New Massive Gravity in Three Dimensions

Eric Bergshoeff

Groningen University

based on a collaboration with Olaf Hohm and Paul Townsend,

arXiv:0901.1766 and 0905.1259 [hep-th]

4th International Sakharov Conference on Physics

Moscow, May 19, 2009

Introduction

- Introduction
- Gravity in Three Dimensions

- Introduction
- Gravity in Three Dimensions
- The CGMG Model

- Introduction
- Gravity in Three Dimensions
- The CGMG Model
- 4 Outlook

- Introduction
- Gravity in Three Dimensions
- The CGMG Model
- 4 Outlook

Einstein gravity is a theory of interacting massless spin 2 particles around a Minkowski space-time background

Einstein gravity is a theory of interacting massless spin 2 particles around a Minkowski space-time background

This theory is non-renormalizable

Einstein gravity is a theory of interacting massless spin 2 particles around a Minkowski space-time background

This theory is non-renormalizable

Higher-derivative gravity is renormalizable but non-unitary Stelle (1977)

Einstein gravity is a theory of interacting massless spin 2 particles around a Minkowski space-time background

This theory is non-renormalizable

Higher-derivative gravity is renormalizable but non-unitary

Stelle (1977)

except if you are in three dimensions

$$ullet$$
 ${\cal L}=-rac{1}{4}F^{\mu
u}F_{\mu
u}+rac{1}{2}m^2\,A_\mu A^\mu$: Proca

•
$$\mathcal{L}=-rac{1}{4}F^{\mu
u}F_{\mu
u}+rac{1}{2}m^2\,A_{\mu}A^{\mu}$$
 : Proca

•
$$\mathcal{L}=-rac{1}{4}F^{\mu
u}F_{\mu
u}+rac{1}{2}m^2\,A_{\mu}A^{\mu}$$
 : Proca

•
$$\left[\mathcal{O}(-m)\mathcal{O}(m)\right]_{\mu}^{\ \nu}A_{\nu} = 0$$
 with $\mathcal{O}_{\mu}^{\ \nu}(m) = m\,\delta_{\mu}^{\ \nu} + \epsilon_{\mu}^{\ \tau\nu}\partial_{\tau}$

•
$$\mathcal{L}=-rac{1}{4}F^{\mu
u}F_{\mu
u}+rac{1}{2}m^2\,A_{\mu}A^{\mu}$$
 : Proca

•
$$\left[\mathcal{O}(-m)\mathcal{O}(m)\right]_{\mu}^{\ \nu}A_{\nu} = 0$$
 with $\mathcal{O}_{\mu}^{\ \nu}(m) = m\,\delta_{\mu}^{\ \nu} + \epsilon_{\mu}^{\ \tau\nu}\partial_{\tau}$

$$\bullet \ \left[\mathcal{O}(\textit{m}) \right]_{\mu}^{\ \nu} \textit{A}_{\nu} = 0 \ \ \text{or} \ \ \textit{m} \, \textit{A}_{\mu} = \epsilon_{\mu}^{\ \nu \rho} \, \textit{F}_{\nu \rho}$$

•
$$\mathcal{L}=-rac{1}{4}F^{\mu
u}F_{\mu
u}+rac{1}{2}m^2\,A_{\mu}A^{\mu}$$
 : Proca

•
$$\left[\mathcal{O}(-m)\mathcal{O}(m)\right]_{\mu}^{\ \nu}A_{\nu} = 0$$
 with $\mathcal{O}_{\mu}^{\ \nu}(m) = m\,\delta_{\mu}^{\ \nu} + \epsilon_{\mu}^{\ \tau\nu}\partial_{\tau}$

$$\bullet \ \left[\mathcal{O}(\mathit{m}) \right]_{\mu}{}^{\nu} \mathit{A}_{\nu} = 0 \ \ \text{or} \ \ \mathit{m} \mathit{A}_{\mu} = \epsilon_{\mu}{}^{\nu\rho} \mathit{F}_{\nu\rho}$$

