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(Local) BRST cohomology:

Batalin-Vilkovisky formalism:

Given equations T, gauge symmetries R’ , reducibility relations,....
the BRST differential:

S=0+v+..., s =0, gh(s):l
0 = Tapa+ - —cRaa(bZ

¢* — fields, ¢ — ghosts, P, — ghost momenta/antifields, . ..
0 — (Koszule-Tate) restriction to the stationary surface
~v — implements gauge invariance condition

H?Y — observables (gauge invariant functions on the stationary sur-
face)

Other cohomology groups (including those in the the space of ten-
sor fields) encode physically interesting quantities — anomalies, con-
sistent deformations, etc.



In the context of local gauge field theory:
Physically interesting — cohomology groups in local functionals

Local functions — functions in x, 2%, 0,,2%, 9,,0,2% ...
Total derivative:
0 0 0

_ a Y o
a“ - Ok T “u 0z ™ S 0z%

Local functionals:
Quotient space: flz] ~ flz] + 0u3" 7]
More invariant way: H"(d = dx"0,,,local forms)
sw" +dw™ =0, wy ~ wy + dxz_l + SX1_1

In the local field theory — local BRST cohomology encode physically
interesting quantities.



Lagrangian Batalin—Vilkovisky formalism
In addition to s there is a natural odd symplectic structure:

s={S.-}, {8.8}=0, S=8u¢]+cR,Pi+...

BV master action and the BV master equation.
{-, - } — Lie superalgebra structure on local functionals.

In the Lagrangian case:

H(s) — 1st order consistent deformations
H'(s) — anomalies ,

H~!(s) — conserved currents (inequivalent global symmetries),



In the non-Lagrangian case (i.e. if only s is given)
The cohomology of the adjoined action s = [s, ] in the space of
evolutionary vector fields

H'(sg) — lst order consistent deformations,

H(s) — inequivalent global symmetries ,

In the same way one can extend sg to functional multivectors.
The respective local BRST cohomology groups are also relevant.



Alexandrov-Kontsevich-Schwartz-Zaboronsky (AKSZ)
type sigma models

Instead of constructing s from the initial data (equations, gauge
generators, reducibility relations, ...) 1n some interesting cases it
can be extremely useful to define theory in terms of the BRST differ-
ential.

For instance, if Q is a BRST operator of a constrained system then

S = - (¥, §A2\IJ> - BV master action

DO |

Here ¥ = —|—\If_1—|—\110—|—\111—|—
W, — physical fields, ¥ _-ghosts, W -antifields, ...

Well known example — open SFT:

P

S =—(U,QU) + — (U, T« )

1
6

N | =

* — star-product



Another example: higher spin field Lagrangians can be repre-

sented in the form (¥, QW) for some first-quantized “higher spin par-
ticle model”



AKSZ sigma model:
Consider two ()-manifolds:
Target space M, degree ghy, nilpotent vector field ()

Q°=0,  ghy(Q) =1
Space-time X, degree gh, d, gh(d) = 1, d* = 0,

d-invariant volume form du

Typical example: X = II'T'X, coordinates x*, 8, n = dim X

d=0"2"  du=di®. . . de"'do"" ... d0° = d"zd"0

Oxk ’
Supermanifold of maps (M-valued fields on X): BRST differential:

J
o4 (x,0)

5 — / " wd"0 [dUA (2, 0) + Q* (¥ (x,0))]
X

total ghost degree: gh(A) = ghy(A) + ghy (A4)

Because s =0, gh(s) =1 =
Nonlagrangian local gauge theory



If in addition (odd) symplectic structure is defined on M such that

1
Q =15, } 5{S,S}M:O
{-, -}, —respective (odd) Poisson bracket on M.
Then |
s=AS, -}, §{S,S}:O,
with

S[¥] = /d%dne [(dqu(x,e))VA(qf(x,e)) +S(\11(x,9))}

0G

n_, qn A B
{F,G}:i/d dewAM (o4, 07} (0 5’79))5@3@:,9)

