On timelike and spacelike minimal surfaces in AdS_n and the Alday-Maldacena conjecture

- Motivation
- General formalism
- Spacelike minimal surfaces
- ullet No flat spacelike minimal surfaces in AdS_n beyond 4-cusp case

Motivation 2

Alday, Maldacena:

gluon scatt. ampl. \Leftrightarrow string world surfaces in AdS_5 appr. a lightlike polygon on the boundary

- First lightlike cusp between infinite straight lines in boundary of Poincare patch (= Minkowski₂)
- extension to full AdS_3 gives totally symmetric tetragon on $\partial(AdS_3)$
- \bullet after isometry trafo in AdS_5 one can reach each lightlike tetragon in Minkowski_4

But needed minimal surfaces known only for tetragon, difficult Plateau like problem

Motivation 4

 Y^N coordinates in $\mathbb{R}^{2,n-1}$,

 AdS_n embedded as hyperboloid

$$(Y^{0}(X))^{2} + (Y^{0'})^{2} - (Y^{1})^{2} - \dots - (Y^{n-1})^{2} = 1$$

Tetragon surface in AdS_3 :

$$Y^0 = \cosh \sigma \cosh \tau , \quad Y^{0'} = \sinh \sigma \sinh \tau ,$$

$$Y^1 = \sinh \sigma \cosh \tau , \quad Y^2 = \cosh \sigma \sinh \tau .$$

- induced metric: $g_{\mu\nu} = \delta_{\mu\nu} \quad \Rightarrow \quad \text{minimal, spacelike, } \underline{flat}$
- ullet Is there also such surface in max. symmetric situation for AdS_4 or AdS_5 ?

Most symmetric polygon for AdS_4

 $_{5}$ [h] Boundary of AdS_4 = R x S^2

spacelike tetragon surface is double Wick rotation of rigid rotating string

$$\tau \mapsto i\tau$$
, $Y^2 \mapsto iY^{0'}$, $Y^{0'} \mapsto iY^2$

 \exists flat timelike minimal surface in AdS_5 :

rigid string with 2 independent rotations (Frolov, Tseytlin)

 $(A\cos\kappa\tau, A\sin\kappa\tau, B\sin\sigma\cos\omega\tau, B\sin\sigma\sin\omega\tau, B\cos\sigma\cos\omega\tau, B\cos\sigma\sin\omega\tau)$

with $g_{\mu\nu} = B^2 \eta_{\mu\nu}$

&
$$A^2 - B^2 = 1$$
, $\omega^2 = 1 + \kappa^2$, $B^2 = \frac{\kappa^2}{2}$

But now to compensate $\tau \mapsto i\tau$, one has to Wick rotate $Y^{0'}, Y^2, Y^4$

$$\Rightarrow$$
 ends up not in AdS_5 .

min. surface (all mean curvatures = 0, stationarity of volume functl.)

$$g^{\mu\nu} \left(\nabla_{\mu} \partial_{\nu} X^{k}(z) + \partial_{\mu} X^{j} \partial_{\nu} X^{l} \Gamma^{k}_{jl}(X(z)) \right) = 0 ,$$

 AdS_n as a hyperboloid in $\mathbb{R}^{2,n-1}$, conformal coord. on the surface

$$\partial \bar{\partial} Y^N(X(z)) - \partial Y^K \bar{\partial} Y_K Y^N = 0.$$

- $\partial = \partial_{\sigma} + \partial_{\tau}$, $\bar{\partial} = \partial_{\sigma} \partial_{\tau}$ timelike surfaces
- $\partial = \partial_{\sigma} i\partial_{\tau}$, $\bar{\partial} = \partial_{\sigma} + i\partial_{\tau}$ spacelike surfaces

complete the vectors $Y,\partial Y,\bar\partial Y$ to a basis in $\mathbb{R}^{2,n-1}$ (Pohlmeyer, de Vega/Sanchez, Jevicki et al)

$$\{e_N\} = \{Y, \partial Y, \bar{\partial} Y, B_4, \dots, B_{n+1}\}.$$

timelike surfaces \Rightarrow normal space Euclidean spacelike surfaces \Rightarrow normal space Lorentzian

Move the basis along the surface

$$\partial e_N = A_N{}^K e_K, \quad \bar{\partial} e_N = \bar{A}_N{}^K e_K. \quad (*)$$

