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Two approaches to 2D quantum geometry

One is the continuous approach, in which the theory is defined

through the functional integral over the Riemannian metric gµν(X),

with appropriate gauge fixing. The choice of the conformal gauge

leads to quantum Liouville theory (coupled to matter fields), and

for that reason this approach is often called the Liouville Gravity.

The other is the discrete approach, based on the idea of approx-

imating the fluctuating 2D geometry by an ensemble of planar

graphs, so that the continuous theory is recovered in the scaling

limit where the planar graphs of very large size dominate.

The discrete approach is usually referred to as the Matrix Models,

since technically the ensemble of the graphs is usually generated

by the perturbative expansion of the integral over N×N matrices,

with N sent to infinity to guarantee the planarity of the graphs .
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Continuous approach Discret approach

↓ ↓

”Liouville Gravity” ”Matrix Models”

Impressive body of evidence that the two describe the same reality:

• Operators OLG
k and OMM

k have identical scale dimensions

• Some correlation numbers coincide:

〈OLG
1 ...OLG

n 〉 = 〈OMM
1 ...OMM

n 〉

But with ”naive” identification many correlation numbers are not

in agreement.

Resolution: Resonance relations:

[Ok] = [Ok1
] + [Ok2

]

In many cases the disagreement can be fixed by adjusting the

parameters in the (nonlinear)relations between the operators OLG
k

and OMM
k .
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• This work: Trying to find exact map for special class of models:

”Minimal Gravity” MG2/2p+1 ↔
”p− criticality” in

One−Matrix Model

◦ The problem is rather ”rigid” (more constraints then the pa-

rameters).

◦ Nonetheless, the map exists up to the level of four point corr.

numbers.

◦ The resulting 1-, 2-, 3-, and 4-point correlation numbers are in

perfect agreement.
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1. Minimal Gravity

1.1. Quantum Geometry∑
topologies

∫
D[g]D[φ] e−S[g,φ]

g(x) - Riemannian metric , φ - ”matter” fields

〈 Õk1
...ÕkN

〉 =
∫

Õk1
...ÕkN

e−S[g,φ] D[g, φ]

Õk =
∫
M

Ok(x) dµg(x)

Ok(x) - local fields (built from φ and g).
Generating function: {λ} = {λ1, ..., λn}

Z({λ}) =
∫

D[g, φ] e−Sλ[g,φ] ,

Sλ[g, φ] = S0[g, φ] +
∑
k

λk Õk

〈 Õk1
...ÕkN

〉 =
∂NZ({λ})
∂λk1

...∂λkN

∣∣∣∣∣
λ=0

The parameters {λ} are the coordinates in the”theory space” Σ.
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1.2. Conformal Matter, and Liouville Gravity

gµν Tmatter
µν = −

c

12
R

Conformal Gauge gµν = e2bϕ ĝµν: ⇒ Decoupling

S[g, φ] → SL[ϕ] + SGhost[B, C] + SMatter[φ]

with

SL[φ] =
1

4π

∫ √
ĝ

[
ĝµν∂µϕ∂νϕ + Q R̂ ϕ + 4πµ e2b ϕ

]
d2x ,

SGhost[B, C] =
1

2π

∫ √
ĝ Bµν ∇µCν d2x ,(

Bµν = Bνµ , ĝµνBµν = 0
)
,

26− c = 1 + 6Q2 Q = b + 1/b .

(SMatter[φ] is conformally invariant, with the central charge c).
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Correlation numbers 〈 Õk1
...ÕkN

〉 with

Õk =
∫

Vk(x)Φk(x) d2x

Φk(x) - (spinless) primary fields of the matter CFT, with the

conformal dimensions (∆k,∆k) Vk(x) - ”gravitational dressings”,

Vk(x) = e2ak ϕ(x) , ak(Q− ak) + ∆k = 1

Gravitational dimensions of Õk control the scale dependence of

the corr. functions:

