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When we study supersymmetric theories,
N = 4 Yang-Mills or N = 8 Supergravity or
their higher-dimensional versions always pop
up.

In the light-cone formulation
their superfields are particularly simple.

One can regard them as master fields for a
series of field theories.

In any covariant formulation they look very dif-
ferent.

Natural partners in string theory.

We also know that they have extraordinary
quantum properties.

In light-cone gauge field theory they can be
treated similarly.
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Light-Frame Formulation

Dirac showed that any direction within the light-
cone can be ”time”.

Choose x+ = 1√
2
(x0 +x3) as the time.

The coordinates and the derivatives that we
will use will then be

x± =
1√
2

(x0±x3)

∂± =
1√
2

(− ∂0± ∂3)

x =
1√
2

(x1 + i x2 )

∂̄ =
1√
2

( ∂1 − i ∂2 )

x̄ =
1√
2

(x1 − i x2 )

∂ =
1√
2

( ∂1 + i ∂2)



We will only consider massless theories so we
solve the condition p2 = 0. We then find

p− = pp̄
p+.

The generator p− is really the Hamiltonian.
Generators that involve the ”time” are called
dynamical (or Hamiltonians) and the others
kinematical.

The most general form of the generators of the
full Poincaré algebra at x+ = 0 is then given
by the four momenta

p− = −i ∂∂̄
∂+ , p+ = −i∂+, p = −i ∂ , p̄ = −i ∂̄

the kinematical transverse space rotation

Light-Frame Formulation of Supersym-
metric Field Theories

In the light-cone frame the supersymmetry gen-
erator Q splits up into two two-component
spinor that can be rewritten as two complex
operators, which we call

Q+ = −1
2γ+γ−Q and Q− = −1

2γ−γ+Q.

We can also augment by letting the Q’s trans-
form as the representation N under SU(N).
The light-cone supersymmetry algebra is then

{Qm
+, Q̄+n} = −

√
2δm

n P+

{Qm
− , Q̄−n} = −

√
2δm

n P−

{Qm
+, Q̄−n} = −

√
2δm

n P,

The superPoincaré algebra can now be repre-
sented on a superspace with coordinates

x±, x, x̄, θm, θ̄n



Light-Frame Formulation of Supersym-
metric Field Theories

In the light-cone frame the supersymmetry gen-
erator Q splits up into two two-component
spinor that can be rewritten as two complex
operators, which we call

Q+ = −1
2γ+γ−Q and Q− = −1

2γ−γ+Q.

We can also augment by letting the Q’s trans-
form as the representation N under SU(N).
The light-cone supersymmetry algebra is then

{Qm
+, Q̄+n} = −

√
2δm

n P+

{Qm
− , Q̄−n} = −

√
2δm

n P−

{Qm
+, Q̄−n} = −

√
2δm

n P,

The superPoincaré algebra can now be repre-
sented on a superspace with coordinates

x±, x, x̄, θm, θ̄n

All generators with a minus-component get 
non-linear contributions



We will denote the derivatives of the θ’s

∂̄m ≡ ∂
∂ θm ; ∂m ≡ ∂

∂ θ̄m

The kinematical q’s will be represented by

qm
+ = −∂m + i√

2
θm ∂+ , q̄+n = ∂̄n− i√

2
θ̄n ∂+ ,

and the dynamical ones as

qm
− = ∂̄

∂+ q m
+ , q̄−m = ∂

∂+ q̄+m .

On this space we can also represent ”chiral”
derivatives anticommuting with the supercharges
Q.

dm = −∂m − i√
2

θm ∂+, d̄ n = ∂̄n + i√
2

θ̄n ∂+ .

To find an irreducible representation we have
to impose the the chiral constraints
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dm φ = 0 ; d̄m φ̄ = 0 ,

on a complex superfield φ(x±, x, x̄, θm, θ̄n). The
solution is then that

φ = φ(x+, y− = x− − i√
2

θm θ̄m, x, x̄, θm).

We now have to add in θ-terms into the Lorentz
generators to complete the representation of
the free algebra.