•
$$S=-rac{1}{2}\int d^3x \left(\epsilon^{\mu
u
ho}\,A_\mu\partial_
u A_
ho + mA^\mu A_\mu
ight)$$
: MSM

Townsend, Pilch, van Nieuwenhuizen (1984)

•
$$\mathcal{L}=-rac{1}{4}F^{\mu
u}F_{\mu
u}+rac{1}{2}m^2\,A_{\mu}A^{\mu}$$
 : Proca

•
$$\left[\mathcal{O}(-m)\mathcal{O}(m)\right]_{\mu}^{\ \nu}A_{\nu} = 0$$
 with $\mathcal{O}_{\mu}^{\ \nu}(m) = m\,\delta_{\mu}^{\ \nu} + \epsilon_{\mu}^{\ \tau\nu}\partial_{\tau}$

$$\bullet \ \left[\mathcal{O}(\mathit{m}) \right]_{\mu}{}^{\nu} \mathit{A}_{\nu} = 0 \ \ \text{or} \ \ \mathit{m} \mathit{A}_{\mu} = \epsilon_{\mu}{}^{\nu\rho} \mathit{F}_{\nu\rho}$$

•
$$S=-rac{1}{2}\int d^3x \left(\epsilon^{\mu
u
ho}\,A_\mu\partial_
u A_
ho + mA^\mu A_\mu
ight)$$
: MSM

Townsend, Pilch, van Nieuwenhuizen (1984)

• $\left[\mathcal{O}(m_+)\mathcal{O}(m_-)\right]_{\mu}{}^{\nu}A_{\nu}=0$: two helicities with mass m_+,m_-

• $\left[\mathcal{O}(m_+)\mathcal{O}(m_-)\right]_{\mu}{}^{
u}A_{
u}=0$: two helicities with mass m_+,m_-

•
$$S = \int d^3x \left(-\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \frac{1}{2} \mu \, \epsilon^{\mu\nu\rho} A_\mu \partial_\nu A_\rho + \frac{1}{2} m^2 A_\mu A^\mu \right)$$

with $\mu = 2(m_+ - m_-)$, $m^2 = m_+ m_-$

• $\left[\mathcal{O}(m_+)\mathcal{O}(m_-)\right]_{\mu}{}^{
u}A_{
u}=0$: two helicities with mass m_+,m_-

•
$$S = \int d^3x \left(-\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \frac{1}{2} \mu \, \epsilon^{\mu\nu\rho} A_\mu \partial_\nu A_\rho + \frac{1}{2} m^2 A_\mu A^\mu \right)$$

with $\mu = 2(m_+ - m_-)$, $m^2 = m_+ m_-$

•
$$m_{+} = m_{-}$$
: Proca

• $\left[\mathcal{O}(m_+)\mathcal{O}(m_-)\right]_{\mu}{}^{\nu}A_{\nu}=0$: two helicities with mass m_+,m_-

•
$$S = \int d^3x \left(-\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \frac{1}{2} \mu \, \epsilon^{\mu\nu\rho} A_\mu \partial_\nu A_\rho + \frac{1}{2} m^2 A_\mu A^\mu \right)$$

with $\mu = 2(m_+ - m_-)$, $m^2 = m_+ m_-$

•
$$m_+ = m_-$$
: Proca

•
$$m_+ \to \infty$$
: MSM

• $\left[\mathcal{O}(m_+)\mathcal{O}(m_-)\right]_{\mu}{}^{\nu}A_{\nu}=0$: two helicities with mass m_+,m_-

