymmetry in 3 dimensions. When N is large, its dual description is provided by the weakly curved AdS₄ x S⁷ background in 11-dimensional M-theory. This dual description is tractable and makes many non-trivial predictions.

A general prediction of the AdS/CFT duality is that the number of degrees of freedom on a large number N of coincident M2-branes scales as N^{3/2} I.K., A. Tseytlin (1996) • This is much smaller than the N² scaling found in the 4-d SYM theory on N coincident D3-branes (as described by the dual gravity). Gubser, I.K., Peet (1996)

What is the M2 Brane Theory?

- It is the Infrared limit of the D2-brane theory, the $\mathcal{N}=8$ supersymmetric Yang-Mills theory in 2+1 dimensions, i.e. it describes the degrees of freedom at energy much lower than $(g_{YM})^2$ The number of such degrees of freedom $\sim N^{3/2}$ is much lower than the number of UV degrees of freedom $\sim N^2$. Is there a more direct way to characterize
 - the Infrared Scale-Invariant Theory?

The BLG Theory

 In a remarkable development, Bagger and Lambert, and Gustavsson formulated an SO(4) Chern-Simons Gauge Theory with manifest *N*=8 superconformal gauge theory. In Van Raamsdonk's SU(2)xSU(2) formulation, *X** = -ε*X*ε

$$S = \int d^{3}x \operatorname{tr} \left[-(\mathcal{D}^{\mu}X^{I})^{\dagger}\mathcal{D}_{\mu}X^{I} + i\bar{\Psi}^{\dagger}\Gamma^{\mu}\mathcal{D}_{\mu}\Psi \right] \\ - \frac{2if}{3}\bar{\Psi}^{\dagger}\Gamma^{IJ}(X^{I}X^{J\dagger}\Psi + X^{J}\Psi^{\dagger}X^{I} + \Psi X^{I\dagger}X^{J}) - \frac{8f^{2}}{3}\operatorname{tr} X^{[I}X^{\dagger}X^{K]}X^{\dagger[K}X^{J}X^{\dagger I]} \right] \\ + \frac{1}{2f}\epsilon^{\mu\nu\lambda}(A_{\mu}\partial_{\nu}A_{\lambda} + \frac{2i}{3}A_{\mu}A_{\nu}A_{\lambda}) - \frac{1}{2f}\epsilon^{\mu\nu\lambda}(\hat{A}_{\mu}\partial_{\nu}\hat{A}_{\lambda} + \frac{2i}{3}\hat{A}_{\mu}\hat{A}_{\nu}\hat{A}_{\lambda}) \right] \\ X^{I} \text{ are the 8 fields transforming in (2,2), which is the 4 of SO(4)} \qquad X^{I} = \frac{1}{2}(x_{4}^{I}\mathbb{1} + ix_{i}^{I}\sigma^{i})$$

$\mathcal{N}=2$ Superspace Formulation

 Define bi-fundamental superfields rotated by SU(4)_{flavor} symmetry

 $\begin{aligned} \mathcal{Z} &= Z(x_L) + \sqrt{2}\theta\zeta(x_L) + \theta^2 F(x_L) ,\\ \bar{\mathcal{Z}} &= Z^{\dagger}(x_R) - \sqrt{2}\bar{\theta}\zeta^{\dagger}(x_R) - \bar{\theta}^2 F^{\dagger}(x_R) \end{aligned}$

 $Z^{\ddagger A} := -\varepsilon (Z^A)^{ \mathrm{\scriptscriptstyle T}} \varepsilon = X^{\dagger A} + i X^{\dagger A + 4}$

The superpotential is Benna, IK, Klose, Smedback,

 $W = \frac{1}{4!} \epsilon_{ABCD} \operatorname{tr} \mathcal{Z}^A \mathcal{Z}^{\dagger B} \mathcal{Z}^C \mathcal{Z}^{\dagger D}$

Using SO(4) gauge group notation,

$$W = -\frac{1}{8 \cdot 4!} \epsilon_{ABCD} \epsilon^{abcd} \mathcal{Z}_a^A \mathcal{Z}_b^B \mathcal{Z}_c^C \mathcal{Z}_d^D$$

The ABJM Theory

 Aharony, Bergman, Jafferis and Maldacena argued that the correct description of a pair of M2-branes is slightly different. It involves U(2) x U(2) gauge theory.