It is particularly interesting to study the cases
N = 4 × integer. For those values one can
impose a further condition on the superfield φ
namely the ”inside out” condition

d̄m1d̄m2 ..d̄mN/2−1 d̄mN/2 φ =
1
2εm1m2 ...mN−1mN

dmN/2+1 dmN/2+2 ...dmN−1dmN φ̄

We can now construct three-point interaction
terms for any N

4 even in the dynamical gener-
ators.
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When N
4 is odd, the superfield has to trans-

form as the adjoint representation of an exter-
nal group with structure constants fabc.

N = 4

φ (y) =
1

∂+ A (y) +
i√
2

θm θn Cmn (y)

+
1

12
θm θn θp θq εmnpq ∂+ Ā (y)

+
i

∂+ θm χ̄m(y) +

√
2

6
θm θn θp εmnpq χq(y) .

N = 8

φ (y) =
1

∂+2 h (y) + i θm 1

∂+2 χ̄m (y)

... + θm n p r C̄m n p r (y)

... + θ̃(7)
m ∂+ χm(y) + θ̃(8) ∂+2

h̄ (y) ,
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The N = 4 Yang-Mills Theory

This was the first action we constructed

S = −
∫

d4x
∫

d4θ d4θ̄
{

φ̄a !

∂+2 φa +
4g

3
fabc

( 1

∂+ φ̄a φb ∂̄ φc + c.c.
)

− g2fabcfade
( 1

∂+(φb∂+φc)
1

∂+(φ̄d∂+φ̄e)

+
1

2
φbφ̄cφd φ̄e

) }
.

With this action we (Brink, Lindgren and Nils-
son 1982) proved that the perturbation expan-
sion is finite.

It works with power counting. Every diagram is
naively logarithmically divergent and we had to
show that for every subgraph one can extract
one momentum to the external legs.



The N =8 Supergravity action to first order is then   

the Appendix). For example, the complex Āα β represent,

θα β Āα β = − 1
8

θ γm θ Ām − 1
8

θ γmn θ Ā[mn], (4)

while the real Cα β γ δ may be decomposed as,

θα β γ δ Cα β γ δ =
1
64

θ γm θ

{
θ γp θ C(mp) − θ γmp θ Cp−

− θ γpq θ C[mpq]

}
.

(5)

These tensor fields, make up the two bosonic representations under the de-
composition SO(9)⊂SO(7) × SO(2) of eleven-dimensional supergravity. The
G(MN) (44 of SO(9)), split up as,

44 = 27 + 7 + 7 + 1 + 1 + 1. (6)

C(mp) represents the 27 while Ām, Am represent the 7 + 7. Similarly, the
three-form B[ MNP ] (84 of SO(9)) splits into,

84 = 35 + 21 + 21 + 7. (7)

These correspond to C[mpq], Ā[mn], A[mn] and Cp respectively. All fields are
local in the modified light-cone coordinates

y = (x, x̄, x+, y− ≡ x− − i√
2

θα θ̄α ) . (8)

In this LC2 form, all the unphysical degrees of freedom have been integrated
out. The superfield φ and its complex conjugate φ̄ satisfy the chiral constraints,

dα φ = 0 ; d̄α φ̄ = 0 , (9)

and are related through the “inside-out” constraints,

d̄α d̄β d̄γ d̄η φ =
1
2

εαβγηρσξχ dρ dσ dξ dχ φ̄ , (10)

The N = 8 Supergravity action, to order κ is then
∫

d4x

∫
d8θ d8θ̄L ≡

∫
L ,

where,

L = −φ̄
!

∂+4
φ + (

4 κ

3 ∂+4 φ ∂̄∂̄ φ ∂+2
φ− 4 κ

3 ∂+4 φ ∂̄ ∂+φ ∂̄ ∂+ φ + c.c. )

Grassmann integration is normalized so that
∫

d8θ (θ)8 = 1.

3

How do we construct the four-point function?
We can do it by trial and error. 
Too hard.

Instead we found a remarkable property of 
maximally supersymmetric theories.
(with Ananth and Ramond)



The Hamiltonian as a Quadratic Form

The usual relation is that

H = 1
4{Q

m
− , Q−m}

For both N = 4 and N = 8

H =
∫
δq̄−m φ̄ δq−m φ

Not an anticommutator, but a quadratic form.