- ullet find a suitable parametrization of the dyn. (geom.) degrees of freedom in the matrices A and \bar{A}
- derive diff. eqs. for the corr. functions from the eq. of motion (minimal surface condition) and the integrability condition
- after solving these diff. eqs., the surface has to be reconstructed by integrating (*)

$$\alpha(\sigma, \tau) = \log(\partial Y, \bar{\partial} Y)$$

$$u_a(\sigma, \tau) = (B_a, \partial \partial Y), \quad \bar{u}_a(\sigma, \tau) = (B_a, \bar{\partial} \bar{\partial} Y)$$

$$\partial Y = \partial Y$$

$$\partial \partial Y = \partial \alpha \partial Y + u^b B_b$$

$$\partial \bar{\partial} Y = e^{\alpha} Y$$

$$\partial B_a = -e^{\alpha} u_a \bar{\partial} Y + A_a^{\ b} B_b ,$$

as well as the eqs. generated by replacements $\partial \leftrightarrow \bar{\partial}$, $u_a \to \bar{u}_a$, $A_a^{\ b} \to \bar{A}_a^{\ b}$. integrability \Rightarrow

$$\partial \bar{\partial} \alpha - e^{-\alpha} u^b \bar{u}_b - e^{\alpha} = 0$$

$$\partial \bar{u}_a - A_a{}^b \bar{u}_b = 0 , \qquad \bar{\partial} u_a - \bar{A}_a{}^b u_b = 0 ,$$

$$e^{\alpha} \left(\bar{u}_a u^b - u_a \bar{u}^b \right) = \partial \bar{A}_a{}^b - \bar{\partial} A_a{}^b + \bar{A}_a{}^c A_c{}^b - A_a{}^c \bar{A}_c{}^b .$$

a, b, c run from $4, \ldots, (n+1)$

Gauss, Codazzi-Mainardi, Ricci

- scalar curvature of surface: $R = -2 e^{-\alpha} \partial \bar{\partial} \alpha$
- Gauss eq. $M\subset N$: $R^M_{\alpha\beta\mu\nu}$ $R^N_{\alpha\beta\mu\nu}$ = $\left(l^a_{\alpha\mu}\ l^b_{\beta\nu}\ -\ l^a_{\alpha\nu}\ l^b_{\beta\mu}\right)h_{ab}$
- second fund. forms $l^a_{\mu\nu} = h^{ab} (B_b, \nabla_\mu \partial_\nu X) = h^{ab} (B_b, \partial_\mu \partial_\nu Y)$

minimal: $g^{\mu\nu} l^c_{\mu\nu} = 0$, $\forall c$

timelike minimal
$$u=a+b, \ \bar{u}=a-b$$
 : $l^c=\frac{1}{2}\begin{pmatrix} a^c & b^c \\ b^c & a^c \end{pmatrix}$ spacelike minimal $u=a+ib, \ \bar{u}=a-ib$: $l^c=\frac{1}{2}\begin{pmatrix} a^c & -b^c \\ -b^c & -a^c \end{pmatrix}$

The bar now implies complex conjugation!

By a conformal (holomorphic) trafo
$$z\mapsto \zeta(z),\ \bar z\mapsto \overline{\zeta(z)}:\ u^cu_c=1$$
 with $u_c=a_c+ib_c$ \Rightarrow $a^c\ a_c\ -b^c\ b_c=1$, $a^c\ b_c=0$

After suitable gauge trafo:

spacelike I
$$(b^c \ b_c > 0)$$
 , $u^c = (0, i \sinh \beta/2, \cosh \beta/2)$ spacelike II $(-1 \le b^c \ b_c < 0)$, $u^c = (i \sin \beta/2, \cos \beta/2, 0)$ spacelike III $(b^c \ b_c = 0)$, $u^c = (1 + i\nu, 1 + i\nu, 1)$.

covariant description of subdivision I - III:

$$T = \frac{1}{8 |\det g|} \epsilon^{\alpha\beta} \epsilon^{\mu\nu} \operatorname{tr}(F_{\alpha\beta}F_{\mu\nu})$$

in conformal coordinates:

$$T = \frac{1}{2} e^{-2\alpha} \operatorname{tr} F^2 = e^{-4\alpha} ((\bar{u}_a u^a)^2 - (\bar{u}_a \bar{u}^a)(u_b u^b))$$

with Gauss and $C = (\bar{u}_a \bar{u}^a)(u_b u^b)$

$$R + 2 \pm 2 e^{-2\alpha} \sqrt{C + e^{4\alpha} T} = 0$$

Exceptional cases: C = 0

Non-exceptional cases: after completely fixing coordinates C=1

$$e^{-4\alpha} = \frac{(R+2)^2}{4} - T$$
, α expressed by invariants !!