Õk ∼ µδk , δk = −
ak

b

1.3. Correlation numbers

〈 Õk1
...Õkn 〉 = |(x1 − x2)(x2 − x3)(x3 − x1)|2 ×∫

d2x4...d2xn 〈Ok1
(x1)Ok2

(x2)Ok3
(x3)Ok4

(x4)...Okn(xn) 〉︸ ︷︷ ︸
↓

〈Vk1
(x1)...Vkn(xn) 〉Liouville 〈Φk1

(x1)...Φkn(xn) 〉Matter
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1.4. Matter CFT: ”Minimal Models”

Mp/q c = 1− 6
(p− q)2

pq

Finite number of primary fields

Φ(n,m) (n = 1, ..., p− 1 , m = 1, ..., q − 1 , n ≤ m) ,

with (in principle) computable correlation functions, e.g.

〈Φ(n1,m1)
(x1)...Φ(n4,m4)

(x4) 〉MM =

∑
(n,m)

C(n,m)
(n1,m1)(n2,m2)

C(n,m)
(n3,m3)(n4,m4)

|F(n,m)(∆i|x)|2

Fusion rules:

Φ(n1,m1)
Φ(n2,m2)

=
N∑

n=|n1−n2|+1

M∑
m=|m1−m2|+1

[Φ(n,m)] ,

with

N = min(n1 + n2 − 1,2p− n1 − n2 − 1) ,

M = min(m1 + m2 − 1,2q −m1 −m2 − 1)
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1.5. ”Yang-Lee series” of the Minimal Models M2/2p+1
• M2/2p+1 has p primary fields

Φk ≡ Φ(1,k+1) , k = 0,1, ..., p− 1 (p, p + 1, ...,2p− 1)

Fusion rules

[Φk1
][Φk2

] =
k1+k2∑

k=|k1−k2| : 2
[Φk] , [Φk] = [Φ2p−k−1]

Φk = Φ2p−k−1

• Correlation functions:

〈Φk 〉 = δk,0, 〈ΦkΦk′ 〉 ∼ δk,k′

〈Φk1
Φk2

Φk3
〉 = 0

if

{
k1 + k2 < k3, etc, for k1 + k2 + k3 even

k1 + k2 + k3 < 2p− 1 for k1 + k2 + k3 odd

〈Φk1
...Φkn 〉 = 0

if

{
k1 + ... + kn−1 < kn, for k1 + ... + kn even

k1 + ... + kn < 2p− 1 for k1 + ... + kn odd
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• Generating function: {λ} = {λ1, λ2, ..., λp−1}

ZMG(µ, {λ}) =

〈
exp

{
−

p−1∑
i=1

λi Õi

} 〉
MG2/2p+1

The cosmological constant µ may be treated as µ = λ0

S[MG] = ... + µ
∫

e2bϕ(x) d2x︸ ︷︷ ︸ +...

Õ0 =
∫

V0(x)Φ0(x) d2x , Φ0 = I

Dimensions:

λk ∼ µ
k+2
2 , k = 0,1, ..., p− 1

By the definition

〈 Õk1
...Õkn 〉 =

∂nZMG(µ, {λi})
∂τk1

...∂λkn

∣∣∣∣∣
{λi}=0

, {λi} = {λ1, ..., λn}
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2. Matrix Models

Continuous limit of the ensemble of planar graphs =Quantum Geometry

2.1.One-matrix Model The planar graphs = Feynmann diagrams

associated with the perturbative evaluation of the matrix integral

Z = log
∫

dM e
−N tr

(
1
2 M2−

∑
n=3

αn
n! Mn

)
M- Hermitian N × N matrix, N being the device for sorting out

the topologies

Z = N2 Z0 + Z1 + ... + N2−2g Zg + ...

Each term Zg generates discretized surfaces, of the topology g,

made of triangles and higher polygons, with the weights deter-

mined by αi.

• We concentrate on g = 0 (sphere) Σ -space of the ”poten-

tials” V (M) =
∑

n=3
αn
n! Mn.