With this form we could run a Mathematica program
comparing with the four-point function of gravity.

The result was a four-point coupling with 96 terms. 
(In the covariant form there are about 5000 terms.)
with Ananth, Heise and Svendsen.



Higher Symmetries for N = 4 Yang-
Mills Theory

We know that the d = 4 theory is conformally
invariant, i.e. under PSU(2,2 |4) even for the
quantum case. We can in fact construct the
whole theory by closing the conformal algebra
by guessing the correct dynamical supersym-
metry generator Q−.

The form consistent with the kinematical gen-
erators is

δg
q̄− φ = −g fabc 1

∂+(2ν+1)

{
d̄ ∂+ ν φb ∂+(ν+1) φc

}
.

All other dynamical generators are obtained
from this one through commutations and the
consistent result is ν = 0.

This scheme can be followed for all superconformally 
invariant field theories, also for d=3 or d=6. I had 
planned to talk about d=3, but we still miss something 
there.



(With Kim and Ramond)

Higher Symmetries for N = 8 Super-
gravity Theory

N = 8 Supergravity, unlike N = 4 Yang-Mills,
is not superconformal invariant; however, it
does have the non-linear Cremmer-Julia E7(7)
symmetry.

Go back to covariant component form (Crem-
mer, Julia and Freedman, de Wit)

L = LS + LV + Lothers

LS is a Coleman-Wess-Zumino non-linear La-
grangian. The E7(7) is clear.

LV can be written as

LV = − 1
8FµνijGij

µν ,
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How do we implement the E7(7) symmetry? 
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The Lagrangian is quadratic in the field strengths.
Introduce the self-dual complex field strengths

Fµν ij = 1
2

(
Fµν ij + iF̃ µν ij

)

and

Gµν ij = 1
2

(
Gµν ij + iG̃µν ij

)

The equations of motion are given by

∂µGµνij = ∂µ

(
Gµν ij + Gµν ij)

= 0 ,

while the Bianchi identities read

∂µF̃ µνij = ∂µ

(
Fµν ij − Fµν ij)

= 0 .

Assemble in one column vector with 56 com-
plex entries
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Zµν =

(
Gµν ij + Fµν ij

Gµν ij − Fµν ij

)

≡
(

Xµν ab

Y µν
ab

)

,

where a, b are SU(8) indices, with upper(lower)
antisymmetric indices for 28(28).

This is a 56 under E7(7).

The 70 transformations are

δXµν ab = Ξabcd Y µν
cd

δY µν
ab = Ξabcd Xµν cd,



We now specialize to the light-cone gauge. We
choose A+ = 0 and solve for A−. We then
make non-linear field redefinitions, Aij → Bij

and Cijkl → Dijkl to get rid of ”time”derivatives”
in the interaction terms.

This will mix up the fields and the Hamiltonian
is no longer quadratic in Bij.

We can now read off the E7(7)/SU(8) trans-
formations in the vector and scalar fields.

δBij = −
κ

4
ΞmnklD

ijklBmn

+
κ

4
Ξijkl 1

∂+

(
Dmnkl∂

+Bmn
)
+ ...

δDijkl = 2
κ Ξijkl − κ

2Ξmnpq
1

∂+

(
Dmn[kl∂+Dij]pq

)

+ κ
2Ξ

pq[ij 1
∂+

(
∂+Dkl]mnDpqmn

)

−3κ
(

Ξmn[kl

∂+

(
∂+Bij]Bmn

)
+ εijklrstuΞtumn

4!∂+

(
Bmn∂+Brs

))

+ · · · .

However, the other fields now take part 
in the transformations!



What about the other fields?

The
E7(7)
SU(8) quotient symmetry must commute

with the other symmetries in particular with
the supersymmetry. [δ70, δS]ϕ = 0.

(There is no E7(7) supergroup.)

By using that we get the transformations for
all fields in the multiplet.

How can
E7(7)
SU(8) commute when SU(8) does

not, and

[δ70, δ70] = δSU(8)?

