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Crystal Structure of Manganites

Ln, ,A,MnO;: Ln=_La;Pr;Nd;Sm
A =Ca;Sr;Ba 1deal cubic sell

Real structure 1s slightly orthorombically distorted due to
JT - effect



Electronic structure

Mn3+(Jahn-TeIIIEer ion) Mn++

—d

d?2.? octahedra ds;”./ octahedra
distortion in distortion along
Z - axis

xy - plane

As a result Jahn-Teller
gap E,, appears.

We assume that £, 1s
large, so everywhere
(except the physics of
orbital polaron) only
one conduction band 1s
occupied.



Gross Phase-diagram of Manganites
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0 < x < 0.16 — phase separation
(PS) on metallic FM droplets
inside AFM insulating matrix

X, = 0.25 - FM metal (CMR)

x = 0.5 — charge ordering

) Around x=0.5 - large region

of PS on metallic FM droplets
inside CO insulating matrix.

There 1s also a beautiful physics of orbital ordering which we
briefly discuss in this talk for small x <0.16.



Resistivity at Optimal Concentration

Xop = 0.25 and T, = 250K: FM — PM transition coincides with
metall — insulator transition
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Colossal Magnetoresistance

(Xopt = 0.25)

p (MQxcm)

+ M

Xqp = 0,25

AR _ R(0)—R(H) _ R(0)

(MR) = — =
R(H) R(H) R(H)

giant negative magnetoresistance

~10* =10’

S. Jin, T.H. Tiefel et.al., Science 264. 413 (1994)




Theoretical Model

121,556 1Y cw e, +1, 755,

<ij> <ij>

For one conductivity band we have double exchange model
(De Gennes 1960) with the hierarchy of the parameters:

JuS >>t>>J,5°

For real magnitudes:

JyS=1eV, t=0.3¢V, JﬁSZZ 0.001 eV

Double occupancy 1s prohibited in this model by large
Hund’s term.



Homogeneous canting for x <</

When an electron hops from one site to a neighboring one,
it cants the local spins.
J,>W =8 =S+1/2

Sel Sel .
on each site
o
Si Si+‘l .
@ - canting angle
Y-function of conduction electrons has a spinor character.

Electron hopping results in an effective rotation of the W-
function components on the angle 6/2.

t,e =1cos(0/2)

(Anderson, Hasegawa 1959; De Gennes 1960)



Canted State Instability

an energy of a classical

V)
E=—ztcos—x+ zJﬁcS2 cos @ -
2 canted state of De Gennes

dE =0 = cos Q: t —~x- depends linearly upon doping
deos 2 2 4J,S8
2
Zl‘2 2 2
E =—- X =z ,S
8J ;8

However a canted state has negative compressibility:
-1 d 2E th
ol = _

2 T 2<O
dx 4J ;S

Negative compressibility reflects an instability of a canted state towards
phase — separation.

M. Yu. Kagan, D.l. Khomskii et.al., Eur. Phys. Jour. B 12, 217 (1999)



Small FM-polarons inside AFM-matrix

r’a’ 4 (RY 4 (RY
E,, =—tx(z— R‘j R D E R T M e Dl

a a
3
Q= fn(ﬁj — volume of a spherical polaron in 1sotropic 3D case
3 \a
—1z7x — a bottom of the band in an infinite FM — cluster
dE R

pol _ () — Jpol _ T . 00X00DOOOO0OQOOXO0O0
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E.L. Nagaev 1967, T. Kasuya 1970, N.F. Mott 1971

E, =-1zx+ %ﬂzx(m)?’/S(ZzJﬁSz)Z/s — zJﬁ(S2
The canting angle 0 = 0 inside the ferron and 0 = T outside the ferron.
The boundary of the ferron is rigid: an angle 0 changes from 0 to T
on a distance of the order of a.



Temperature ferrons

Even at x ~ x,, — 0.25 above Curie temperature 7'> T ~ 250 K there is
a phase — separation on FM — droplets inside PM 1nsulating matrix.
The radius of the droplet for hierarchy of the parameters: z Jy; §?<T,<
T' << t can be defined form the minimization of the free — energy:

2 2

T a 4 (R ?
AF =—tx| z—— +T1n(25+1)7z(j X,
R 3 a

where the second term 1s the reduction of the spin — entropy inside
the ferron.