 \Rightarrow for all minimal surfaces in $AdS_n, n \ge 4$

$$\frac{(R+2)^2}{4}$$
 - T ≥ 0 , saturation by the except. cases

timelike case: $T \leq 0 \Rightarrow$ no subdivision

spacelike case: (in AdS_4 case II only)

case I :
$$0 \le T < \frac{(R+2)^2}{4}$$
,

case II : $T \leq 0$,

case III :
$$T = 0$$
 , not all $F_a{}^b = 0$

case spacelike I

$$\begin{split} A_5{}^6 &= -\frac{i}{2} \; \partial\beta \; , \quad A_4{}^5 \; = \; \rho \cosh\frac{\beta}{2} \; , \quad A_4{}^6 = i\rho \sinh\frac{\beta}{2} \\ \partial\bar{\partial}\alpha \; - \; e^{-\alpha} \; \cosh\beta \; - \; e^{\alpha} \; = \; 0 \; , \\ \partial\bar{\partial}\beta \; + \; (e^{-\alpha} \; + \; \rho\bar{\rho}) \; \sinh\beta \; = \; 0 \; , \\ (\bar{\rho}\partial\beta - \rho\bar{\partial}\beta) \; \sinh\frac{\beta}{2} \; + \; (\partial\bar{\rho} - \bar{\partial}\rho) \; \cosh\frac{\beta}{2} \; = \; 0 \; , \\ (\bar{\rho}\partial\beta + \rho\bar{\partial}\beta) \; \cosh\frac{\beta}{2} \; + \; (\partial\bar{\rho} + \bar{\partial}\rho) \; \sinh\frac{\beta}{2} \; = \; 0 \; . \end{split}$$

case spacelike II

$$A_4^{5} = \frac{i}{2} \partial \beta , \quad A_4^{6} = \rho \cos \frac{\beta}{2} , \quad A_5^{6} = i\rho \sin \frac{\beta}{2} .$$

$$\partial \bar{\partial} \alpha - e^{-\alpha} \cos \beta - e^{\alpha} = 0 ,$$

$$\partial \bar{\partial} \beta + (e^{-\alpha} + \rho \bar{\rho}) \sin \beta = 0 ,$$

$$(\bar{\rho} \partial \beta - \rho \bar{\partial} \beta) \sin \frac{\beta}{2} - (\partial \bar{\rho} - \bar{\partial} \rho) \cos \frac{\beta}{2} = 0 ,$$

$$(\bar{\rho} \partial \beta + \rho \bar{\partial} \beta) \cos \frac{\beta}{2} + (\partial \bar{\rho} + \bar{\partial} \rho) \sin \frac{\beta}{2} = 0 .$$

case spacelike III

$$\partial \bar{\partial} \alpha - 2 \cosh \alpha = 0 ,$$
.....

On flat surface always \exists coordinates with metric $\eta_{\mu\nu}$ or $\delta_{\mu\nu}$. Here the diffeom. freedom fixed already, \Rightarrow to analyze <u>all</u> $\partial\bar{\partial}\alpha=0$ AdS_3 : From sinh-Gordon \Rightarrow $\alpha=0$

$$A_N^{K} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -i & 0 \end{pmatrix}, \quad \bar{A}_N^{K} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & i \\ 0 & i & 0 & 0 \end{pmatrix}.$$

Reconstruction of surface: Solve linear first order eqs. for frame $\{e_N\}$

$$e_N(\sigma,\tau) = \mathcal{M}_N^K e_K(0,0), \quad \mathcal{M}_N^K = \left(\exp\left(\frac{\sigma + i\tau}{2}A\right) \exp\left(\frac{\sigma - i\tau}{2}\bar{A}\right)\right)_N^K.$$

