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Motivation

Alday, Maldacena :
gluon scatt. ampl. & string world surfaces in AdSs appr. a lightlike

polygon on the boundary

e First lightlike cusp between infinite straight lines in boundary of Poincare
patch (= MinkowskKis)

e extension to full AdS3 gives totally symmetric tetragon on 9(AdS3)

e after isometry trafo in AdSs one can reach each lightlike tetragon

in MinkowskKig

But needed minimal surfaces known only for tetragon,

difficult Plateau like problem






Motivation 4

YN coordinates in R2n—1

AdS,, embedded as hyperboloid
YO+ (vO)2 - (v 12— .. —(v" )2 = 1
Tetragon surface in AdSs3:

, . .
Y9 = cosho coshr |, Y9 = sinho sinh

Yl = sinho coshr, Y? = cosho sinhr .

e induced metric: guy = ouv = minimal, spacelike, flat

e Is there also such surface in max. symmetric situation for AdS, or AdSs?



Most symmetric polygon for AdS 4

s [n] Boundary of AdS 4 = Rx $'2



Motivation, the timelike side 6

spacelike tetragon surface is double Wick rotation of rigid rotating string
r—ir, Y2—-iv?, vy v2

3 flat timelike minimal surface in AdSs:

rigid string with 2 independent rotations (Frolov, Tseytlin)

(Acoskt, Asin kT, Bsino coswt, Bsino sinwr, BCOSo COSwT, BCOSo SinwT)
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& A2_B2:17 w2:1+/</27 BQZE

But now to compensate 7 — iT, one has to Wick rotate Y?' y2 y4

= ends up not in AdSs.



General formalism

min. surface (all mean curvatures = 0, stationarity of volume functl.)
1% (V o Xk( 0, XJ l —k —
g (Voo XF(2) + ouxiox' rh(x(2)) = 0,
AdS,, as a hyperboloid in R2"~1 conformal coord. on the surface
oY N (X (2)) — ayBay, YV = 0.

e 0=0,+0;,, 0=0,—0r timelike surfaces
e 0=0,—1i0r, 0= 0y +i0; spacelike surfaces
complete the vectors Y, dY, Y to a basis in R2"—1 (ponimeyer, de Vega/Sanchez,

Jevicki et al ....)

{en} = {Y,0Y,8Y,Ba,...,Bhi1} .

timelike surfaces = normal space Euclidean

spacelike surfaces = normal space Lorentzian



General formalism o

Move the basis along the surface
86N=ANK6K, 5€N:ANK€K. (%)

e find a suitable parametrization of the dyn. (geom.) degrees of freedom
in the matrices A and A

e derive diff. eqs. for the corr. functions from the eq. of motion (minimal
surface condition) and the integrability condition

e after solving these diff. eqgs., the surface has to be reconstructed

by integrating (x )

a(o, 1) log(dY, 0Y)
ua(o,7) = (Bq,00Y) , ua(o,7) = (Bg,00Y)



General formalism

Y = Y

DY = dadY + B,
00y = e%Y

OB, = — e udY + A, By,

as well as the egs. generated by replacements 0 « 0, ug — Ugq, A, b _, /_la b,

integrability =

0o — e~ ulyy, — @ 0
g — A, %u, = 0, dug — A, uy = 0,
e (ﬁaub — uaﬁb> = 9A,"—-9A, P+ A, A, P —A A"
a,b,crun from 4,....,(n+ 1)

Gauss, Codazzi-Mainardi, Ricci



General formalism, geometry

10
e sScalar curvature of surface: R = —2¢e¢ %9l
e Gausseq. MCN: RNz, — RN3., = (18,105, — 18, 15,)ha

e second fund. forms [}, = pv (Bp, Vo X) = R b (Bp, 0u0vY")

minimal: g" Iy, = 0, Ve

[ —

: : L . — ¢ L (a® b°
timelike minimal u=a-+b u=a—>b : [~ = > (bc aC)
1

aC —pC
2 (—bc —ac>

spacelike minimal u=a-+1wb, uw=a—1ib : [€

always either g, or hy, indefinite



Spacelike minimal surfaces in AdSs

The bar now implies complex conjugation !
By a conformal (holomorphic) trafo z — ((z), z—((2) : uur = 1

with 'U,C:a;c_l_'l:bc m— CLCCLC _bcbc — 1, acbc = 0
After suitable gauge trafo:

spacelike I (b b > 0) , u® = (0,isinh 3/2,cosh (3/2)
spacelike II (-1 < b°b. < 0), u° = (1sinpB/2,cos3/2,0)
spacelike III (b€ b =0) , u = (14+iw,14+,1).



