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This year there has been important progress
towards finding a solution of this problem

In my talk I'll discuss what have been done
and what remains to be understood (a lot!)



String hypothesis for the mirror model

The Bethe-Yang equations for the mirror theory Arutyunov, Frolov '07, '09(a)
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e Here p; is the real momentum of a physical Q-particle

o KT, K(Ifx) and K%f}) are the numbers of Q-particles, and auxiliary roots y,(f) and
w'™, and a = 1, 2. The parameters v are related to y as v = y + i

o Sf[’(“gl (z,x;) is the S-matrix in the s[(2) sector of the mirror theory which

describes the scattering of a (0 -particle and a ();-particle with momenta p, and p;



String hypothesis

In thermodynamic limit R, K, K, K., — oo with K'/R and so on fixed

solutions of BYE are composed of four different classes of Bethe strings
1. A single @Q-particle with real momentum p;. or, equivalently, rapidity wu
2. A single y'“)-particle (an auxiliary root y(*)) with |y(*)| = 1

3. 2M roots y'® and M roots w'® combining into a single
M|vw ™) -string

ol =0 L (M 42-2))2, o =0 (M +2-25)2, j=1,...
g g

J

w§a):v(a)+(M—|—1—2j)£, j=1,....M, veR.

Q

4. N roots w'™ combining into a single N|w'® -string

w =w® 4 Z(NF1-2j), j=1,...,N, weR.
g

This includes N = 1 which has a single real root w(®).



Thermodynamic limit

Introduce densities p(u) of particles, and p(u) of holes; u € R, a = 1, 2.

1.
2.

4.

5.

po(u) of Q-particles, —coc <u<o0,Q =1,...,00

,oéoi) (u) of y-particles with Im(y) < 0, —2 < u < 2. The y-coordinate is

expressed in terms of u as y = x(u)

x(u) = e (u — V4 — u2) , Im(x(u)) <0 forany ue C,

the cuts in the u-plane run from oo to +2 along the real lines.
p?(ﬁ) (u) of y-particles with Im(y) > 0, —2 < u < 2. The y-coordinate is

expressed in terms of uw as y = m(lu)

pg\ﬁl)vw(u) of M|vw-strings, —co <u<oco, M =1,...,

,05\?|),Lu(u) of N|w-strings, —oc <u < oo, N=1,...,00,

and the corresponding densities of holes.



Thermodynamic limit

Let ¢, 7, k run over all the densities. Integral egs in the thermodynamic limit

where p; does not vanish only for Q-particles.

Left action of K's on p; (the star product) is defined as
Kijx pj(u) = /dul Kij(u,u’)pj(u)

Integration is taken over the corresponding range of w.

K's are expressed through the corresponding S-matrices as

1 d
K,L-'(’U,,U) — 2—7”@ log Sz'j(uav)

We will need the right action which is defined as

pi * Kji(u) = /du/ pi(u') Kji(u',u).



Free energy and equations for pseudo-energies

Integral eqs for minimum of The ground state energy of I.c.
free energy per unit length for — string theory on the cylinder with
mirror theory at temperature T' = % circumference L = Py

Light-cone string theory has two different sectors

e Even winding number string states and periodic fermions —-

ground state energy is determined by Witten’s index of the mirror
theory.
The ground state is BPS = no quantum corrections to its energy

e Anti-periodic fermions and non-BPS ground state



Free energy and equations for pseudo-energies

To describe both sectors, we consider generalized free energy
! .
FoL)=€— 78+ TN =N,
L L
e £ is the energy per unit length carried by Q-particles

£ = / du Y " E%u)pg(u), E%(u)is Q-particle energy
Q=1

S is the total entropy

i/ L plays the role of a chemical potential

o N is the fermion number which counts the number of y(*)-particles

1 2 1 1 2 2
NE =N = [ o )+ oD (w) - 2 w) — ol (w)

Minus sign between N\ and N'?) is needed for the reality of 7, (L)

o v=m —> Witten'sindex. v =0 = the usual free energy.