•
$$S = \int d^3x \left(-\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \frac{1}{2}\mu \,\epsilon^{\mu\nu\rho}A_{\mu}\partial_{\nu}A_{\rho} + \frac{1}{2}m^2A_{\mu}A^{\mu} \right)$$

with
$$\mu = 2(m_+ - m_-)$$
,

$$m^2 = m_+ m_-$$

•
$$m_{+} = m_{-}$$
: Proca

•
$$m_+ \to \infty$$
: MSM

•
$$m_+ = 0$$
: massive topological spin 1

Deser, Jackiw, Templeton (1982)

$$(m_{+} \, \delta_{\mu}{}^{\nu} + \epsilon_{\mu}{}^{\tau\nu} \partial_{\tau}) A_{\nu} = 0 \qquad \stackrel{m_{+} \to 0}{\Longrightarrow} \qquad A_{\mu} \ \to \ F_{\mu} \equiv \epsilon_{\mu}{}^{\nu\rho} \, \partial_{\nu} A_{\rho}$$

$$(m_{+} \, \delta_{\mu}{}^{\nu} + \epsilon_{\mu}{}^{\tau\nu} \partial_{\tau}) A_{\nu} = 0 \qquad \stackrel{m_{+} \to 0}{\Longrightarrow} \qquad A_{\mu} \ \to \ F_{\mu} \equiv \epsilon_{\mu}{}^{\nu\rho} \, \partial_{\nu} A_{\rho}$$

$$ullet$$
 Proca : $ig(\Box + m^2ig)A_\mu = 0\,, \qquad \partial_\mu A^\mu = 0$

$$(m_{+} \, \delta_{\mu}{}^{\nu} + \epsilon_{\mu}{}^{\tau\nu} \partial_{\tau}) A_{\nu} = 0 \qquad \stackrel{m_{+} \to 0}{\Longrightarrow} \qquad A_{\mu} \ \to \ F_{\mu} \equiv \epsilon_{\mu}{}^{\nu\rho} \, \partial_{\nu} A_{\rho}$$

$$ullet$$
 Proca : $ig(\Box + m^2ig)A_\mu = 0\,, \qquad \partial_\mu A^\mu = 0$

•
$$A_{\mu} \rightarrow F_{\mu}$$
 \Rightarrow $(\Box + m^2)F_{\mu} = 0$

$$(m_{+} \, \delta_{\mu}{}^{\nu} + \epsilon_{\mu}{}^{\tau\nu} \partial_{\tau}) A_{\nu} = 0 \qquad \stackrel{m_{+} \to 0}{\Longrightarrow} \qquad A_{\mu} \ \to \ F_{\mu} \equiv \epsilon_{\mu}{}^{\nu\rho} \, \partial_{\nu} A_{\rho}$$

$$ullet$$
 Proca : $ig(\Box + m^2ig)A_\mu = 0\,, \qquad \partial_\mu A^\mu = 0$

$$\bullet \ A_{\mu} \ \rightarrow \ F_{\mu} \qquad \Rightarrow \qquad \left(\Box + m^2\right) F_{\mu} = 0$$

 \bullet $\mathcal{L} \sim m^2 \, \epsilon^{\mu
u
ho} A_\mu \partial_
u A_
ho \, + \, \epsilon^{\mu
u
ho} F_\mu \partial_
u F_
ho \, : \quad \text{high.-deriv. Maxwell}$

- Introduction
- Gravity in Three Dimensions
- The CGMG Model
- 4 Outlook

Pure Gravity

$$\mathcal{L}_{\mathrm{pure}} \ \sim \ h^{\mu\nu} \mathcal{G}_{\mu\nu}(h) \, ,$$

$$\mathcal{G}_{\mu\nu}(h) = \frac{1}{2} \epsilon_{(\mu}^{\ \eta\rho} \, \epsilon_{\nu)}^{\ \tau\sigma} \partial_{\eta} \partial_{\tau} \, h_{\rho\sigma}$$