Characterization by invariants in AdS,, n > 4
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covariant description of subdivision I - III:

1
T = P tr(FogF,
8 |detg] ol (FapFiu)

in conformal coordinates:

1
T — 5 e—2a tr FQ — e—4a<(ﬂaua)2 B (ﬂaﬂa)(ubub))

with Gauss and C = (w.u%) (upub)

R+ 2+ 2e2 /0 + T =0

Exceptional cases: C =0

Non-exceptional cases: after completely fixing coordinates C' = 1

e—4a — (R+2>2 .
4

T, o expressed by invariants !l



Characterization by invariants in AdS,, n > 4
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= for all minimal surfaces in AdSn, n > 4

(R+2)2
4
timelike case: T'< 0 = no subdivision

— T >0, saturation by the except. cases

spacelike case: (in AdS, case II only)

22
case I : O§T<(R_Z) ;

case II : T <0,
case III : T =0, not all Fab =0



Spacelike minimal surfaces in AdSs
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case spacelike 1

A56:—% ap , Ay = pCOShg, A2 =ipsinh
00 — e @ coshf — % = 0,

00 + (e7* + pp) sinhg = 0,

(506 — pB) sinh" + (95— 3p) cosh® = 0.
5 B _ o

(P08 + pdB) cosh 5 T O+ dp) sinh 5



Spacelike minimal surfaces in AdSs

=
(g

case spacelike II

Al = %85, AL = pcosg, A56=ipSin§.
00 — e @ cosfB — e* = 0,
008 + (¢ 4 pp) sing = 0,
(706~ pBP) sin® — (95— Bp) coso = 0,

(POB + pop) cosg + (8p+ dp) sin g

[
o

case spacelike III

0o — 2 cosh «

|
o



Flat spacelike minimal surfaces in AdSs 16

On flat surface always 3 coordinates with metric n,, or duu.
Here the diffeom. freedom fixed already, = to analyze all 90a = 0

AdS3: From sinh-Gordon = a =0

01 0 O 0 010
K 00 0 —i - K _ 1 000
AN = 10 0 0" AN = 0 0 0 1
00 —i O 0O 4 00

Reconstruction of surface: Solve linear first order eqgs. for frame {en}

eny(o,7) = ./\/lNK er(0,0), ./\/lNK = (exp (0_;” A) exp (J 2” A)) .

Brute force exponentiation by Mathematica
Using isomorphy SO(2,2) to SU(1,1) x SU(1,1) more elegant, application to solitonic

solutions of sinh-Gordon (i.e. non constant «) (Jevicki, Jin, Kalousios, Volovich)



Flat spacelike minimal surfaces in AdSs

17

CO'CT 'L UO‘,T _'L UO’T SO'ST

M K _ —1 gO',T CoCr —1 S¢St UO‘,T
N Z UO‘)T 'I/ SO'ST CQCT UO',T
SO'ST UO‘,T UO‘,T CO'CT
with
o _ o 1+ o+ T . o—-T
(s =cosh— ,S; =sinh— ,Us+ = —— ( sinh 1 sinh
7 N 73 Uor =55 (silh == + NG

string position Y (o, 1) is the first vector of the frame {ey}

second and third vector not orthonormalized, take corr. linear comb.

e surface can be read off from first row of matrix MNK
e result is four cusp surface used by Alday-Maldacena
e freedom of overall SO(2,2) trafo encoded in choice of

starting frame {en(0,0)}

)



Flat spacelike minimal surfaces in AdSs 18

AdSs: form of a-equations = no flat surface in cases spacelike I, III

case spacelike II: 99a = 0 —  Ccosf = —e2®

assume first sin8 % 0 = 008 = g'if;(l — Cossifzf;a) dada

e4a
sin? 3

insert in (-eq. = 462a<1 —- ) -+ (e_o‘ + /0/5) Sin2[3 = 0
— contradiction (note: pp not pos. def. in timelike case)

sin@ = O: = (sincecosB <0 ) cosp=-1

p, p-equations degenerate to 0p+ 9p =0



Flat spacelike minimal surfaces in AdSs 19

(001 0 0 0 0) (0010 0 O0)
00 0 - 0O 1000 0 O
4 k_|10 0 0 00 Fk_|000 i 0 O
N=1l00- 0 ooO0|> “¥N7]104+00 0 O
00 0O O 0 ip 000O0 0 —ip
\0 0O 0O 0 —ip O \0 0 00 ip O)

e Both matrices are block diagonal, exponentials, too
e new degrees of freedom relative to the AdS3 case, encoded in the lower

right blocks with p and p, have no influence on first row

= All flat spacelike minimal surfaces in AdSs are realized in a subspace
AdS3 C AdSs and are of type just discussed.

Straightforward extension to AdS, has been done, too.



Comment on new results by Alday/Maldacena 0904.0663 50

Discuss generic 2n-null polygons in 2d-Mink. and corr. surface in AdS3

First totally symmetric case: For 2n > 4 necessarily (multiple) zero of u

at origin, corresponding to R = —2
R grows monotonic to zero at the boundary

In generic case conformal invariant data of 2n-null polygon encoded in

relative positions of the zeros of polynomial for u(z).

succeeded in calculating the (regularized) area for octagon case
(M»> octagons and their SO(2,4) transforms)

Construction makes extensive use of SO(2,2) = SL(2) x SL(2)



Conclusions o1

Studied Pohlmeyer type reduction and geometric language for AdSj,

Analyzed differences timelike versus spacelike, subclasses of spacelike

Exist flat timelike minimal surfaces beyond those in an AdS3 subspace

Exist no flat spacelike minimal surfaces beyond those in AdS3 subspaces

Reduction for generic n with full gauge structure for rotations/Lorentz

trafo gives interesting relations to WZW models

Did also (patchwise) classification of all flat timelike surfaces in AdSs