Consider the Jacobi identity

([[δ70, δ70] , δS]+[[δS, δ70] , δ70]+[[δ70, δS] , δ70])ϕ = 0

Since [δS, δ70] δ70ϕ != 0, it works! δ70ϕ non-
linear! We only claim that [δS, δ70]ϕ = 0. All
fields including the graviton transform under
E7(7)
SU(8) and into each other.



Vectors:

δ Bij = −κ Ξklmn

(
1
4
Dijkl Bmn +

1
4!

1
∂+

Dklmn∂+Bij −
1
4!

εijklmnrs
1

∂+
Brs∂+h

+
i

3!
1

∂+
χklm χijn −

i

3!
εijklmrst

1
∂+

χrstψn

)

+κ Ξijkl
1

∂+

(
1
4

Dklmn ∂+Bmn −
1

∂+
Bkl ∂+2 h

+
i

4(3!)2
χmnpχrstε

klmnprst − 3 i
1

∂+
χkln∂+ψn

)
(1)

Gravitini:

δ ψi = −κ Ξmnpq

(
1

4! · 3!
εmnpqirstD

rstuψu +
1
4!

1
∂+

Dmnpq∂
+ψi +

1
4!

Dmnpqψi

− 1
4!

εmnpqirst
1

∂+
χrst∂+h +

1
4
χimnBpq +

1
3!

1
∂+

χmnp∂
+Biq

)
(2)

Gravition:

δ h = − κ Ξmnpq

(
1
4!

1
∂+

Dmnpq ∂+h +
1
8

BmnBpq +
i

∂+
χmnp ψq

)
. (3)

1

Some of the transformations



We can also get next order by checking these
commutators.

Now we can go back to the superfield and
check its transformations.

We then find that we can write the order κ
transformation as

δϕ =
κ

4!
Ξmnpq 1

∂+2
(dmdndpdq

1

∂+ϕ ∂+3ϕ

− 4dmdndpϕ dq∂
+2ϕ

+ 3dmdn∂+ϕ dpdq∂
+ϕ) + · · · .

This expression is in fact unique! It can be
rewritten in a very efficient form

κ

4!
Ξmnpq

(
∂

∂η

)

mnpq

1

∂+2

(
eη ˆ̄d∂+3ϕ e−η ˆ̄d∂+3ϕ

) ∣∣∣∣∣∣
η=0

,

where ˆ̄d = d̄
∂+.

We can now go on and determine the dynam-
ical generators to second order in κ. In this
way we have now derived the Hamiltonian to
this order. (No Mathematica!)



The Hamiltonian

We write

δdyn
s ϕ = δdyn (0)

s ϕ+ δdyn (1)
s ϕ+ δdyn (2)

s ϕ+O(κ3)

We can now require

[ δ70 , δdyn
s ]ϕ = 0

Here we can use the inhomogeneity of the 70
transformation

[ δ70
(−1) , δdyn (2)

s ]ϕ+[ δ70
(1) , δdyn (0)

s ]ϕ = 0

This gives the order κ2 dynamical supersym-
metry. We can the use the quadratic form to
find the Hamiltonian to order κ2. Much simpler
than before!



Possible counterterms for N=8
Let us check first in gravity.  We can write the three
point coupling as

A possible one-loop counter term is 
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Three Point Counter Terms in Gravity and N = 8 Super-
gravity

1 Introduction

2 Review of the Hamiltonian variation in LC2 formulation for pure

gravity theory

This is a short review of LC2 formulation [?] focusing on algebraic consistency on the variation of the dynamical
Lorentz generators, H, j̄−and j− on the component fields (here a graviton). We closely follow the procedure in [?],
but use the coherent state forms, introduced in the E7 paper, to make calculations simpler.

The variations for the dynamical generators on a (component) field become non-linear for an interacting theory.
The construction of such variations is guided by algebraic consistency: dimension, helicity, and closure of Poincaré
algebra. Here we show how one can obtain the three point interaction term from the Hamiltonian variation. Since,
in LC2 formulation, helicity can be assigned to not only component fields but also the transverse coordinates and
their derivatives. The graviton has helicity tow and the transverse derivative ∂ has unity helicity. Their complex
conjugates have opposite helicities; −2 for h̄ and −1 for ∂̄. From the helicity grounds, one can have structurally,

δκ
Hh ∼ κ∂̄2h h or κ∂̄h ∂̄h , (2.1)

where, in order to make dimension correctly, one needs to introduce ∂+ in such a way that this from respects all
the Poincaré algebra.