The SU(4) flavor symmetry is not manifest because of the choice of complex

combinations $Z^1 = X^1 + iX^5$,

 $Z^{1} = X^{1} + iX^{5} , \qquad \qquad W_{1} = X^{3\dagger} + iX^{7\dagger}$ $Z^{2} = X^{2} + iX^{6} , \qquad \qquad W_{2} = X^{4\dagger} + iX^{8\dagger}$

• The manifest flavor symmetry is SU(2)xSU(2) $W = \frac{1}{4}\epsilon_{AC}\epsilon^{BD} \operatorname{tr} \mathcal{Z}^{A} \mathcal{W}_{B} \mathcal{Z}^{C} \mathcal{W}_{D}$

For N M2-branes ABJM theory easily generalizes to U(N) x U(N). The theory with Chern-Simons coefficient k is then conjectured to be dual to $AdS_4 \times S_7/Z_k$ supported by N units of flux. • For k>2 this theory has $\mathcal{N}=6$ supersymmetry, in agreement with this conjecture. In particular, the theory has manifest SU(4) R-symmetry.

 SU(4)_R Symmetry
 The global symmetry rotating the 6 supercharges is SO(6)~SU(4). The classical action of this theory indeed has this symmetry. Benna, IK, Klose, Smedback

$$\begin{split} V^{\text{bos}} &= -\frac{L^2}{48} \operatorname{tr} \left[Y^A Y^{\dagger}_A Y^B Y^{\dagger}_B Y^C Y^{\dagger}_C + Y^{\dagger}_A Y^A Y^{\dagger}_B Y^B Y^{\dagger}_C Y^C \right. \\ &\quad + 4 Y^A Y^{\dagger}_B Y^C Y^{\dagger}_A Y^B Y^{\dagger}_C - 6 Y^A Y^{\dagger}_B Y^B Y^{\dagger}_A Y^C Y^{\dagger}_C \right] \end{split}$$

$$\begin{split} V^{\rm ferm} &= \frac{iL}{4} \operatorname{tr} \left[Y_A^{\dagger} Y^A \psi^{B\dagger} \psi_B - Y^A Y_A^{\dagger} \psi_B \psi^{B\dagger} + 2 Y^A Y_B^{\dagger} \psi_A \psi^{B\dagger} - 2 Y_A^{\dagger} Y^B \psi^{A\dagger} \psi_B \right. \\ &\left. - \epsilon^{ABCD} Y_A^{\dagger} \psi_B Y_C^{\dagger} \psi_D + \epsilon_{ABCD} Y^A \psi^{B\dagger} Y^C \psi^{D\dagger} \right] \,. \end{split}$$

 Y^A , A=1,...4, are complex N x N matrices.

 $Y^{A} = \{Z^{1}, Z^{2}, W^{1\dagger}, W^{2\dagger}\}$

Enhanced Symmetry

- For k=1 or 2 the global symmetry should enhance to SO(8) according to the ABJM conjecture. This is not seen in the classical lagrangian but should appear in the quantum theory.
- The key to it are probably the `monopole' operators that create singular monopole field configurations at a point. They create magnetic flux in a diagonal U(1) subgroup and are charged under the remaining gauge groups.
 For k=1 the singly-charged operator is (e^T)^a (e^T)^a (e^T)^a (e^T)^{ba} (e^T) (e^T) (e^T)^{ba} (e^T)^{ba} (e^T)^{ba} (e^T)^{ba} (e^T) (e

Relevant Deformations

 The M2-brane theory may be perturbed by relevant operators that cause it to flow to new fixed points with reduced
 Supersymmetry. Benna, IK, Klose, Smedback; IK, Klose, Murugan; Ahn