R 1/5
As a result in 3D case: pol 7l
a 2T In(2S +1)

M. Krivoglaz 1972



Polarons in a layered case

Mn O

(La, Ca) — layered manganites resemble HTSC - compounds

n+1 3n+1

/&5 / MnO - layer (conductive)

/ '/ LaO(CaO) - layer (insulating)
JEEE /  MnO-layer FM —ordered planes of local spins with

alternating moments (A1l — structure)

2
0= 4 ﬂ{ Ry ] R, The most favorable in a layered case is
3 \a) a an ellipsoidal shape of a ferron

R, MYu. Kagan, K.I. Kugel Sov. Phys. Uspekhi, 171, 577 (2001)

In the general case of 3D anisotropic AFM — lattice the
volume of the ellipsoid:

A7 ﬂ'teﬁv 3/5
Q= _ ,
3 (4JS?

where ¢, =(t, 1, t)”3 J_=(]x+Jy+JZ)




Square lattices in 2D

On a square lattice in 2D the optimal shape of a ferron is a circle 2=
7t (R/a)? with a radius:

) 1/4
RPOZ — tao
a 871']6]752 ’

where a, = 371/4 1s a first zero of the Bessel function J,(kR) = 0 for kR, = o, .
For 2D anisotropic AFM - lattice it 1s an ellipse with a volume:

2 1/2
A JS*

1/2 T
where 7, =(f,-t,) "and J=(J +J )

M.Yu. Kagan, K.I. Kugel et. al., Jour. of Phys. Cond. Matt., 18, 102906 (2006)

This type of phase — separation 1s typical for a variety of quasi — 2D
(layered) cobaltates with low spin (a hole) in the center of a ferron
surrounded by high spin in case of hole — doping.



Triangular lattices in 2D

On a frustrated triangular lattice for planar spin configuration it i1s again
a circle with a volume:

0 1/2
triangle ( 4) . m triangle

1/2

Q 3 m

square square

M.Yu. Kagan, S.L. Ogarkov et.al, Jour. of Phys. Cond. Matt., 20, 425214 (2008)



Free and bound magnetic polarons

For very small doping concentration conductivity electrons are bound to
Sr impurity centrums. Hence ferrons are also localized in this case.

An appearance of the conductivity in Mn — O subsystem and
delocalization transition in the system of ferrons correspond to generalized

Mott criterion.
M.Yu. Kagan, A.V. Klaptsov et. al, Jour. of Phys. A: Math. Gen., 36, 9155 (2003)

Having in mind that x,, ~ 15% we conclude that ferrons are delocalized
for x,,, < x <x,,. For x <x,,,,. we have bound magnetic polarons. We will
show that they have a large intermediate region where a canting angle is

changing gradually from almost O to almost T.

The existence of such ferrons (behaving effectively as magnetic
impurities) was first assumed by De Gennes in 1960. We can get them
explicitly in a following simple model.



Bound magnetic polarons I

The bound magnetic polarons with extended coat of spin — distortions
for x << x,,,,, are described by the Hamiltonian:

I—AI=—JHZSl. —tZClUCJ0+JﬁZSiSj
Vo T K(S,)

7, —n0|

double exchange model with Coulomb interaction between
conductivity electrons and Sr impurity, as well as with one — site
anisotropy. Sr impurity 1s situated in the middle of elementary
lattice cell. (J, S ~ ) >> 1t >> J,8 >> K — the hierarchy of
parameters. o) 3

@Sr

1 4
S.L. Ogarkov, M.Yu. Kagan, et.al. Phys. Rev. B 74, 014436 (2006)

1mp




Bound magnetic polarons II

After minimization procedure we get the following picture for coated

magnetic polaron . A

The magnetic moment of the FM—core 1s less than a saturation value.
The coat has a magnetic moment antiparallel to the core. The canting
angle @, with anisotropy axis OX @, < /2 for spins of the FM—core.



Bound magnetic polarons III

Analytically in the continuous limit we have the FM — core with radius R,
~ a (and ¢, < 72 1nside the core) and an extended coat of spin —

distortions decaying in a power fashion at intermediate distances:

2
J,S

2K

R,<r<r,, where r,=a >>a

For cubic lattice in 3D: ¢ ~ R*/r*

For quadratic lattice in 2D: @ ~ R/?/r

For frustrated triangular lattice and planar spin configuration: ¢ ~ R./r

M.Yu. Kagan, S.L. Ogarkov et.al., J. Phys.: Cond. Matt., 20, 425214 (2008)

Finally for r > ry: ¢ ~ exp{— r /r, } we have exponential decay of a

canting angle ¢.