The one-Matrix Model exhibits an infinite set of multi-critical

points, labelled by the integer p = 1,2,3, ....
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In the scaling limit the partition function is expressed through the

solution of the ”string equation”

P(u) = 0 , (1)

where P(u) is the p + 1-degree polynomial

P(u) = up+1 + t0 up−1 +
p−1∑
k=1

tk up−k−1 , (2)

with the parameters tk describing the relevant deviations from the

p-critical point . The singular part of the Matrix Model partition

function Z(t0, t1, ..., tp−1) is expressed through P(u) as follows

Z =
1

2

∫ u∗

0
P2(u) du , (3)

where u∗ = u∗(t0, t1, ..., tp−1) is the suitably chosen root of the

polynomial , i.e. P(u∗) = 0.

It is important to remember that Z really gives only the singular

part of the Matrix Model partition function.
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Take

t0 = µ −”cosmological constant”

Then

[u] = [µ
1
2] , [tk] = [µ

k+2
2 ] , [Z] = [µ

2p+3
2 ] ,

exactly the gravitational dimensions of MG2/2p+1,

tk ∼ λk , k = 0,1,2, ..., p− 1.

Convenient to separate t0 = µ and {ti} = {t1, t2, ..., tp−1}

Matrix Model correlation numbers:

〈Ok1
...Okn 〉MM ≡

∂nZMM(µ, {ti})
∂tk1

...∂kn

∣∣∣∣∣
{ti}=0

, {ti} = {t1, ..., tn}
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With the (naive) identification tk ∼ λk one would expect

〈Ok1
...Okn 〉MM = 〈 Õk1

...Õkn 〉MG × [Leg factors]

This expectation fails.
Since

P(u) = up+1 + µ up−1 +
p−1∑
k=1

tk up−k−1 , Z =
1

2

∫ u∗

0
P2(u) du

we have u∗(µ,0, ...,0) =
√

µ, and

∂Z

∂tk

∣∣∣∣∣
{t=0}

=
∫ u∗

0
P(u)

∂P(u)

∂tk
du

∣∣∣∣∣
{t=0}

= −
2µ

2p−k+1
2

(2p− k − 1)(2p− k + 1)

∂2Z

∂tk∂tk′

∣∣∣∣∣
{t=0}

=
∫ u∗

0

∂P(u)

∂tk

∂P(u)

∂tk′
du

∣∣∣∣∣
{t=0}

=
µ

2p−k−k′−1
2

2p− k − k′ − 1

etc

in sharp contrast with

〈 Õk 〉MG = 0 , k = 1,2, ..., p− 1 (since 〈Φk 〉CFT = 0)

〈 ÕkÕk′ 〉MG ∼ δkk′ , (since 〈ΦkΦk′ 〉CFT ∼ δkk′)
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2.3. Resonance transformations

[tk] = [µ
k+2
2 ] , [λk] = [µ

k+2
2 ]

It is possible to have, e.g.

[tk] = [λk1
][λk2

] (k = k1 + k2 + 2 ≥ 2)

(k = 0,1,2, ..., p− 1). I.e.

tk = λk +
p−1∑

k1,k2=0
k1+k2=k+2

c
k1k2
k λk1

λk2
+ higher order terms

Thus

t0 = λ0 = µ ,

t1 = λ1 , ([t1] = [µ3/2])

t2 = λ2 + A2 µ2 , ([t2] = [µ2])

t3 = λ3 + B3 µ λ1 , ([t3] = [µ][t1])

t4 = λ4 + A4 µ3 + B4 µ λ2 + C4 λ2
1

etc
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generally

tk = λk + Ak µ
k+2
2︸ ︷︷ ︸ +

n≤k/2∑
n=0

Bk−2n
k µn λk−2n︸ ︷︷ ︸ +

1

2

∑
n=0

∑
k1+k2=k−2−2n

C
k1,k2
k µn λk1

λk2︸ ︷︷ ︸ +...