Pure Gravity

$$\mathcal{L}_{\mathrm{pure}} \sim h^{\mu\nu} \mathcal{G}_{\mu\nu}(h)$$
,

$$\mathcal{G}_{\mu\nu}(h) = \frac{1}{2} \epsilon_{(\mu}^{\ \eta\rho} \, \epsilon_{\nu)}^{\ \tau\sigma} \partial_{\eta} \partial_{\tau} \, h_{\rho\sigma}$$

$$\partial^{\mu}\mathcal{G}_{\mu\nu}(h)=0\,,$$

$$\eta^{\mu\nu}\mathcal{G}_{\mu\nu}(h)=R^{\mathrm{lin}}(h)$$

Pure Gravity

$$\mathcal{L}_{\mathrm{pure}} \sim h^{\mu\nu} \mathcal{G}_{\mu\nu}(h)$$
,

$$\mathcal{G}_{\mu\nu}(h) = \frac{1}{2} \epsilon_{(\mu}^{\ \eta\rho} \, \epsilon_{\nu)}^{\ \tau\sigma} \partial_{\eta} \partial_{\tau} \, h_{\rho\sigma}$$

$$\partial^{\mu}\mathcal{G}_{\mu\nu}(h)=0\,,$$

$$\eta^{\mu\nu}\mathcal{G}_{\mu\nu}(h)=R^{\mathrm{lin}}(h)$$

$$G_{\mu\nu}(h)=0$$
 \Rightarrow

$$h_{\mu
u} = \partial_{\mu} a_{
u} + \partial_{
u} a_{\mu}$$
 : no dynamics

$$\bullet \mathcal{L}_{\mathrm{PF}} \sim h^{\mu\nu}\mathcal{G}_{\mu\nu}(h) - \frac{1}{2}m^2(h^{\mu\nu}h_{\mu\nu} - h^2)$$

$$ullet$$
 $\mathcal{L}_{\mathrm{PF}} \sim h^{\mu\nu}\mathcal{G}_{\mu\nu}(h) - rac{1}{2}m^2ig(h^{\mu\nu}h_{\mu\nu} - h^2ig)$

$$ullet$$
 E.O.M.: $\left(\Box+m^2
ight)h_{\mu
u}=0$ $\partial^\mu\,h_{\mu
u}=0\,, \quad h=0$

$$ullet$$
 $\mathcal{L}_{\mathrm{PF}} \sim h^{\mu\nu}\mathcal{G}_{\mu\nu}(h) - rac{1}{2}m^2ig(h^{\mu\nu}h_{\mu\nu} - h^2ig)$

• E.O.M.:
$$\left(\Box+m^2\right)h_{\mu\nu}=0$$
 $\partial^{\mu}h_{\mu\nu}=0\,,\quad h=0$

• "Square root of PF" :
$$h_{\mu\nu}=rac{1}{\mu}\epsilon_{\mu}{}^{
ho\sigma}\partial_{
ho}h_{\sigma
u}\,, \quad h=0$$

•
$$\mathcal{L}_{\mathrm{PF}} \sim h^{\mu\nu}\mathcal{G}_{\mu\nu}(h) - \frac{1}{2}m^2(h^{\mu\nu}h_{\mu\nu} - h^2)$$

$$ullet$$
 E.O.M.: $\left(\Box+m^2\right)h_{\mu
u}=0$ $\partial^\mu\,h_{\mu
u}=0\,,\quad h=0$

• "Square root of PF" :
$$h_{\mu\nu}=rac{1}{\mu}\epsilon_{\mu}{}^{
ho\sigma}\partial_{
ho}h_{\sigma
u}\,, \quad h=0$$

$$\bullet \ \mathcal{L} \ \sim \ \epsilon^{\mu\nu\rho} h_{\mu}{}^{\sigma} \partial_{\nu} h_{\rho\sigma} + m (h^{\mu\nu} h_{\mu\nu} - h^2)$$

Topological Massive Gravity (TMG)

Take $h_{\mu\nu} \rightarrow \mathcal{G}_{\mu\nu}(h)$ in "square root of PF" \Rightarrow

Topological Massive Gravity (TMG)