Inspired from the E7 paper, one can start with the following symmetric Ansatz that, by construction, satisfies
the commutation relations with all kinematical generators

δκ
Hh = κ ∂+n

[
ea ˆ̄∂∂+mh e−a ˆ̄∂∂+mh

] ∣∣∣
a2

≡ κ ∂+n

(
∂

∂a

)2 [
ea ˆ̄∂∂+mh e−a ˆ̄∂∂+mh

] ∣∣∣
a=0

, (2.2)

where n and m must satisfy n + 2m = 1 because of dimension and can be determined from the commutation
relations with the dynamical generators j− and j̄−. To order κ, the variations for the dynamical generators on h

are given by

δj−h = δ0
j−h + i x δκ

Hh + δκ
s h +O(κ2) , δj̄−h = δ0

j̄−h + i x̄ δκ
Hh + δκ

s̄ h +O(κ2) , (2.3)

where

δ0
j−h = i

(
x

∂∂̄

∂+
− x−∂ − λ

∂

∂+

)
h , δ0

j̄−h = i

(
x̄

∂∂̄

∂+
− x−∂̄ + λ

∂̄

∂+

)
h (2.4)

1

where δg1
H h denotes the Hamiltonian variation for one loop three-point counter. Structurally, neglecting the deriva-

tives, the variation is given by
δgm

H h ∼ h h + h̄ h .

It suffices to consider only the first type because the second one can obtained by complex conjugation of the first
type as seen in (??).

We start with a symmetric Ansatz for the Hamiltonian variation

δg1
H h = κ3∂+n

[
E∂+mh E−1∂+mh

] ∣∣∣
a3, b

, (3.11)

where
E = ea ˆ̄∂+b∂̂ and E−1 = e−a ˆ̄∂−b∂̂ ,

with dimension constraint
n + 2m = 3 . (3.12)

In a similar fashion as done in the previous section, the spin part of the boosts is given by

δg1
s h = gs κ3 ∂+n

[
E∂+(m−1)h E−1∂+mh

] ∣∣∣
a2, b

, (3.13)

δg1
s̄ h = gs̄ κ3 ∂+n

[
E∂+(m−1)h E−1∂+mh

] ∣∣∣
a3

. (3.14)

3.2 [δj̄− , δH ] h

We compute [ δj̄− , δH ]h, which vanishes to all orders. It has two parts

[ δj̄− , δH ]g1 h = [ δg
j̄−

, δ0
H ]h + [ δ0

j̄− , δg
H ]h . (3.15)

The first term is simply

[ δg
j̄−

, δ0
H ]h = ix̄ [ δg

H , δ0
H ]h + i ˆ̄∂δg

H h + [δg1
s̄ , δ0

H ] . (3.16)

The second term can be split into three parts because the boost is, to the lowest order,

δ0
j̄−h = i

(
x̄ δ0

H − x−∂̄ + λ
∂̄

∂+

)
h ,

and then the result of each part is

[ iδx̄ ∂∂̄
∂+

, δg
H ]h = ix̄[δ0

H , δg
H ] + i∂+n

(
2bE∂+(m−1)δ0

HhE−1∂+mh
) ∣∣∣

ax, b
, (3.17)

and

[ iδ−x−∂̄ , δg
H ]h = i (m− 3) δ ˆ̄∂

δg1
H h + i n ˆ̄∂δg1

H h

− i∂+n
(
2bE∂+(m−1)δ0

HhE−1∂+mh
) ∣∣∣

a3, b
. (3.18)

3

Consistent with the algebra for two choices of m and n



This can in fact be generalized to all orders. 

