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» Bound states in QFT is not well formulated problem up to now.

» A bound state is a simple pole of an elastic scattering amplitude in a
canal with appropriate quanum numbers,

1. Quantum electrodynamics of electrons

2. The Bethe-Salpeter (BS) equation in the ladder approximation is a
direct way to study this problem.

3. BS equation is not gauge invariant. Choice of gauge.

4. Positronium mass in Feynman and Coulomb gauges.

> A bound state is a simple pole of a Green function of currents with
appropriate quanum numbers.

Quantum electrodynamics of charged scalar particles.

Functional integral representation

Relativistic corrections to the non-relativistic Schrédinger equation.
Bound state mass for large «.
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Bethe-Salpeter equation
Gauge non-invariant approach
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Functional integral representation
Gauge invariant approach



Bethe-Salpeter equation
QUANTUM ELECTRODYNAMICS

Feynman gauge : Dzw (k) = 5152

Coulomb gauge: D, (k)=



Bet he-Sal peter equation
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* The BS kernel in a symmetric form looks as K = Ky + K
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» Tr K2 = oo is of the "fall at center"potential type = &< 2]
» Tr K7 < oo is responsible for bound states

* Variational procedure of calculations can be used.

* The binding energy of the 1™ -state (positronium) is calculated.



Binding energy € (eV) of the 17 state
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» The gauge invariance is broken in the Bethe-Salpeter equation with
any fixed kernel

» The Feynman and Coulomb gauges give different results
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» Problem = What gauge should be chosen?
» May be there exists a preferable gauge in the bound state problem?

» Standard choice = Coulomb gauge.



Functional integral approach
QUANTUM SCALAR ELECTRODYNAMICS
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Potential and non-potential corrections.



Gaussian equivalent Representation
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Mass of the relativistic bound state
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RESULTS

1. For small coupling constant o < 1 all approaches: non-relativistic
Schrédinger equation, Bethe-Salpeter equation in the ladder
approximation and functional representation give the same result.

2. Relativistic corrections, i.e. next orders « corrections, to the
non-relativistic Schrédinger equation have no potential character, they
contain time dependent terms.

3. Gauge invariance is broken in the Bethe-Salpeter equation in the
ladder approximation. Problem is what gauge should be chosen. Standard
choice - Coulomb gauge.

4. Functional approach = gauge invariant approach.

Problem is how to calculate functional integrals.

Gaussian equivalent representation = weak and strong coupling regime
calculations.