Generalized Mott criterion

We consider that x,,  can be qualitatively defined via the

radius r, of the coat extension for bound magnetic polaron.

In 3D the coats overlap at:

3
. 3 (a
Mott 471_ ro

So x,,,..~ (0.1 +0.2)% for typical r, ~ (5 + 6)a.

2
In2D: x,,, ~l[ﬁj ~(0.5+1)%
T

A



The Role of Coulomb Interaction between
conductivity electrons I

I.  Small electron density

RpoI
- 1/3

n-1/3
Coulomb energy is the same for homogeneous and polaron state.

II. Theoretical model
H=-J,> 86 -ty chc,+J; 285 4V > nn,

<i,j> <i,j> <i,j>

Kondo — lattice model with Coulomb interaction on neighboring sites
III. Exact case n = 0,5
XO0OXO0OXO0XO X - Mn*

tvivtvtyo-m

Verwey localization: checkboard distribution of electrons and holes.




The Role of Coulomb Interaction between
conductivity electrons II

So we have:
x < x.: AFM/FM 1nsulator
x > x,.: FM metal

x = 0.5: AFM + CO insulator

x<x<0.5
OO XO0OOKO X0 X0 FM — polarons with one
l l l l l l T l T l electron inside, and a lot of

electrons outside in CO state

FM-met. AFM+CO FM-met.
insul.

M.Yu. Kagan, K.I. Kugel, Sov. Phys. Uspekhi 171, 577 (2001 )



Heisenberg — like orbital interaction

After canonical transformation of the two — band Hubbard model for U >>

t and x < 0.16 we get on 2D square lattice with e, electrons on x> — y*>
and 127> — x> — y>> orbitals:

IA{:_Z( anBzaa 4o oo mﬂa_l—h'c)_l_‘] Z

<n,n>
a,p,0

S. Ishibara, J. Inoue et. al., Phys. Rev. B 55, 8280 (1997)
- an orbital # — J model, J ~ ¢ /U ~ 900 K is superexchange interaction of
AFM - type (J > 0) between two orbitals. P s are projection operators,
excluding double occupation of sites. Pseudospin operators 7, = {T,f T },
5= Y a,.(0,5")a,,, describe an orbital state.

a,p,0

K.I. Kugel, D.I. Khomskii, Sov. Phys. Uspekhi 136, 621 (1952)

nm

41543 1

jab L 3 F V3 )- minus (plus) sign corresponds to
n —m bond parallel to x (y) axis



Orbital ferrons

Metallic orbital ferrons inside insulating AFM orbital matrix

12787

) 1/4
Characteristic radius of the droplet: & — (ﬂ) in 2D case
a

K.I. Kugel, A.L. Rakhmanov et.al., Phys. Rev. B 78, 155113 (2008)



Transport properties Iin
phase-separated states

: Hre gep of
percolation
OO » @O&

A=E,+E,-2E,

2
e

A o < (,1eV -Coulomb barier
hole e e gORpol
OO —
hole e €  Second step

_>® @ @ of percolation

This mechanism of electron transport

is valid for exp(— i) <<l
2T X

c

A.L. Rakhmanov, K.I. Kugel et.al., Phys. Rev. B 63, 174424 (2001)



Tunneling Conductivity

For low temperature 7" and small voltage V' a tunneling time reads:

\(—L W, €X __k A
o P 2R, 2T|

where w, ~ &, ~ 300 K 1s a frequency of depolarization of spins.
0~ &f q y p

As a result:

. inanalogy with the physics of Coulomb
n®R_~ blockade in mesoscopics

po

for A/T >>

where o =e’n'"”

0,8 :
B ~ exp Iz - smaller percolation exponent

pol

of Efros-Shklovski type



Experimental confirmation of
nano-scale phase separation

. Our results are confirmed by NMR — exp. of Allodi and Jakubovskii
(RPL 1997; 2000) — two resonant frequencies instead of one.

. Exp. on neutron scattering (Hennion et al PRL 2000; 200I;
Morimoto PRB 1999). Elastic scattering yields lorenzian shape of
intensity I(q) with I/g,~ R~ 10 A. Inelastic scattering yields two
distinct branches of FM and AFM spin waves.