5 Higher loop three-point counter terms

Extension of this analysis to two loop order is straightforward. One starts with similar Anätze to order κ5 with
overall six transverse derivatives. The possible structure of the counter term to this order is then

δg2
H h ∼ ∂̄4∂2h h or ∂̄2∂4h̄ h or ∂6h̄ h̄ . (5.35)

Since the second one can be obtained through complex conjugation as explained before, we consider the first and
the last ones.
• δg2

H h ∼ ∂̄4∂2h h

Anätze for the variations of the dynamical generators on h are given by

δg2
H h = κ3∂+n

[
E∂+mh E−1∂+mh

] ∣∣∣
a4, b2

, (5.36)

δg2
s h = gs κ3 ∂+n

[
E∂+(m−1)h E−1∂+mh

] ∣∣∣
a3, b2

, (5.37)

δg2
s̄ h = gs̄ κ3 ∂+n

[
E∂+(m−1)h E−1∂+mh

] ∣∣∣
a4, b

, (5.38)

whith n + 2m = 5. The commutations relations among the dynamical generators then yields

gs = 2 i (m− 4) , gs̄ = 2 i (m− 2) . (5.39)

It follows that there are two possible Hamiltonian variations at two loop order,

δg2
H h = κ5∂+

[
E∂+2h E−1∂+2h

] ∣∣∣
a4, b2

, (5.40)

δg2
H h = κ5 1

∂+3

[
E∂+4h E−1∂+4h

] ∣∣∣
a4, b2

. (5.41)

This in fact can easily be extended to all orders. One uses the following ansätze for l-loops

δgl

Hh = κ2l+1∂+n
[
E∂+mh E−1∂+mh

] ∣∣∣
a2+l, bl

, (5.42)

δgl
s h = gs κ2l+1 ∂+n

[
E∂+(m−1)h E−1∂+mh

] ∣∣∣
a1+l, bl

, (5.43)

δgl
s̄ h = gs̄ κ2l+1 ∂+n

[
E∂+(m−1)h E−1∂+mh

] ∣∣∣
a2+l, bl−1

, (5.44)

with n + 2m = 2l + 1. Then the results read

gs = 2 i (m− l − 2) , gs̄ = 2 i (m− l) , (5.45)

and there exit two consistent solutions for m which again correspond to the cases where either gs̄ or gs vanishes.
Therefore the form of the Hamiltonian variation to l-loop orders

δgl

Hh = κ2l+1∂+
[
E∂+lh E−1∂+lh

] ∣∣∣
a2+l, bl

, (5.46)

δgl

Hh = κ2l+1 1
∂+3

[
E∂+(l+2)h E−1∂+(l+2)h

] ∣∣∣
a2+l, bl

. (5.47)

6There is another series starting with 

• δg2
H h ∼ ∂6h̄ h̄

For this type, one easily sees that there is no possible Ansatz with two h̄’s for δg2
s h because of helicity and the

numbers of allowed transverse derivatives. The other Ansätze are of a similar form as shown in the previous type

δg2
H h = κ5∂+n

[
E∂+mh̄ E−1∂+mh̄

] ∣∣∣
b6

, (5.48)

δg2
s̄ h = gs̄ κ5 ∂+n

[
E∂+(m−1)h̄ E−1∂+mh̄

] ∣∣∣
b5

. (5.49)

Straightforward calculations lead to
gs̄ = 2 i (m− 2) = 4 i , (5.50)

and the corresponding Hamiltonian variation becomes

δg2
H h = κ5 1

∂+3

[
E∂+4h̄ E−1∂+4h̄

] ∣∣∣
b6

. (5.51)

6 m #= m′ case

Let us consider more general Ansätze which allow different powers of ∂+

δgl

Hh = κ2l+1∂+n
[
E∂+mh E−1∂+m′

h
] ∣∣∣

ap, bq
, (6.52)

where p = 2 + l and q = l.
For spin parts, one takes the following Ansätze:

δgl
s h = gs κ2l+1 ∂+n

[
E∂+(m−1)h E−1∂+mh

] ∣∣∣
a1+l, bl

+ g′s κ2l+1 ∂+n
[
E∂+mh E−1∂+(m−1)h

] ∣∣∣
a1+l, bl

, (6.53)

and

δgl
s̄ h = gs̄ κ2l+1 ∂+n

[
E∂+(m−1)h E−1∂+mh

] ∣∣∣
a2+l, bl−1

+ g′s̄ κ2l+1 ∂+n
[
E∂+mh E−1∂+(m−1)h

] ∣∣∣
a2+l, bl−1

. (6.54)