 For example, a quadratic superpotential deformation, allowed for k=1, 2, may preserve SU(3) flavor symmetry

 $\Delta \mathbf{W} = m(\mathcal{Z}^4)^a{}_{\hat{a}}(\mathcal{Z}^4)^b{}_{\hat{b}}(e^{-2\tau})^{\hat{a}\hat{b}}_{ab}$

Squashed, stretched and warped

The dual AdS₄ background of M-theory should also preserve $\mathcal{N}=2$ SUSY and SU(3) flavor symmetry. Such an extremum of gauged SUGRA was found 25 years ago by Warner. Upon uplifting to 11-d Corrado, Pilch and Warner found a warped product of AdS₄ and of a `stretched and squashed' 7-sphere:

 $ds_{11}^2 = \Delta^{-1} ds_4^2 + 3^{3/2} L^2 \Delta^{\frac{1}{2}} ds_7^2(\rho, \chi) , \qquad \Delta \equiv (\xi \cosh \chi)^{-\frac{4}{3}}$

The squashing parameter is ρ; the stretching is χ

$$ds_8^2(\rho,\chi) = g_{IJ}dx^I dx^J = dx^I Q_{IJ}^{-1} dx^J + \frac{\sinh\chi^2}{\xi^2} (x^I J_{IJ} dx^J)^2$$

$$Q = \text{diag}\left\{\rho^{-2}, \rho^{-2}, \rho^{-2}, \rho^{-2}, \rho^{-2}, \rho^{-2}, \rho^{6}, \rho^{6}\right\}$$

$$\xi^2 \equiv x^I Q_{IJ} x^J$$

The four complex coordinates

 $z^1 = x^1 + ix^2$, $z^2 = x^3 + ix^4$, $z^3 = x^5 + ix^6$, $w = x^7 - ix^8$

$$|z^1|^2 + |z^2|^2 + |z^3|^2 + |w|^2 = 1$$

may be expressed in terms of the 7 angles.

The equations of motion are satisfied with

$$\rho = 3^{\frac{1}{8}}, \qquad \chi = \frac{1}{2}\operatorname{arccosh} 2$$

$$A_{(3)} = \frac{3^{3/4}}{4} e^{3r/L} dx^0 \wedge dx^1 \wedge dx^2 + C_{(3)} + C_{(3)}^*$$

$$C_{(3)} = \frac{3^{11/4}L^3}{4\left(z^i\bar{z}_i + 3w\bar{w}\right)} \left[z^{[1}dz^2 \wedge dz^{3]} \wedge d\bar{w} - \bar{w}dz^1 \wedge dz^2 \wedge dz^3\right]$$

 The internal components break parity (Englert). They preserve a flavor SU(3), and a U(1) R-symmetry

$$\frac{1}{3}\left(z^i\partial_{z^i}-\bar{z}_i\partial_{\bar{z}_i}\right)+w\partial_w-\bar{w}\partial_{\bar{w}}$$

The Spectrum via Group Theory

Osp(8 4)	stretching and squashing of S^7	\rightarrow SU(3) × Osp(2 4)
decompose $\mathcal{N} = 8$ supermultiplets		$ \uparrow assemble \mathcal{N} = 2 \\ supermultiplets $
$\mathrm{SO}(8)_R \times \mathrm{SO}(3,2)$	$\xrightarrow{\text{RG flow}} \rightarrow$	$\mathrm{SU}(3) \times \mathrm{U}(1)_R \times \mathrm{SO}(3,2)$
There are only	v two ways	of breaking the

SO(8) R-symmetry consistent with the Osp(2|4) symmetry in the IR:

$$[a, b, c, d] \to \begin{cases} [a, b]_{\left(\frac{a}{3} + \frac{2b}{3} + d\right)\varepsilon} & \text{Scenario I}, \\ \\ [a, b]_{-\left(\frac{2a}{3} + \frac{4b}{3} + c + d\right)\varepsilon} & \text{Scenario II} \end{cases}$$