Free energy and equations for pseudo-energies

Free energy: F,(L) = [du ), [gk pr — 2= py — %5(/)13)} ,

Variations of the densities of particles and holes are subject to
opr(u) + 0pk(u) = Kij x p; -
Using the extremum condition §.F, (L) = 0, one derives the TBA eqs

€ = Lgk —log (1—|—€i7j_€j) *Kjk,

where the pseudo-energies ¢ are ek k = Bk
and the right action of Kjk is used: p; x Kj;(u) = [du p;(u')Kji(u', u)
At the extremum  F ( Bldud, & djj log (1 + k)

Finally, one gets the energy of the ground state of the I.c. string theory

O

_ 1 dp® —eg



TBA equations Arutyunov, Frolov ’09(b)
o (-particles (y=7m+h, ho = (—1)*h)

_ , ()
e = L&g —log (1 —|—e_€Q’) * K99 —log <1 + e M’”U’w) x KM'Q

s0(2) VWL
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e y-particles
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1+e M |vw

e;(jt):—log(l—i—e_eQ)*Kfy—i-log —) * K g
. 14+e Mw
o M |vw-strings
el = —log (147 ) x KM
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See also Bombardelli, Fioravanti, Tateo '09; Gromov, Kazakov,Kozak, Vieira ‘09



Simplifying the TBA equations

We introduce the Y-functions
(@) () (@)

YQ — e_eQ : Y(a) — €6M|vw : Y]\(;TZU — 66M|w : Yj(:a) — eey:i: :

and use the universal kernel

-1 _ B _ 9
(K+1),ny =0un —s(Om41,8v +0m—1,8) , s(u) Toosh 222

inverseto Kng +0nvo: Do (K + 1),y *(Kng +0ng) = dma

where Kan (u) = Knpn (u) + Knvoar(w) +23 507 Kvoarvzs(u)

1 d U — 1 1
Kot = o (2 18) -
m () omi du P w -+ i% 0

gM
M2 + g2u2’

—o0o < M < .
We often use the following identity

Z (K—Fl)X;N*KN = sOn1 .

N=1



TBA and Y-equations for w-strings

iha

(@) 1 L= y ()
logYM|w :lOg 1+(T) *KM/M—IOg il * K pp
YM’|w 1 o Y(O‘)
_|_
We apply the inverse kernel, and get the following equation
1 ctha
log V) = Inynlog(1+ YY) % s+ 8ar1 lo A*s
g M|lw MN 108 N |w M1 gl_eiha )
Y(a)
_|_

where I, 1S the incidence matrix

Inyn =041, N +0Mm—1.N -

Since the functions Y are defined on the interval —2 < u < 2, the integral
in the last term is taken from —2 to 2.

Y‘SyStem ??? Gromov, Kazakov, Vieira '09



TBA and Y-equations for w-strings

1 o e
() (o) v
logYM|w = Iy log(1 +YN|w) * s+ 0 log T %S
. YJ(FO”

Define (f *s~1)(u) =lim__ o+ [f(u+ é —i€) + f(u — é + i€)]
It satisfies the identity (s+s~!)(u) = &(u). Ingeneral fxs=1xs# f.

Introduce the notation Y]\(j‘)i(u) =y(® (u £ é' F <0), and get the Y-equations

|w M|w
(c)+ ()= () () :
YM\w YM\w o (1+YM—1\w> (1+YM—|—1\w) if MEQ’
eiha
(0)+ ()= () S
e Yw = (1+Y2|w) 1_ eha Jul < 2,
y ()
WA AR B ul > 2.

Y-system does NOT work for |u| > 2



Ground state energy: any L, small h

work in progress with Ryo Suzuki

Naively, for h = 0 the TBA equations are solved by

_ (@) _ y(a) _ (@) _ y(a) ihe _
Yo=0, YVV=v=1 vy =y #0, el =1,

A subtle point is that the TBA equation for Q-particles is singular at Yo = 0

~ / M
_logYg = L& — log (1 —|—YQ/) * K3 & —log (1 = ) « KMQ
M|vw
| _ eiha
1 Yia) 1 etha etha
_510g1_eiha *KQ__IOg(l_Y(a))(l_y(a))*KyQ'
Y_’(_a) +

v{* have expansion

Consider h # 0 and take h — 0. For small h, the functions Y

Yi(o‘):1+hA§_f‘)+---

The last term behaves as log h, and we get

—logYgy = —2log h x Ky + finite terms.