It follows that

[δj− , δH ]glh = i(1 + n + λ)∂̂δHh + [δgl
s , δ0

H ]h
+ i(m− q − λ)∂+n

[
E∂+m∂̂hE−1∂+m′

h
] ∣∣∣

ap, bq

+ i(m′ − q − λ)∂+n
[
E∂+mh E−1∂+m′

∂̂h
] ∣∣∣

ap, bq
. (6.55)

The commutator [δj− , δH ]glh = 0 yields the following coupled equations

i(1 + n + λ) + i(m− q − λ)− g′s = 0 (6.56)

i(m′ − q − λ) + g′s = 0 , (6.57)

7

We are interested in counterterms which are non-
zero when we use the equation of motion.

4 Counter Terms v.s. Equations of Motion

As many showed, in pure gravity the counter terms vanish when one imposes equations of motion. The counter
terms consist of two- and three-point and higher order counter terms. Here we restrict ourselves up to three-point
counter terms.

My idea is that in order to see such counter terms vanishes on shell, one must combine two-point counter term
and three-point counter term together, since the equations of motion relate lower order interactions to higher order
ones. Here is how it works. Please neglect constants including relative coefficients in the calculations below. There
might be many typos but the idea is correct.

On the light-cone, the equation of motion for pure gravity is given by

!h = κ ∂+2
(
h ˆ̄∂2h − ˆ̄∂h ˆ̄∂h

)
+

(
h h̄ parts

)
, (4.27)

or
∂− h = δH h =

∂∂̄

∂+
h + O(κ) . (4.28)

Let us start with two-point counter term
κ2 !2 h . (4.29)

Equation of motion (??) yields

κ2 !2 h = 2κ2 (∂∂̄ − ∂−∂+)!h = 2 κ3 ∂+2(∂∂̄ − ∂−∂+)
(
h ˆ̄∂2h − ˆ̄∂h ˆ̄∂h

)
. (4.30)

Now we act the derivatives on the graviton hs using Leibniz’s rule and express in terms ofˆnotation. For example,

∂∂̄(h ˆ̄∂2h) = ˆ̄∂∂̂∂+2h ˆ̄∂2h + ˆ̄∂∂+h ˆ̄∂2∂̂∂+h + ∂̂∂+h ˆ̄∂3∂+h + h ˆ̄∂3∂̂∂+2h . (4.31)

Here is important point. For the terms that contain the light-cone time derivative ∂−h, one has to replace them
with their equations of motion using (??). For instance,

∂−∂+( ˆ̄∂h ˆ̄∂h) = 2 ˆ̄∂2∂̂∂+2h ˆ̄∂h + 2 ˆ̄∂2∂̂∂+h ˆ̄∂∂+h . (4.32)

It follows that

κ2 !2 h = 2κ3 ∂+2(∂∂̄ − ∂−∂+)
(
h ˆ̄∂2h − ˆ̄∂h ˆ̄∂h

)

= 2κ3 ∂+2
[
− ˆ̄∂3∂̂∂+h ∂+h + 3 ˆ̄∂2∂̂∂+h ˆ̄∂∂+h − 3 ˆ̄∂∂̂∂+h ˆ̄∂2∂+h + ∂̂∂+h ˆ̄∂3∂+h

]

= − ∂+2
[
E∂+h E−1∂+h

] ∣∣∣
a3, b

= − ∂+δg1
H h , (4.33)

which thus relates two-point counter term to three-point count terms; structurally the counter terms can be
summarized as

κ2 !2 h + ∂+δg1
H h = κ2 !

[
!h − κ ∂+2

(
h ˆ̄∂2h − ˆ̄∂h ˆ̄∂h

) ]
, (4.34)

where the terms in the square bracket is nothing but equations of motion to order κ. We note that one should use
equations of motion iteratively to see the above relation.

5

All but the third terms can be written as     (..h...h)



We only find a two-loop three-point counter term.
Consider a three-loop term

Goes like

Terribly divergent but must be              where 
i =1,2,or 3.