↑

ZMM({t}) → Z̃MM({λ}) ≡ ZMM({t(λ)})

The right thing to expect is

∂N Z̃MM({λ})
∂λk1

...∂λkN

= 〈 Õk1
...Õkn 〉MG

under special choice of the ”Liouville coordinates” {λ1, ..., λn}.
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Thus,Problem: Finding the ”Liouville coordinates” {λ}, such that

• One-point numbers:

〈 Õk 〉MM =
∂Z̃(µ, {λ})

∂λk

∣∣∣∣∣
{λ}=0

= 0 for k = 1,2, ..., p− 1

• Two-point numbers:

〈 ÕkÕk′ 〉MM =
∂2Z̃(µ, {λ})

∂λk∂λk′

∣∣∣∣∣
{λ}=0

∼ δkk′

• Three-point numbers:

〈 Õk1
Õk2

Õk3
〉MM =

∂3Z̃(µ, {λ})
∂λk1

∂λk2
∂λk3

∣∣∣∣∣
{λ}=0

= 0

obey the fusion rules.
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• Multi-point numbers obey fusion rules, e.g. For even k1+ ...+kn

〈 Õk1
Õk2

...Õkn 〉MM = 0 if kn > k1 + k2 + ... + kn−1

For odd k1 + ... + kn

〈 Õk1
Õk2

...Õkn 〉MM = 0 if k1 + k2 + ... + kn < 2p− 1

Building the Liouville coordinates order by order in {λ}:
◦ The resonance transforms do not affect odd parity correlation

functions.

◦ Starting from n = 4 there are not enough parameters to exter-

minate the ”wrong” correlation numbers:

[λk] = [µ
k+2
2 ] → [λk1+k2

] = [λk1
][λk2

][µ2]

17



3. Finding the Liouville coordinates

When one plugs tk(λ) , the polynomial

P(u) = up+1 + t0 up−1 +
p−1∑
k=1

tk up−k−1 , (4)

takes the form

P(u) = P0(u) +
p−1∑
k=1

λk Pk(u) + ... +
p−1∑
ki=1

λk1
...λkn

n!
Pk1...kn(u) + ...

where P0(u) and Pk1...kn(u) are the polynomials of u whose coef-
ficients involve non-negative powers of µ.

P0(u) = up+1 + C′0 µ up−1 + C′′0 µ2 up−3 + ...

Pk(u) = Ck up−k−1 + C′k µ up−k−3 + C′′k µ2 up−k−5 + ...

...

C′k, C′′k , ... are dimensionless constants related to the higher-order
coefficients in tk(λ) , and in general Pk1...kn(u) are polynomials of
the degree

p + 1− 2n−
∑

ki ,

of similar structure. Of course, only polynomials of non-negative
degree appear, so that the sum in P(u) is finite.
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3.1 One- and two-point correlation numbers

. The first order of business is to determine P0(u) and Pk(u).

One finds

Z0 =
1

4

∫ u0

−u0

P2
0(u) du ,

Zk =
1

2

∫ u0

−u0

P0(u)Pk(u) du ,

Zk1k2
=

1

2

∫ u0

−u0

[
Pk1

(u)Pk2
(u) + P0(u)Pk1k2

(u)
]

du .

All Zk vanish. It means that all the polynomials Pk(u) must be

orthogonal to P0(u) with the measure 1. Since the second term

in the 2-nd eq. may be disregarded, then the diagonal form of the

two-point correlation numbers requires that Pk(u) themselves form

an orthogonal set of polynomials . Pk(u), up to normalization, are

the Legendre polynomials,

Pk(u) = Ck gk u
p−k−1
0 Lp−k−1(u/u0) .
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Furthermore, since P0(u) is p+1 degree polynomial, and vanishing

at u0, one finds

P0(u) = g u
p+1
0

[
Lp+1(u/u0)− Lp−1(u/u0)

]

g =
(p + 1)!

(2p + 1)!!
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3.2. Three- and four-point correlation numbers

Before proceeding to the higher-order correlation numbers, it is
useful to get rid of annoying factors in the eq-s above. We trade
λk for the dimensionless couplings

sk =
gk u−k−2

0

g (2p + 1)
λk ,

and write the polynomial Pk(u) as

P(u) = g (2p + 1)u
p+1
0 Q(u/u0) ,

where Q(x) is the polynomial of degree p + 1; as in (5), we will
think of it as the power series in sk,

Q(x) = Q0(x) +
p−1∑
k=1

sk Qk(x) +
p−1∑
k1k2

sk1
sk2

2
Qk1k2

(x) + ...