. The most recent results of Hennion are in favor of FM — polarons
inside a canted matrix. In the layered case they also confirmed an
anisotropic shape of a polaron.

. Exp. of Fisher et al on hysteresis of magnetization (centre of the
hysteresis loop shifts from H =0 to H =4 + 6 Tesla).

. Exp. of Babushkina et al on strong nonlinear / — V characteristics in
manganites with x ~ 0.2 (in favor of percolative picture).
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Concluding Remarks

. Phase-separation and charge ordering is typical for a large
variety of strongly correlated systems including CMR —
systems.

. We considered mainly the most physically transparent limit of
nano-scale phase separation.

. Simple picture of nano — scale phase — separation can naturally
explain the transport properties of CMR — systems at low
doping regime.

. When we study the transport properties of phase — separated
manganites we create the bridge between strongly correlated
electron systems and mesoscopics.



Magnetoresistance

1/5
Rp0,~a[ U ] . J~100K S=3/2

2 ;S?
J(H)S?> =J(0)S* — gu,HS
2

0(0) ~ exp ). A=—F

2T ER

2

e

A(H) = =[1-bH]A(0) -changeof the
gR,, (H)
droplet radius;b=1/5 SHp
J(0)S

MR = PO =PUD _ o bHAI2T) -1
pP(H)

ForT< A: MR>>1 for H~ 10 Tesla

M.Yu. Kagan, K.I. Kugel, Sov. Phys. Uspekhi 171, 577 (2001)



Spin Assistant Tunneling

Effect of a spin assistant tunneling yields

M,
nontrivial preexponential factor: 6'\/' | %
2
"

,Y(H) — ,Y(H — O) exp(_ G“’BHmol Colj]‘j B GHBHmol j

- atunneling time 1n the presence of a magnetic field

MR 1 I. H?/T? - in the absence of
anisotropy; H2H,/ T > —in
strongly anisotropic case, H, 1s a
field of magnetic anisotropy
II. H?T

X III. plateau

H IV. exp(bH /2T)

A.O. Sboychakov, A.L. Rakhmanov et. al., J. Phys.: Cond. Matt., 15, 1705 (2003)



Experimental confirmation

The result H°H_/ T ° for a tunneling magnetoresistance was
experimentally confirmed by recent studies of

magnetically anisotropic manganites

(La, Pr)),,Ca,sMnO;, carried out by the group of
Babushkina (Kurchatov Institute, Moscow), and layered
manganites (La, ,Pr, ), ,Sr, {Mn,O,

carried out by the group of Moshchalkov (Leuven, Belgium).

K.I. Kugel, A.L. Rakhmanov et al., Sov. Phys. JETP 125, 684 (2004)



Experiments on large scale phase separation

1. STM - experiments of Mydosh et. al., — direct visualization of
metallic and insulating regions for x ~ 0.16.

2. Experiments of Cheong et. al., — electron diffraction at x = 0.5
confirms checkerboard CO - structure.

Dark image electron microscopy for x = 0.4 shows coexistence of
CO and FM domains.

3. Stripes for x > 0.5 — Mor et al (Nature 1998) experiments on
electron diffraction. O X O X

Mn3+ Mn3+ Mn3+
L, = 3 L, — incommensurate charge ordering stripes and static in
manganites due to JT effect.



Theoretical confirmation
of the instability of CO state

at x = 0.5

for x # 0.5 an energy of CO — state N

ECO o EN

2 A =Vz-agapin CO - state 24

has a cusp:

K,—l

d’E
dx?

<0

W2
_6Vz

¢ E

S

g
.

J

E
0,5

>

\/ X

CO state 1s unstable for x # 0.5 towards phase — separation



FM Polaron in CO-matrix

2 2 3 2 3
E  =-in, Z_7Z'czz +ZJSzﬁﬂ R n,— zJSZ+2Zt l—iﬂ' R n,
b R 3 \a 3V 3 \a

n, - number of polarons (FM = droplets)

Minimization with respect to radius yields: R ~ 1

a (/v + J .S /t)"
So finally: M.Yu. Kagan, K.I. Kugel et.al., Sov. Phys. JETP, 93, 415 (2001)
0 < x < x,,,,, — bound magnetic polarons
Xptorr < X < (TS 2/t) 7° — AFM/FM
(S 2[1) 3 < x < (tIV+J S ?/t) 3> — FM metall
ALY 2[t) 3 < x < V2 — FM/CO

In fact a two — band character of e,, — orbitals is important for
conductivity electrons.