	Scenario I	Scenario II
Hyper	$[n+2,0]_{\frac{n+2}{3}}, [0,n+2]_{-\frac{n+2}{3}}$	$[n+2,0]_{-\frac{2n+4}{3}}, [0,n+2]_{\frac{2n+4}{3}}$
Vector	$[n+1,1]_{\frac{n}{3}}, [1,n+1]_{-\frac{n}{3}}$	$[n+1,1]_{-\frac{2n}{3}}, [1,n+1]_{\frac{2n}{3}}$
Gravitino	$[n+1,0]_{\frac{n+1}{3}}, [0,n+1]_{-\frac{n+1}{3}}$	$[n+1,0]_{-\frac{2n-1}{3}}, [0,n+1]_{\frac{2n-1}{3}}$
Graviton	$[0,0]_n, [0,0]_{-n}$	$[0, 0]_0, \ [0, 0]_0$

 We find that Scenario I gives SU(3)xU(1)_R quantum numbers in agreement with the proposed gauge theory, where they are schematically given by

	Z^A	ζ^A	Z_A^\dagger	ζ^{\dagger}_A	Z^4	ζ^4	Z_4^\dagger	ζ_4^\dagger	x	θ	$\bar{\theta}$	
SU(3)	3	3	$\bar{3}$	$\bar{3}$	1	1	1	1	1	1	1	
Dimension R-charge	$\frac{1}{3}$	$\frac{5}{6}$	$\frac{1}{3}$	$\frac{5}{6}$	1	$\frac{3}{2}$	1	$\frac{3}{2}$	-1	$-\frac{1}{2}$	$-\frac{1}{2}$	
R-charge	$+\frac{1}{3}$	$-\frac{2}{3}$	$-\frac{1}{3}$	$+\frac{2}{3}$	+1	0	-1	0	0	+1	-1	

Spin-2 Perturbations

 Consider graviton perturbations in AdS with $h^i_{\ i} = 0$, $\partial^i h_{ij} = 0$ $\phi = h_{i}^{i}$ satisfy the minimal scalar equation $\Box \phi = 0 \qquad \phi = \Phi(x^i, r) Y(y^\alpha) \qquad \Box_4 \Phi(r, x^i) - m^2 \Phi(r, x^i) = 0$ For the (p,q) irrep of SU(3), we find the angular dependence IK, Pufu, Rocha $Y(y^{\alpha}) = a_{i_1 i_2 \dots i_p}^{j_1 j_2 \dots j_q} \left(\prod_{l=1}^p z^{i_k}\right) \left(\prod_{l=1}^q \bar{z}_{j_l}\right) w^{n_r}$ $\times \begin{cases} {}_{2}F_{1}(-j,3+p+q+j+n_{r};3+p+q;1-w\bar{w}) & \text{if } n_{r} \geq 0 \\ {}_{2}F_{1}(-j+n_{r},3+p+q+j;3+p+q;1-w\bar{w}) & \text{if } n_{r} < 0 . \end{cases}$

The R-charge is

$$R = \frac{1}{3}(p-q) + n_r$$

For the j-th KK mode the mass-squared is

$$m^{2} = \frac{1}{L^{2}} \left[2j^{2} + 2j|n_{r}| + n_{r}^{2} + 2j(p+q+3) + \frac{1}{3}n_{r}(p-q) + |n_{r}|(3+p+q) + \frac{1}{9}(p^{2}+q^{2}+4pq+15p+15q) \right].$$

The operator dimension is determined by

$$\Delta(\Delta-3) = m^2 L^2$$

• For operators in the MGRAV and SGRAV multiplets $\Delta = |R| + 3$

Here are the low lying operators

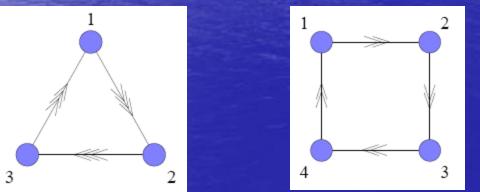
 $\mathcal{T}^{(0)}_{\alpha\beta} = \bar{D}_{(\alpha}\bar{\mathcal{Z}}_A D_{\beta)}\mathcal{Z}^A + i\bar{\mathcal{Z}}_A \overleftrightarrow{\partial}_{\alpha\beta}\mathcal{Z}^A$