Take
$$h_{\mu\nu} \ o \ \mathcal{G}_{\mu\nu}(h)$$
 in "square root of PF" \Rightarrow

$$\mathcal{G}_{\mu
u}(h) = rac{1}{\mu} \epsilon_{\mu}{}^{
ho\sigma} \partial_{
ho} \mathcal{G}_{\sigma
u}(h) \,, \qquad R^{
m lin}(h) = 0 \,: \qquad \qquad ext{"linearized TMG"}$$

Topological Massive Gravity (TMG)

Take
$$h_{\mu\nu} \ o \ \mathcal{G}_{\mu\nu}(h)$$
 in "square root of PF" \Rightarrow

$$\mathcal{G}_{\mu
u}(h) = rac{1}{\mu} \epsilon_{\mu}{}^{
ho\sigma} \partial_{
ho} \mathcal{G}_{\sigma
u}(h) \,, \qquad R^{
m lin}(h) = 0 \,: \qquad \qquad ext{"linearized TMG"}$$

•
$$S_{\mathrm{TMG}}[g] = \frac{1}{\kappa^2} \int d^3x \left\{ -\sqrt{-g} R + \frac{1}{\mu} \mathcal{L}_{\mathrm{LCS}} \right\}$$
 with
$$\mathcal{L}_{\mathrm{LCS}} = \frac{1}{2} \left[\Gamma^{\alpha}_{\mu\beta} \partial_{\nu} \Gamma^{\beta}_{\rho\alpha} + \frac{2}{3} \Gamma^{\alpha}_{\mu\gamma} \Gamma^{\gamma}_{\nu\beta} \Gamma^{\beta}_{\rho\alpha} \right]$$

New Massive Gravity (NMG)

Take
$$h_{\mu\nu} \rightarrow \mathcal{G}_{\mu\nu}(h)$$
 in Pauli-Fierz \Rightarrow

New Massive Gravity (NMG)

Take
$$h_{\mu\nu} \rightarrow \mathcal{G}_{\mu\nu}(h)$$
 in Pauli-Fierz \Rightarrow

$$(\Box + m^2)\mathcal{G}_{\mu\nu}(h) = 0$$
, $R^{\mathrm{lin}}(h) = 0$: linearized NMG

New Massive Gravity (NMG)

Take
$$h_{\mu\nu} \ o \ \mathcal{G}_{\mu\nu}(h)$$
 in Pauli-Fierz \Rightarrow

$$igl(\Box + m^2igr) \mathcal{G}_{\mu
u}(h) = 0 \; , \qquad \qquad R^{\mathrm{lin}}(h) = 0 \; : \qquad \qquad \mathsf{linearized NMG}$$

•
$$S_{\text{NMG}}[g] = \frac{1}{\kappa^2} \int d^3x \sqrt{-g} \left[-R + \frac{1}{m^2} K \right]$$
 with

 $K = R_{\mu\nu}R^{\mu\nu} - \frac{3}{9}R^2$

The Cosmological Generalized Massive Gravity Model (CGMG)

The Cosmological Generalized Massive Gravity Model (CGMG)

$$S_{\text{CGMG}}[g] = \frac{1}{\kappa^2} \int d^3x \sqrt{-g} \left[\sigma R + \frac{1}{m^2} K + \frac{1}{\mu} \mathcal{L}_{\text{LCS}} - 2\lambda m^2 \right]$$

The Cosmological Generalized Massive Gravity Model (CGMG)

$$S_{\rm CGMG}[g] = \frac{1}{\kappa^2} \int d^3x \sqrt{-g} \left[\sigma R + \frac{1}{m^2} K + \frac{1}{\mu} \mathcal{L}_{\rm LCS} - 2\lambda m^2 \right]$$

$$m^2 = m_+ m_- \,, \qquad \qquad \mu = -\frac{m_+ m_-}{m_+ - m_-}$$

The Cosmological Generalized Massive Gravity Model (CGMG)

$$S_{\mathrm{CGMG}}[g] = \frac{1}{\kappa^2} \int d^3x \sqrt{-g} \left[\sigma R + \frac{1}{m^2} K + \frac{1}{\mu} \mathcal{L}_{\mathrm{LCS}} - 2\lambda m^2 \right]$$

$$m^2 = m_+ m_- \,, \qquad \qquad \mu = -\frac{m_+ m_-}{m_+ - m_-}$$

special cases:

The Cosmological Generalized Massive Gravity Model (CGMG)

$$S_{\rm CGMG}[g] = \frac{1}{\kappa^2} \int d^3x \, \sqrt{-g} \left[\sigma R + \frac{1}{m^2} K + \frac{1}{\mu} \mathcal{L}_{\rm LCS} - 2\lambda m^2 \right]$$

$$m^2 = m_+ m_- \,, \qquad \qquad \mu = -\frac{m_+ m_-}{m_+ - m_-}$$

special cases:

•
$$m_{+} = m_{-}$$
 : NMG

The Cosmological Generalized Massive Gravity Model (CGMG)

$$S_{\rm CGMG}[g] = \frac{1}{\kappa^2} \int d^3x \sqrt{-g} \left[\sigma R + \frac{1}{m^2} K + \frac{1}{\mu} \mathcal{L}_{\rm LCS} - 2\lambda m^2 \right]$$

$$m^2 = m_+ m_- \,, \qquad \qquad \mu = -\frac{m_+ m_-}{m_+ - m_-}$$

special cases:

•
$$m_{+} = m_{-}$$
 : NMG

•
$$m_+ \to \infty$$
:

Outline

- Introduction
- @ Gravity in Three Dimensions
- The CGMG Model
- 4 Outlook

• Einstein-Hilbert (EH): no dynamics

- Einstein-Hilbert (EH): no dynamics
- TMG: massive gravitons with one helicity around Minkowski

- Einstein-Hilbert (EH): no dynamics
- TMG: massive gravitons with one helicity around Minkowski
- ullet EH plus neg. cosm. constant: BTZ black holes/ AdS_3 vacua

- Einstein-Hilbert (EH): no dynamics
- TMG: massive gravitons with one helicity around Minkowski
- ullet EH plus neg. cosm. constant: BTZ black holes/ AdS_3 vacua
- CTMG: massive gravitons plus BTZ black holes

- Einstein-Hilbert (EH): no dynamics
- TMG: massive gravitons with one helicity around Minkowski
- EH plus neg. cosm. constant: BTZ black holes/AdS₃ vacua
- CTMG: massive gravitons plus BTZ black holes
- NMG: massive gravitons with helicities ± 2 (same mass)

- Einstein-Hilbert (EH): no dynamics
- TMG: massive gravitons with one helicity around Minkowski
- \bullet EH plus neg. cosm. constant: BTZ black holes/ AdS_3 vacua
- CTMG: massive gravitons plus BTZ black holes
- NMG: massive gravitons with helicities ± 2 (same mass)
- GMG: massive gravitons with helicities ± 2 (different mass)

- Einstein-Hilbert (EH): no dynamics
- TMG: massive gravitons with one helicity around Minkowski
- ullet EH plus neg. cosm. constant: BTZ black holes/ AdS_3 vacua
- CTMG: massive gravitons plus BTZ black holes
- NMG: massive gravitons with helicities ± 2 (same mass)
- GMG: massive gravitons with helicities ± 2 (different mass)
- ullet CGMG: massive gravitons (m_\pm) , BTZ black holes and new non-BTZ black holes

Question

Can gravitons, BTZ black holes and the new non-BTZ-black holes have positive energy all at the same time?

Question

Can gravitons, BTZ black holes and the new non-BTZ-black holes have positive energy all at the same time?

CTMG: either gravitons or BTZ black holes have positive energy.