Note that {, },. and {, } have different parities for odd n.
For S even and gh(S) = 0 — Lagrangian AKSZ sigma model



Comments:

o If gh(U4) > 0 then equations of motion for physical fields en-
coded 1n s defined the Free Differential Algebra

9

e A closely related approach is the nonlinear unfolded formal-
ism developed 1n the context of higher spin gauge theories by
M.Vasiliev. The nonlinear theory of higher spins is naturally
formulated in terms of this approach

e Non-Lagrangan AKSZ approach can be seen as a BRST exten-
sion of the nonlinear unfolded formalism



Examples:

Chern-Simons theory
M = IIG with coordinates c*, gh(c®) = 1, G-Lie algebra

Q== c actye Lie algebra differential

bac

Fields U* = ¢* + 0" Al + ..., equations of motion and gauge sym-
metries
dA + - [AA]—O 0A) = dA

If in addition G is equipped with invariant metric g,; and dim Xg = 3
then

1
{Cavcb}jv[ — gab7 Q — {EUabccaCbcca : }

The action and the BV action
1 1 1 1
SO:/—AdA+—<A,[A,A]>, S:/—\Ifd\If+—<\If,[\I!,\If]>
\ 2 §) \ 2 §)

Note: Sp and S have the same structure



Hamiltonian BFV systems with vanishing Hamiltonian

M - extended phase space of the Hamiltonian BFV formulation

(2 — BRST charge, {-,-} - Extended Poisson bracket
So that

Q={Q, -}, gh(-) —usual BFV ghost degree
The associated BV formulation

can be represented as AKSZ sigma model
S — / dtdo [(d\IfA(t, 0))Va(T(t,0)) + Q(T(t, 9))} ,

d = 02 ; BV antibracket (-,-) = [dtd0{-, -}y,
A general AKSZ sigma model appears as a multi-dimensional gener-
alization of Hamiltonian description for reparametrization invariant

systems



The 1somorphism

For a general AKSZ model:

Z:C°(M) — local functionals

f(¥) — F[¥] = /d”xd”@f(\ll(:v,ﬁ)

One has
sT =10 — map of complexes
Moreover,
I({f,9tn) =1Z(f).Z(9)} — Lie algebra homomorphism

Main statement:

Proposition 0.1. Locally in X and M map 1 is an isomorphism in
cohomology (local BRST cohomology of AKSZ sigma model is iso-
morphic to the target space ()-cohomology).



Comments:

— for the particular case of Chern-Simons the statement is known
from

— that (Q-cohomology determines physically relevant invariants like
actions and conserved charges was stressed 1n

— 1n the case of the 1-dimensional AKSZ sigma models associated
with Hamiltonian BFV systems with vanishing Hamiltonian, propo-
sition states that the Poisson algebra of Hamiltonian BRST cohomol-
ogy and the antibracket algebra of Lagrangian BV cohomology in the
space of local functionals are locally isomorphic. This was originally
derived in

Idea of the proof:

First compute cohomology for sy defined by s = d¥. All
variables are contractible pairs except for O-forms ¥4

Then compute local BRST cohomology of sy using the descent
equation.

Finally, obtain local s-cohomology by a suitable spectral sequence.



Cohomology for functional multivectors

The usual way to describe (functional) multivectors is to introduce
momenta 7, for each filed z¢

graded symmetric . local functional of homogeneity

functional k-vector kFinmandm,,

For instance, for the BRST differential

Qp = —/d”:r; sz|mq, gh(Qp) =1, s2%=s5%]]

A map from local functionals to evolutionary vector fields:

