Small-Scale Dark Matter Clumps in the Galaxy

Veniamin Berezinsky*[†] Vyacheslav Dokuchaev* Yury Eroshenko*

*Institute for Nuclear Research, of the Russian Academy of Sciences, Moscow

[†]Laboratori Nazionali del Gran Sasso, Italy

Moscow — 2009

DM clump analogue: self-gravitating cluster of stars

Hubble telescope view of Globular Cluster M13

Large-scale DM clumps: numerical simulations of DM halos

Project Columbia supercomputer, NASA, 2.3410⁶ particles

The Non-linear Regime: Numerical Simulations

One billion particles, one million cpu-hours

One million cpu-hours on ORNL's *Jaguar* Cray XT4

Produced 20 TB of data, the analysis is ongoing...

Via Lactea II – the inner 40 kpc

Whereas previous simulations were almost completely smooth in the central region, with VL-II we resolve lots of subhalos and tidal streams even down to 8 kpc.

Simulated Dark Matter Annihilation Map

Small-scale DM clumps: numerical simulations

3 kpc 60 pc 0.024 pc $N = 62 \cdot 10^6$, $m = 1.2 \cdot 10^{-10} M_{\odot}$, $z = 350 \rightarrow 26$ Diemand Moore & Stadel 05

Mass function of small scale DM clumps

Diemand Moore & Stadel 05

Cutoff of DM clump mass spectrum

SUSY neutralino DM particles with mass $\sim 10-100~\text{GeV}$

Minimum mass of DM clumps M_{\min} :

• $10^{-12} M_{\odot}$ Zybin Vysotsky & Gurevich 99 • $10^{-7} - 10^{-6} M_{\odot}$ Schwarz Hofmann & Stocker 01 • $10^{-8} M_{\odot}$ Brezinsky Dokuchaev & Eroshenko 03 • $10^{-4} M_{\odot}$ Loeb & Zaldarriaga 05 • $10^{-5} - 10^{-4} M_{\odot}$ Bertschinger 06 • $10^{-6} - 10^2 M_{\odot}$ Profumo Sigurdson & Kamionkowski 06

Cutoff of the clump mass spectrum by kinetic decoupling

 $rac{1}{ au_{rel}} \simeq H(t)$

Internal density profile of DM clump

$$\rho_{\rm int}(r) = \begin{cases} \rho_c, & r < R_c; \\ \rho_c \left(\frac{r}{R_c}\right)^{-\beta}, & R_c < r < R; \\ 0, & r > R, \end{cases}$$
$$\beta \simeq 1.8$$

Gurevich & Zybin 88

Core size $R_c/R \simeq 0.01$

Moore et al 05

Integral mass function and number density of clumps $\xi_{\text{int}} \frac{dM}{M} \simeq 0.02(n+3) \frac{dM}{M}$ $n_{\text{cl}}(M,R) d \ln M d \ln R = \frac{\rho_{\text{DM}}(r_{\odot})}{M} \xi(M,\nu) d \ln M d\nu$

Berezinsky Dokuchaev & Eroshenko 03 06 08

Diemand Moore & Stadel 05

Survival of clump remnants (cores)

Successive tidal stripping of clump during multiple encounters with stars, shell by shell, from the outer to inner ones: $1, \ldots, j, j + 1 \ldots$

• Criterium for clump stripping $\sum_{j} (\Delta E)_{j} \sim |E_{b}|$ • Gradual mass loss shell by shell up to the core \rightarrow remnant • Radius of clump core is uncertain! $R_{c}/R =$? $R_{c}/R \simeq 1.8 \times 10^{-5}$ Gurevich & Zybin 95 $R_{c}/R \simeq 0.01$ Diemand Moore & Stadel 05

Central core dominates in annihilation rate at $\beta = 1.7 > 1.5!$

$$\dot{N} \propto \int_{0}^{r} 4\pi r^2 dr \rho_{\rm int}^2(r), \qquad \rho_{\rm int}(r) = \frac{3-\beta}{3} \, \bar{\rho} \left(\frac{r}{R}\right)^{-\beta}$$

Transformation of the mass function

Numerically calculated modified mass function of clump remnants for galactocentric distances 3 and 8.5 kpc. Solid curve is an initial mass function.

Probability of clump remnant survival

depending on the clump core radius $x_c = R_c/R$

 $x_c = 0.1$

 $x_c = 0.05$

Berezinsky Dokuchaev & Eroshenko 08

Survival probability $P(r, \rho)$ as a function of radial distance from the Galactic center r and a mean internal clump density ρ

Clump remnants mainly survived in the Galaxy, $P(r, \rho) \simeq 1$, if $x_c \leq 0.05$!

Annihilation of DM in clumps

• Annihilation in a single clump

$$\dot{N}_{\rm cl} = 4\pi \int_{0}^{\infty} r^2 dr \rho_{\rm int}^2(r) m_{\chi}^{-2} \langle \sigma_{ann} v \rangle$$

• Observed annihilation signal

$$I_{\rm cl} = \frac{\langle \sigma_{\rm ann} v \rangle}{4\pi} \int_{0}^{\pi} d\zeta \sin \zeta \int_{0}^{r_{\rm max}(\zeta)} \frac{2\pi r^2 dr}{r^2} \int_{M_{\rm min}} dM \int dR \ n_{\rm cl}(I(\zeta, r), M, R) \dot{N}_{\rm cl}$$

• Signal from diffuse DM in the Halo

$$I_{\rm H} = \frac{\langle \sigma_{\rm ann} v \rangle}{2} \int_{0}^{\pi} d\zeta \sin \zeta \int_{0}^{r_{\rm max}(\zeta)} dr \frac{\rho_{\rm H}^2(l(\zeta, r))}{m_{\chi}^2}$$

Amplification of annihilation signal (boost-factor) η

$$\eta = rac{I_{
m cl} + I_{
m H}}{I_{
m H}} pprox 1 + \xi S(x_c,eta) rac{ar{
ho}_{
m cl}}{ar{
ho}_{
m G}}$$

• Typical values:

- Geometric factor
- Diffuse DM density in the Halo
- Mean clump density

• Mass fraction of DM clumps

Boost-factor

 $S\simeq 5$ $ilde{
ho}_{
m H}\sim 0.3~{
m GeV~cm^{-3}}$ $ar{
ho}_{
m cl}\sim 10^{-20}~{
m g~cm^{-3}}$ $\xi\sim 0.001$ $\eta\sim 10^2$

Annihilation signal from the Galactic halo

• Left upper curve: annihilation signal as a function of the angle ζ between the line of observation and direction to the Galactic center

Left bottom curve: the same for the Galactic halo without DM clumps

• Right: Amplification (boosting) of annihilation signal $\eta = (I_{\rm cl} + I_{\rm H})/I_{\rm H}$

Conclusions

- Despite the small survival probability of DM clumps during early stage of hierarchial clustering, they provide the major contribution to the annihilation signal in comparison with the diffuse unclumpy DM
- Central cores (remnants) of small-scale DM clumps may survive through the tidal destruction by stars
- Survival probability of remnants strongly depends on the radius of the clump central core R_c
- Annihilation amplification (boost-factor) $\eta \sim 10^2 10^3$ depends on the initial perturbation spectrum and minimum mass of clumps $M_{\rm min}$