	()				9 - 9	
	$[p,q]_R$	Ĵ	n_r	Δ	m^2L^2	Operator
*	$[0, 0]_0$	0	0	3	0	$\mathcal{T}^{(0)}_{lphaeta}$
*	$[0,0]_{\pm 1}$	0	±1	4	4	$\mathcal{T}^{(0)}_{lphaeta}\mathcal{Z}^4, \mathcal{T}^{(0)}_{lphaeta}ar{\mathcal{Z}}_4$
	$[0,1]_{-\frac{1}{3}}, \ [1,0]_{\frac{1}{3}}$	0	0	$\frac{1}{6}(9+\sqrt{145})$	$\frac{16}{9}$	${\cal T}^{(0)}_{lphaeta}ar{{\cal Z}}_A,{\cal T}^{(0)}_{lphaeta}{\cal Z}^A$
*	$[0,0]_{\pm 2}$	0	± 2	5	10	${\cal T}^{(0)}_{lphaeta}({\cal Z}^4)^2, \ {\cal T}^{(0)}_{lphaeta}(ar{{\cal Z}}_4)^2$
	$[0, 0]_0$	1	0	$\frac{1}{2}\left(3+\sqrt{41}\right)$	8	$\mathcal{T}^{(0)}_{\alpha\beta}\left(1-4a^2\mathcal{Z}^4\bar{\mathcal{Z}}_4\right)$
	$[0,1]_{-\frac{4}{3}}, [1,0]_{\frac{4}{3}}$	0	-1, 1	$\frac{1}{6}(9+\sqrt{337})$	<u>64</u> 9	${\cal T}^{(0)}_{lphaeta}ar{{\cal Z}}_Aar{{\cal Z}}_4,{\cal T}^{(0)}_{lphaeta}{\cal Z}_A{\cal Z}^4$
	$[0,1]_{\frac{2}{3}}, [1,0]_{-\frac{2}{3}}$	0	-1, 1	$\frac{1}{6}(9+\sqrt{313})$	$\frac{58}{9}$	${\cal T}^{(0)}_{lphaeta}ar{{\cal Z}}_A{\cal Z}^4, {\cal T}^{(0)}_{lphaeta}{\cal Z}_Aar{{\cal Z}}_4$
	$[0,2]_{-\frac{2}{4}}, [2,0]_{\frac{2}{4}}$	0	0	$\frac{1}{6}(9+\sqrt{217})$	$\frac{34}{9}$	$T^{(0)}_{lphaeta}ar{\mathcal{Z}}_{(A}ar{\mathcal{Z}}_{B)}, \ T^{(0)}_{lphaeta}\mathcal{Z}^{(A}\mathcal{Z}^{B)}$
	$[1,1]_0$	0	0	4	4	$\mathcal{T}^{(0)}_{lphaeta}\left(\mathcal{Z}^Aar{\mathcal{Z}}_B-rac{1}{3}\delta^A_B\mathcal{Z}^Car{\mathcal{Z}}_C ight)$
	$[0,0]_{\pm 1}$	1	±1	$\frac{1}{2}(3+\sqrt{65})$	14	$T^{(0)}_{\alpha\beta} \left(2 - 5a^2 Z^4 \bar{Z}_4\right) Z^4$, c.c.
*	$[0,0]_{\pm 3}$	0	± 3	6	18	$\mathcal{T}_{lphaeta}^{(0)}\left(\mathcal{Z}^{4} ight)^{3},\mathcal{T}_{lphaeta}^{(0)}\left(ar{\mathcal{Z}}_{4} ight)^{3}$
	$[1,0]_{-\frac{5}{3}}, [0,1]_{\frac{5}{3}}$	0	-2, +2	$\frac{1}{6}(9 + \sqrt{553})$	$\frac{118}{9}$	$T^{(0)}_{lphaeta}\mathcal{Z}^A\left(ar{\mathcal{Z}}_4 ight)^2, T^{(0)}_{lphaeta}ar{\mathcal{Z}}_A\left(\mathcal{Z}^4 ight)^2$