1Flzms - bp

gives a functional Poisson bracket for local functionals.
Defines BRST differential for functional multivectors:

s =1, -}, %{QO,QO}EZO

Functionals in z, 7w with sg — extended complex



For AKSZ model the extended complex is again of AKSZ type
Indeed, introduce target space variables II 4 with

gh(Ila) = —gh(¥) +n,, {lp, ¥4} = -d3

Then
0y = —/d”x s z]me = —/d”xd”@ sUATI Y =
-~ / d"zd" [dV T4 + QA (¥)IL4] .
Again AKSZ type sigma model with

j\/[:E — (H)T*M7 QE — {QAHAa ’ }ME

Because () g defines the ()-cohomology in the target-space multivec-
tors

Proposition 0.2. Local BRST cohomology in the space of functional
multivectors is isomorphic to (Q-cohomology in the space of target-
space multivectors



Example:
If {-, -}, is an (odd) bracket in M, w = w?BII4I15 associated
bivector then

Trw = /d”md”@w

determines familiar functional bracket:

n . mn SRF oG
{F,G} :i/d xd Q(NA(M) wAB(\IJ(:U,Q))(S\IjB(m,H)).

Corolary: nontrivial sg-invariant brackets originates from the target
space brackets

Applying this to the 1-dimensional AKSZ model associated to
the Hamiltonian constrained system one gets the “Isomorphisms be-
tween the Batalin-Vilkovisky antibracket and the Poisson bracket”



Inverse problem of the calculus of variation

General setting:

Standard: given equations of motion 7;[¢] the problem is whether

they derive from a Lagrangian i.e. T; = OL for some L{o].

Yog

In this form it is too restrictive as one can e.g. allow for integrating
multipliers i.e. T; — T = X} [$]T}.
Usually, one is also allowed to add/eliminate auxiliary fields. More-
over, add/eliminate pure gauge variables. For instance: spin-s La-
grangians
General point of view: being Lagrangian or not is a property of equiv-
alence classes of equations of motion under addition/elimination of
generalized auxiliary fields

Generalized auxiliary fields at the level of equations of motion :
¢4 = (9", w"v")  swlu=o =0 v = VO[]

Lagrangian version — auxiliary fields for BV master action



A natural framework to study existence of a Lagrangian
— Lagrange structure

This can be seen as a Lagrangian counterpart of a possibly weak and
degenerate Poisson structure of the Hamiltonian formalism.

In the context of local field theory: Lagrange structure can be defined
as a deformation

Q:QO—l-Ql—l-QQ—I-..., Qoz—/dnxsaﬂ'a, gh(ﬂ):1

(€2 —local functional homogeneous of degree k41 in 7., ) satisfying
the compatibility condition

( sp{h =0,
1 %{91791}E+8E92:0,
Lo, -0 {0 o s m0, (D)
| .

Two such deformations €2 and €2’ are considered equivalent if there
exists alocal functional = = ) |, - | Ej such that Q" = exp {Qo, - } 5 E,
where = is homogeneous of degree k£ + 1 in 7.



If defined in this way the Lagrange structure is invariant under elim-
ination of the generalized auxiliary fields

Indeed: the deformation theory 1s controled by the local BRST coho-
mology that are invariant

Conclusion: local BRST cohomology in the space of functional
bivectors and higher multivectors control the inverse variational prob-
lem for gauge theories.

For AKSZ sigma model
Usual deformation theory arguments imply that any Lagrange struc-
ture is equivalent to

() = Q) —|—IE(w) = () —|—/ d"xd™0 (wl + wo + ) .
X
Can be studied in the target space. Substantial simplification.

In other words — the brackets can be assumed not to contain space-
time derivatives



Example: Lagrange structure for Chern-Simons theory
Extended model: variables ¢, gh(¢*) = 1 and 7., gh(m,) = 2,
b b L a bye

{T‘-CL)C }ME :_5a7 QE:_{§C C JabTec }ME
In the target space gh(wy,) = 4 so that w = w; = ¢®m, 7.

For G simple ¢g®° is unique and invertible leading to the standard La-
grangian.

For G simple:
Whitehead Lemma =—> cohomology in vector fields trivial

—  Theory is rigid and no nontrivial global symmetries

at the level of equations of motion as well.



Thanks!