Ground state energy: any L, small h

—logYy = —2log h x Ky + finite terms.
Taking into account that 1 » K, = 1, we conclude
Yo :h2BQ+.-. :

and the ground state energy expands as
du = dp@
E; (L) = —h2 _E:_B
n(L) /27T o=1 du QF

Expanding all the Y-functions around the naive solution up to quadratic order in h

Yo ~ h2Bo, v ~14ha™ 4+ n2B(™
(@) o p() (a) 2 ~(a) (a) o pl) (o) 2 (@)
YM|vw NAM +hBM|vw +h CM|’UU)’ YM|w NAM +hBM|w +h7C

M|w *
one can derive equations for the coefficients A’s and B’s.

Up to the quadratic order the expansion in h is consistent with the conditions

B =B o AW =4 =0



Ground state energy: any L, small h

TBA egs for QQ-particles, and w-strings decouple from the eqs for B](\j‘fw and B(io‘)
~ 1 o (0%
—log Bg = LEg — log(1 + W) * KMQ logAgw) = Iy N log(1 + Ag\,)) xS
AM
If Ag\?) is constant then since 1 x s =

N

(A =1 +Aal) Ha+al) ) = Al =wm?
B, is computed by using 1« Kopus = nayge
Bg = 102 o~ LEQ
L is quantized!!!' if Yy is analytic on z-torus.
Thus, the ground state energy at the leading order in h and arbitrary L is given by

du ~= dp® oz > dp@ o=
E. (L :—h2/— = 4 2 LSQ :—h2 /_4 2 LSQ.
h( ) 27 z:: du Qe szjl 27 Qe

For L = 2 the series in () diverges?! as %



Ground state energy: any £, large L

Generalized Luscher formula Janik, Lukowski '07
du ~— d]gQ _LE, ' h)F
For, (L) = — — —e Q tr ez(ﬂ')
o (L) / = 7 Q +

The trace runs through all 16 Q* polarizations of a QQ-particle state. We
obtain

du OodﬁQ 2.2h —LE,
EgL(L):—/%Z%16Q S1n 56 Q"—

At small values of h it agrees with the previous one.

Expansion of Y-functions in terms of e~ %< is similar to the small » one

h — c « « (0%
YQz16QQSin2§e Lo v =1, v =~y ~MM+2),

M|w M |vw
and the energy of the ground state agrees with the Lischer formula.

For h = w it should give the energy of the non-BPS
ground state in the sector with anti-periodic fermions.



Y-system test

It is of interest to compute the contribution A Arutyunov, Frolov '09(b)
eihl eihg
A = log (1 — @ ) (1 — @ ) (O(—u—2)+0(u —2))
) cih1 oiho oih1 oiha §
+ LE-—log(1- Y_(l))(l— Y_(2>)(1 - Yf))(l_ Y+(2)) « K
1 1 . s
— log (1+ T) (1+ o) ) * Ky +2log (1+Yg) xKg,
YM|wa YM|vw

appearing in the simplified set of TBA equations.
TBA egs may lead to a Y-system only if A vanishes on any solution. We get
A=LE.
e Since A does not vanish, the TBA egs. do NOT lead to an analytic Y-system.

e That means that Y-functions are NOT analytic in the complex u-plane,
and have infinitely many cuts.

e This is in contrast to rel. models, and even if the Y-system exists, is it useful?