	$[1,0]_{\frac{1}{3}}, [0,1]_{-\frac{1}{3}}$	1	0	$\frac{1}{6}(9 + \sqrt{505})$	$\frac{106}{9}$	$\mathcal{T}^{(0)}_{\alpha\beta}\mathcal{Z}^A\left(1-5a^2\bar{\mathcal{Z}}_4\mathcal{Z}^4\right), \text{c.c.}$
	$[1,0]_{\frac{7}{3}}, [0,1]_{-\frac{7}{3}}$	0	2, -2	$\frac{1}{6}(9 + \sqrt{601})$	$\frac{130}{9}$	$\mathcal{T}_{lphaeta}^{\left(0 ight)}\mathcal{Z}^{A}\left(\mathcal{Z}^{4} ight)^{2},\mathcal{T}_{lphaeta}^{\left(0 ight)}ar{\mathcal{Z}}_{A}\left(ar{\mathcal{Z}}_{4} ight)^{2}$
	$[1,1]_{\pm 1}$	0	±1	5	10	$\mathcal{T}^{(0)}_{\alpha\beta}\left(\mathcal{Z}^A\bar{\mathcal{Z}}_B - \frac{1}{3}\delta^A_B\mathcal{Z}^C\bar{\mathcal{Z}}_C\right)\mathcal{Z}^4$, c.c.
	$[2,0]_{-\frac{1}{3}}, [0,2]_{\frac{1}{3}}$	0	-1, 1	$\frac{1}{6}(9 + \sqrt{409})$	<u>82</u> 9	$T^{(0)}_{lphaeta}\mathcal{Z}^{(A}\mathcal{Z}^{B)}ar{\mathcal{Z}}_4, T^{(0)}_{lphaeta}ar{\mathcal{Z}}_{(A}ar{\mathcal{Z}}_{B)}\mathcal{Z}^4$
	$[2,0]_{\frac{5}{3}}, [0,2]_{-\frac{5}{3}}$	0	1, -1	$\frac{1}{6}(9 + \sqrt{457})$	$\frac{94}{9}$	$\mathcal{T}^{(0)}_{lphaeta}\mathcal{Z}^{(A}\mathcal{Z}^{B)}\mathcal{Z}^{4}, \mathcal{T}^{(0)}_{lphaeta}ar{\mathcal{Z}}_{(A}ar{\mathcal{Z}}_{B)}ar{\mathcal{Z}}_{4}$
	$[2,1]_{\frac{1}{3}}, [1,2]_{-\frac{1}{3}}$	0	0	$\frac{1}{6}(9 + \sqrt{313})$	$\frac{58}{9}$	$T^{(0)}_{\alpha\beta}\left(\mathcal{Z}^{(A}\mathcal{Z}^{B)}\bar{\mathcal{Z}}_{C}-\frac{1}{3}\delta^{(A}_{C}\mathcal{Z}^{B)}\mathcal{Z}^{D}\bar{\mathcal{Z}}_{D}\right), \text{c.c.}$
	$[3,0]_1, [0,3]_{-1}$	0	0	$\frac{1}{2}(3+\sqrt{33})$	6	$\mathcal{T}^{(0)}_{lphaeta}\mathcal{Z}^{(A}\mathcal{Z}^B\mathcal{Z}^{C)}, \mathcal{T}^{(0)}_{lphaeta}ar{\mathcal{Z}}_{(A}ar{\mathcal{Z}}_Bar{\mathcal{Z}}_{C)}$

Further Directions

• Other examples of AdS_4/CFT_3 dualities with $\mathcal{N}=1,2,3,...$ supersymmetry are being studied by many groups.

 Various famous quivers assume new identitites: M¹¹¹, Q²²², etc.



 Ultimate Hope: to find a `simple' dual of a 3-d fixed point realized in Nature.