Two-band Hubbard model

We use two — band Hubbard Hamiltonian to describe orbital ordering:

_ ap a
H Zt nOtG m,BO'_I_gznn,BG_lLl Znnﬁa
<nm>of3 noo
+_ ZU“ nOtO'nnOtG_I_ U' z noo n,Bo"
nOtO'O' noo
apf

where | 1s the chemical potential, £1s the energy — shift between the
centers of the bands. In our case € = E .

Assumptions:

without loss of generality U, =U,=U"+2J,=1,

strong on — site Coulomb repulsion U ~ 10 eV >>J, S ~ 1 eV >> 1,

the total number of electrons per site n, . =1 — x, where x <0.16.

tot



Tunneling Conductivity I
e Carriers could jump only on the droplets 1 (+)+(4)~C )+
* Droplet number N = N, 2 )+ H—-CH+(D)
N = No+N; L 1p+N; 1p+N; SIDROEOED.
|  cos @ 4®+©*©+®
J= en{,2<zl:"1l,2> <Zl:"112> = <Zl: 71,2("la ®z)>

Where (..) means averaging over random droplets location;

7 — characteristic transition time;

r, ® — the distance between droplets and an angle with respect
to the applied electric field.



Quantum canting

In a more sophisticated quantum canting approach there are two
bands, instead of one, corresponding respectively to
So=S+v2,but§? =S+

Their spectra read:

t,(0)= : \/2S+1+SzcoszeiScose
B 25 +1 2 2

for0 >0 (FM-case) t, =¢, t = !
28 +1

[

28 +1

The classical one — band canting of De Gennes corresponds for § >> 1
to the region of small angles where

for@ >m (AFM-case) t, =t =

Szcoszg>> 25+1 and t, ztcos%



Compromise between quantum canting and
FM-polaron

An energy functional with the normalization condition in the case of
quantum canting reads for continuum model:

F=- j dv[z(e)( ZW P+ WAY)- 2 .S cos? 2— BY 2}
A hopping integral for quantum canting:

t, =1(0)= t \/25+1+S200526+Scose
2 2 2

S+1
at small densities only a lower band ¢, 1s occupied
for@&=0 (FM-case) t(6=0)=1
5

V2§ +1
0: 1(0)(22¥ +A¥)+Alt(8)¥]-28¥ =0

for@=m (AFM-case) t(0=r)=
OF _
5\}’*

oF _
56

O:{(Z“P‘2+‘P*A‘P) d1(6) —2zJﬁSzcosg}sing:O
dcos )2 2 2



Electronic wave function and
the function of the canting angle

The normalized electronic wave function ¥(r) and the function of the
canting angle 6(r) were calculated by the method proposed by

S. Pathak and S. Satpathy, Phys. Rev. B 63, 214413 (2001)

for 1D ferrons.

1.0

5

0.6 4

o = 5 = 100, 0.8
J S |
)
R, =a (Mj - radius of 04
27
Nagaev - Mott ferron >

a=100
/ Y _G(F)/Tc
()
Y

r'R
po

20



Comparison of Nagaev-Mott and exact solution

Dependence of Nagaev — Mott energy and energy of the exact solution

on the parameter a: i | | |
] Nagaev-Mott solution
y - \ Numerical solution
E 5 2 22 ° ] \
—=—7 + 57[ _ . 2 \
! T YR
L\u; 37 ~ \\
- Nagaev — Mott energy, where 2. S
It 5
E=F =—
AFM 1
V2S +1 P . . . .
0 100 200 300 400 500
a=tS°

- abound state disappears and an electron freely moves through AFM

— media. The bound state exists when g =

->a, =75 forszg.

M.Yu. Kagan, A.V. Klaptsov et.al., J. of Phys. A: Math. Gen., 36, 9155 (2003)



1/7— noise in a percolative regime I

Using a droplet model it 1s also possible to get 1/f noise in phase
separated state and to explain recent experiments of Podzorov et. al.

o), (%), &), 1 < ) >

i i 1+ @*t2(r)

U o’ n xV

samp

1 r A 5
7(r) ~ woexp{ZRpOl + 7 }, <f> = 47[_[f(r)r dr

As a result: ,
Ut g
U: xV_ @

samp

b

where o ~ lnz(wj ~10° for w=(1+10")Hz,
a)O
V. =LLL,—sample volume

samp



1/7— noise in a percolative regime II

1/f - noise exists 1n a very broad frequency range:

@, exp(=L/R ,,)) < @ < @) exp(A/2T).
So we get a very large coefficient a. It is 10° times larger than
in usual homogeneous metals and within factor of 10

coincides with experimental results of Podzorov.