Future

• Try to find a closed form the Hamiltonian

• Can we unite N = 8 susy and E8(8) to an
even higher symmetry?

• Can we tell more about the quantum prop-
erties?

∫
dp12 p10

p14 ∼ p8

Future

• Try to find a closed form the Hamiltonian

• Can we unite N = 8 susy and E8(8) to an
even higher symmetry?

• Can we tell more about the quantum prop-
erties?

∫
dp12 p10

p14 ∼ p8

∼ pi
2



−E∂̂∂+mh E−1 ˆ̄∂∂+mh + E∂+mh E−1∂̂ ˆ̄∂∂+mh
] ∣∣∣

ap−1,bq−1
. (8.71)

For p + q even,

[
E∂+mh E−1∂+mh

] ∣∣∣
ap,bq

= 2
[
E∂̂ ˆ̄∂∂+mh E−1∂+mh − E ˆ̄∂∂+mh E−1∂̂∂+mh

] ∣∣∣
ap−1,bq−1

. (8.72)

As a corollary,

!
[
E∂+mϕ E−1∂+mϕ

] ∣∣∣
ap,bq

= − 2
[
E∂+(m+1)ϕ E−1∂+(m+1)ϕ

] ∣∣∣
ap+1,bq+1

. (8.73)

• Identity 4(3.24)

λ∑

n=0

(−1)n

(
λ

n

)
∂n

∂+(n+1)

(
∂λ−n

∂+(λ−n)
h̄ ∂+λh

)
=

1
∂+(λ+1)

λ∑

n=0

(−1)n

(
λ

n

) (
∂λ−n

∂+(λ−n)
h̄ ∂+(2λ−n)∂nh

)
, (8.74)

which can be written as

E−1
[
Eh̄ ∂+λh

] ∣∣∣
∂̂λ

=
1

∂+λ

[
Eh̄ E−1∂+2λh

] ∣∣∣
∂̂λ

. (8.75)

δHφ = ...(..φ̄φ̄)
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There are no three-point counter terms for N = 8 

since the r.h.s. is not chiral.

When we consider the four-point coupling we have to 
use the E7(7) symmetry. Remember how we obtain the 
four-point coupling.

The Hamiltonian

We write

δdyn
s ϕ = δdyn (0)

s ϕ+ δdyn (1)
s ϕ+ δdyn (2)

s ϕ+O(κ3)

We can now require

[ δ70 , δdyn
s ]ϕ = 0

Here we can use the inhomogeneity of the 70
transformation

[ δ70
(−1) , δdyn (2)

s ]ϕ+[ δ70
(1) , δdyn (0)

s ]ϕ = 0

This gives the order κ2 dynamical supersym-
metry. We can the use the quadratic form to
find the Hamiltonian to order κ2. Much simpler
than before!

The terms talk to each other pairwise. They have the 
same number of derivatives.

N=8 Supergravity



A four-point counterterm            must satisfy

The Hamiltonian

We write

δdyn
s ϕ = δdyn (0)

s ϕ+ δdyn (1)
s ϕ+ δdyn (2)

s ϕ+O(κ3)

We can now require

[ δ70 , δdyn
s ]ϕ = 0

Here we can use the inhomogeneity of the 70
transformation

[ δ70
(−1) , δdyn (2)

s,c ]ϕ+[ δ70
(1) , δdyn (0)

s ]ϕ = 0

This gives the order κ2 dynamical supersym-
metry. We can the use the quadratic form to
find the Hamiltonian to order κ2. Much simpler
than before!

The Hamiltonian

We write

δdyn
s ϕ = δdyn (0)

s ϕ+ δdyn (1)
s ϕ+ δdyn (2)

s ϕ+O(κ3)

We can now require

[ δ70 , δdyn
s ]ϕ = 0

Here we can use the inhomogeneity of the 70
transformation

[ δ70
(−1) , δdyn (2)

s,c ]ϕ = 0

This gives the order κ2 dynamical supersym-
metry. We can the use the quadratic form to
find the Hamiltonian to order κ2. Much simpler
than before!

Furthermore it has to satisfy all the commutations 
rules with the full N = 8 superalgebra.
Well-defined problem but algebraically difficult.
We still do not have the final result.