TBA equations for excited states

Naive TBA egs for excited (nonbound) states in the su(2) (or sl(2)?) sector

e Assume that the string theory spectrum is characterized by a set of IV real
numbers z;, corresponding to momenta of IV particles in the large L limit.

e These numbers are determined from the conditions P. Dorey, Tateo '96

Vi (zh — %):Yl(z*k):—l, k=1,...,N,

where Y1 = e~ €1 is the Y-function of the fundamental mirror particles, and it is
supposed to be a holomorphic function in a region which contains all z..;. and
the real mirror momentum line in the z-torus.

e Take the TBA equations for the ground state energy, and deform the
integration contour in any integral of the form f x K(z) = [dz'f(z/)K (%', 2) in
such a way that all the points z..;. lie between the real mirror momentum z line
and the integration contour.

e Taking the integration contour back to the real z line, one picks up NV extra
contributions of the form — log S(z«, z) from any term log(1 + Y1) x K, where
S(w, z) is the S-matrix corresponding to the kernel K:

K(w, z) = 2%” % log S(w, 2).



TBA equations for excited states in the su(2)-sector

e ()-particles

Q'Q M
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TBA equations for excited states in the su(2)-sector

Summation over repeated indices and the index « in the equation for
Q-particles is assumed

The sums in the formulae run over the set of N particles
All Y-functions depend on the real z (or u) variable of the mirror region

All integrals are also taken over the real u line or the interval
—2<u<?2

S.i%) = 8,11 (2+, 2) is a shorthand notation for the S-matrix with the

first and second arguments in the string and mirror regions,
respectively

Finally, both arguments of the kernels in these formulae are in the
mirror region



TBA equations for excited states in the su(2)-sector

Now we take the logarithm of Y7 (z.x) = —1, and analytically continue the variable z
of Y1(z) in the TBA eq for Y7 to the point z,. This leads to the following exact
Bethe equations for the string theory particles momenta py

N
mi(2ng + 1) = —log Y1 (2:) = —iLpy + » _log Sei(2) (7> Zek)
=

1 1 M1
—log (14 Yg) * Kgm) — log (1 + ol KM
M|vw

oo [ 12 € ) 4w k! o [1- €0 ) 4 kv
— log — Y(O‘) * - —log — Y_|(_O‘) * T

o pr = iEo(2.1) is the momentum of the k-th particle

e the second argument in all the kernels in this equation is equal to z,

e the first argument we integrate with respect to is the original one in the mirror
region



TBA equations for excited states in the su(2)-sector

The energy of the multiparticle state is given by

N dp®
B, y (L) = Z ip (24r) — /du Z —d—log (1+Yo)

u

k=1
N 00

where

Ex = igxy, —iga:: -1,

is the energy of a fundamental particle in the string theory.

For practical computations the analytic continuation from the mirror region to the
string one is done by introducing the u.-variable in the string region

U / 4
Zl?s(u*):?(l"‘ 1_§> )

with the cut running from —2 to 2. Then, the analytic continuation of all the kernels
and S-matrices reduces to the substitution 9+ (u) — Q% (uy) = s (us + éQ).



Conclusions

The AdSs x S° string sigma-model can be naturally embedded in the general
framework of massive integrable systems.

Mirror theory is continuum 2-dim quantum field theory, and is closer to usual
relativistic models. On the contrary, quantum l.c. string sigma model is rather a
lattice theory

Formulated the string hypothesis for the mirror theory Arutyunov, Frolov '09(a)

Derived TBA equations for the ground state energy
(and excited states) Arutyunov, Frolov '09(b)

Bombardelli, Fioravanti, Tateo ’09

Different TBA eqs were proposed by Gromov, Kazakov, Kozak, Vieira ‘09
A different string hypothesis has been apparently used there.

Simplified the TBA equations

They lead to the Y-system but only for « in the interval —2 < u < 2, and there
it agrees with the one conjectured by Gromov, Kazakov, Vieira ‘09

The analyticity of Yg on the z-torus implies the quantization of the |.c.
momentum or, equivalently, the temperature quantization of the mirror model.



Open problems

Dressing phase in the mirror theory. Arutyunov,Frolov '09(c)

Find a proper analytic continuation of the TBA egs to analyze the
excited state energies. The naive continuation does not take into
account u-terms.

Reproduce known string and field theory results by using the TBA eqs
Compute numerically anomalous dimension of Konishi for any A
Compute analytically anomalous dimension of Konishi up to 12 loops.
Prove PSU (2,2|4) invariance of the string spectrum

Prove the gauge independence of the string spectrum