1/7— noise in a magnetic field

1.00 i
0.99 _
0.98
0.97 _
0.96

0.95

TH0)(sU*(H))
T*(H){sU* (0))

0.94

0.93

092 +

0.91 _ ' ' - ' - ' - '
0 |
2 4 6 g H{

The magnetic field dependence of normalized spectral noise power

There 1s a pronounced minimum for H ~ 27 on this curve



One-particle Green functions

G, (0,k) = Sq ,
W+ u+e”—g w (k)

Simple cubic lattice, tight hnding model:
wo(k) =- G*“cos kl+cos k* + cos k)

The equations: -

dow ¢ dk
=—2 G,(w,k)e™
e (H) l£2ﬂj(2ﬂ)3 D R)e
n= ) n,(u
a=a,b

define the number of electrons in each band n,, n, depending on
doping n.



One-particle Green functions

150 T T T T T T T T

B,

0,4 | / -

0,2 | / -

0,0 L | L 1~ L | L |
0,0 0,2 0,4 0,6 0,8 1,0

At low doping, there exist only a electrons until the chemical potential
reaches the bottom of the b band at some value n of doping. At n > ng,
the b electrons appear in the system, and the effective width of a band,
w = 617g , starts to decrease faster with n.



Phase separation at different values of bandwidth ratio

1 Bandwidth ratio

Band shift AE/w

1 035 @)
(5)

Doping o=1-n

Atw,/w_>0.4, the phase separation is unfavorable in energy.



Phase diagram at w,/w, = 0.3

Band shift AE/w

i
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Radius of a droplet

156 (n,,n,) .
R:d 2 2 1/3
AZV,(n,—n,)"(2-3p "+ p)

R/d

3.0 —

28 I-

2.6 -

24

22

2.0 |-

1.8 -

1.6 -

w,/w, =35
gw,=0.12
Vyw,=0.02



Possible shapes of inhomogeneities




Energy E(0,,0,) has one (0, = 6, = O; left panel) or four (0, = + ©/3,
0, =+ 27m/3 and 0, <> 0,; right figure) lowest minima depending on J/z,.

J<J. (= 00075). 8,=0,=0 J>J_. 0 =%73,0,==21/3:1D
circular ferro — OO droplets with  chains of alternating Ix?-z>>, 12y?-
lx>-y*> orbitals. x>-z22>  or -2, 2%y

orbitals stretched along y or x axis.



Inhomogeneities in orbitally ordered structures I

A hole introduced by doping becomes self trapped, forming a
ferro — OO region with occupied 10> orbitals

d, ,orbitals,f=7x

X =Yy

configuration with the highest
gain in kinetic energy

&

circular droplet



Inhomogeneities in orbitally ordered structures II

d, ,orbitals,d=7x/3 configuration with a lower loss in
’ the energy of AF — OO background

4

Needle — like droplet

S




Inhomogeneous OO states: orbital polarons

OO matrix
(0,=0, 6,=m)

Each hole is trapped in an ellipse, forming an OO structure with
alternating 10,> and 10,> orbitals.

Effective Hamiltonian of a hole:

¢ [
HY =—1,|A.6.6)+A,(6.6)}+2

82
Ax(91,6?2)§+Ay(91,92)

82

ayz




Solving the Schrédinger equation within an ellipse with semiaxes
A1y, A V?rg, we get the energy of a OO droplet:

tjo f -
E=|—t)(A +A )+ " |vazgs A, 0032(91 92), jo, = 2405

205 \ 2
/ The cost in the energy

Kinetic energy gain of orbital ordering

Minimization of £ with respect to r,, yields:

2

E(Hl,ez) — _Z‘O(Ax +Ay)+j0,1 (87Z'IOJ AxAy )l/2 CO{HI _H2j




Energy of ferro — OO droplet vsangle 6

J: energy loss of AF O background (per site)

due to the formation of ferro — OO droplet J/ty= 0.0

ty: characteristic hopping integral
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