Maximally Symmetric Vacua

$$G_{\mu\nu} = -\Lambda g_{\mu\nu} \ \Rightarrow \ \Lambda^2 + 4m^2\sigma\Lambda - 4\lambda m^4 = 0$$

Maximally Symmetric Vacua

$$G_{\mu\nu} = -\Lambda g_{\mu\nu} \ \Rightarrow \ \Lambda^2 + 4m^2\sigma\Lambda - 4\lambda m^4 = 0$$

CNMG with
$$\sigma = -1$$
, $m^2 > 0$

$$\lambda = -1$$
:

• Enhanced gauge symmetry: partial masslessness

$$\lambda = -1$$
:

- Enhanced gauge symmetry: partial masslessness
- New static non-BTZ black hole solution and New KK vacua $AdS_2 \times \mathcal{S}^1$ and $dS_2 \times \mathcal{S}^1$ Hohm, Townsend + E.B.; Oliva, Tempo and Troncoso; Clement

$$\lambda = -1$$
 :

- Enhanced gauge symmetry: partial masslessness
- New static non-BTZ black hole solution and New KK vacua ${\rm AdS}_2 \times {\cal S}^1$ and ${\rm dS}_2 \times {\cal S}^1$ Hohm, Townsend + E.B.; Oliva, Tempo and Troncoso; Clement

$$\lambda = 3$$
:

$$\lambda = -1$$
:

- Enhanced gauge symmetry: partial masslessness
- New static non-BTZ black hole solution and New KK vacua ${\rm AdS}_2 \times {\cal S}^1$ and ${\rm dS}_2 \times {\cal S}^1$ Hohm, Townsend + E.B.; Oliva, Tempo and Troncoso; Clement

$$\lambda = 3$$
:

• Massive spin 2 \rightarrow (Susy) Massive spin 1

$$\lambda = -1$$
:

- Enhanced gauge symmetry: partial masslessness
- New static non-BTZ black hole solution and New KK vacua ${\rm AdS}_2 \times {\cal S}^1$ and ${\rm dS}_2 \times {\cal S}^1$ Hohm, Townsend + E.B.; Oliva, Tempo and Troncoso; Clement

$$\lambda = 3$$
:

- Massive spin $2 \rightarrow (Susy)$ Massive spin 1
- c = 0

Boundary CFT

$$c=\frac{3\ell}{2G_3}$$

Brown, Henneaux (1986)

Boundary CFT

$$c=\frac{3\ell}{2G_3}$$

Brown, Henneaux (1986)

ļ

$$c = \frac{\ell}{2G_3} g_{\mu\nu} \frac{\partial \mathcal{L}}{\partial R_{\mu\nu}}$$

Kraus, Larssen (2005); Saida, Soda; Schwimmer (2000)

Boundary CFT

$$c=\frac{3\ell}{2G_3}$$

Brown, Henneaux (1986)

$$c = \frac{\ell}{2G_3} g_{\mu\nu} \frac{\partial \mathcal{L}}{\partial R_{\mu\nu}}$$

Kraus, Larssen (2005); Saida, Soda; Schwimmer (2000)

$$c_L = rac{3\ell}{2G_3} \left(\sigma + rac{1}{\mu\ell} + rac{1}{2\ell^2 m^2}
ight), \qquad c_R = rac{3\ell}{2G_3} \left(\sigma - rac{1}{\mu\ell} + rac{1}{2\ell^2 m^2}
ight)$$

Outline

- Introduction
- @ Gravity in Three Dimensions
- 3 The CGMG Model
- 4 Outlook

• we generalized gravity in three dimensions

• we generalized gravity in three dimensions

NMG is renormalizable

Oda (2009)

we generalized gravity in three dimensions

NMG is renormalizable

Oda (2009)

Supersymmetry, finiteness?

- we generalized gravity in three dimensions
- NMG is renormalizable Oda (2009)
- Supersymmetry, finiteness?
- Properties new non-BTZ black holes

- we generalized gravity in three dimensions
- NMG is renormalizable Oda (2009)
- Supersymmetry, finiteness?
- Properties new non-BTZ black holes
- Relation to Hořava-Lifshitz Gravity with z = 4?