Brute force exponentiation by Mathematica

Using isomorphy SO(2,2) to $SU(1,1)\times SU(1,1)$ more elegant, application to solitonic solutions of sinh-Gordon (i.e. non constant α) (Jevicki, Jin, Kalousios, Volovich)

$$\mathcal{M}_{N}^{K} = \begin{pmatrix} C_{\sigma}C_{\tau} & i \bar{U}_{\sigma,\tau} & -i U_{\sigma,\tau} & S_{\sigma}S_{\tau} \\ -i U_{\sigma,\tau} & C_{\sigma}C_{\tau} & -i S_{\sigma}S_{\tau} & \bar{U}_{\sigma,\tau} \\ i \bar{U}_{\sigma,\tau} & i S_{\sigma}S_{\tau} & C_{\sigma}C_{\tau} & U_{\sigma,\tau} \\ S_{\sigma}S_{\tau} & U_{\sigma,\tau} & \bar{U}_{\sigma,\tau} & C_{\sigma}C_{\tau} \end{pmatrix}$$

with

$$C_{\sigma} = \cosh \frac{\sigma}{\sqrt{2}}$$
, $S_{\sigma} = \sinh \frac{\sigma}{\sqrt{2}}$, $U_{\sigma,\tau} = \frac{1+i}{2\sqrt{2}} \left(\sinh \frac{\sigma+\tau}{\sqrt{2}} + i \sinh \frac{\sigma-\tau}{\sqrt{2}} \right)$ string position $Y(\sigma,\tau)$ is the first vector of the frame $\{e_N\}$ second and third vector not orthonormalized, take corr. linear comb.

- ullet surface can be read off from first row of matrix ${\cal M}_N^{\ K}$
- result is four cusp surface used by Alday-Maldacena
- freedom of overall SO(2,2) trafo encoded in choice of starting frame $\{e_N(0,0)\}$

 AdS_5 : form of α -equations \Rightarrow no flat surface in cases spacelike I, III case spacelike II: $\partial \bar{\partial} \alpha = 0$ \Rightarrow $\cos \beta = -e^{2\alpha}$ assume first $\sin \beta \neq 0$ \Rightarrow $\partial \bar{\partial} \beta = \frac{4e^{2\alpha}}{\sin \beta} \left(1 - \frac{\cos \beta}{\sin^2 \beta}\right) \partial \alpha \bar{\partial} \alpha$ insert in β -eq. $\Rightarrow 4e^{2\alpha}\left(1+\frac{e^{4\alpha}}{\sin^2\beta}\right)+\left(e^{-\alpha}+\rho\bar{\rho}\right)\sin^2\beta=0$ contradiction (note: $\rho \bar{\rho}$ not pos. def. in timelike case) $\sin \beta = 0$: \Rightarrow (since $\cos \beta < 0$) $\cos \beta = -1$ $\rho, \bar{\rho}$ -equations degenerate to $\partial \bar{\rho} + \bar{\partial} \rho = 0$

$$A_N^{\ K} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -i & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -i & 0 & 0 & 0 & i\rho \\ 0 & 0 & 0 & 0 & -i\rho & 0 \end{pmatrix} , \quad \bar{A}_N^{\ K} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i & 0 & 0 \\ 0 & 0 & 0 & 0 & i\bar{\rho} & 0 \end{pmatrix}$$

- Both matrices are block diagonal, exponentials, too
- new degrees of freedom relative to the AdS_3 case, encoded in the lower right blocks with ρ and $\bar{\rho}$, have no influence on first row
- \Rightarrow All flat spacelike minimal surfaces in AdS_5 are realized in a subspace $AdS_3 \subset AdS_5$ and are of type just discussed.

Straightforward extension to AdS_n has been done, too.

Discuss generic 2n-null polygons in 2d-Mink. and corr. surface in AdS_3

First totally symmetric case: For 2n>4 necessarily (multiple) zero of u at origin, corresponding to R=-2

R grows monotonic to zero at the boundary

In generic case conformal invariant data of 2n-null polygon encoded in relative positions of the zeros of polynomial for u(z).

succeeded in calculating the (regularized) area for octagon case $(M_2 \text{ octagons and their } SO(2,4) \text{ transforms})$

Construction makes extensive use of $SO(2,2) = SL(2) \times SL(2)$

- ullet Studied Pohlmeyer type reduction and geometric language for AdS_n
- Analyzed differences timelike versus spacelike, subclasses of spacelike
- \bullet Exist flat timelike minimal surfaces beyond those in an AdS_3 subspace
- \bullet Exist <u>no</u> flat spacelike minimal surfaces beyond those in AdS_3 subspaces
- ullet Reduction for generic n with full gauge structure for rotations/Lorentz trafo gives interesting relations to WZW models
- ullet Did also (patchwise) classification of all flat timelike surfaces in AdS_5