Eq’s above then tell us that

Q0(x) =
Lp+1(x)− Lp−1(x)

2p + 1
=

∫
Lp(x) dx

and

Qk(x) = Lp−k−1(x) .
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3.3.Three point numbers

Evaluation of the coefficients Zk1k2k3
is straightforward:

Zk1k2k3
= −1 +

1

2

∫ 1

−1

[
Qk1k2

(x)Qk3
(x) + Qk1k3

(x)Qk2
(x) + Qk2k3

(x)Qk1
(x)

]
dx ,

The first term −1 reproduces MG result, except for the fusion
rule factor Nk1k2k3

. The role of the second term is to fix that
discrepancy. When k1 + k2 + k3 is odd and < 2p − 1, the terms
with Zk1k2k3

are regular . Therefore, we only need to look at the
case when k1 + k2 + k3 is even and the second term turns to 1 at
all configurations of k1, k2, k3 such that k1 + k2 > k3 , To cancel
the first term and to reproduce the fusion rule factor Nk1k2k3

we
need to have

1

2

∫ 1

−1
Qk3

(x)Qk1k2
(x) dx =

{
1 if k1 + k2 < k3

0 if k1 + k2 ≥ k3

Since Qk(x) = Pp−k−1(x), this is achieved by taking

Qk1k2
(x) = L′p−k1−k2−2(x) ,

where prime denotes the derivative of the Legendre polynomial
with respect to x. Thus, we have

Zk1k2k3
/Z0 = −Nk1k2k3

Np ,
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3.4.Four point numbers

Direct calculation yields

Zk1k2k3k4
= Z(0)

k1k2k3k4
+ Z(I)

k1k2k3k4
,

where

Z(0)
k1k2k3k4

=
4∑

i=1

F (ki − 1)− F (−2)− F (k(12|34))

−F (k(13|24))− F (k(14|23)) ,

Z(I)
k1k2k3k4

=
1

2

∫ 1

−1

[
Qk1k2k3

Qk4
+ Qk4k1k2

Qk3
+ Qk3k4k1

Qk2
+ Qk2k3k4

Qk1

]
dx .

In (5)

F (k) = L′p−k−2(1) =
1

2
(p− k − 1)(p− k − 2) ,

we use the notation

k(ij|lm) = min(ki + kj, kl + km) .

Like in the previous case, the role of the 2-nd term is to enforce the
fusion rules, and the polynomials Qk1k2k3

(x) are to be determined
from this requirement.
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The even sector

Assume again that the numbers k1, k2, k3, k4 are arranged as usual,
so that in Z(0)

k1k2k3k4
we always have

k(12|34) = k1 + k2 , k(13|24) = k1 + k3 .

The 2-nd term vanishes,if the even sector fusion rules are satisfied.
When the fusion rules are violated,we have also

k(14|23) = k2 + k3 < p− 1

The expression Z(0)
k1k2k3k4

evaluates then to

−
1

2
(k4 − k1 − k2 − k3 − 2)(2p− 3− k1 − k2 − k3 − k4) .

Thus, for Zk1k2k3k4
to satisfy the fusion rules the integral∫ 1

−1
Qk1k2k3

(x)Qk4
(x) dx

which is not equal 0,if k123 < k4 − 2 has to return it with the
opposite sign. This uniquely determines the polynomials Qk1k2k3

,

Qk1k2k3
(x) = L′′p−

∑
ki−3(x)

It ensures vanishing Zk1k2k3k4
besides the case when k123 = k4−2,

however in this case the fusion is satisfed authomatically.
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4. Multi-Point correlation numbers

One thing is known: when the fusion rules are violated, the cor-

relation numbers then vanish as well. This requirement for the

n-point numbers imposes strong conditions on the form of the

polynomials Qk1...kn−1
(x), which fix them uniquely.

In fact, the problem seems over-determined. Suppose we have

already constructed the expansion up to the order n−1, and thus

Q0, Qk, ..., Qk1...kn−2
are already determined. Then Qk1...kn−1

enters

the expression for the n-th order coefficient Zk1...kn only through

the ”counterterm”

1

2

∫ 1

−1
Qk1...kn−1

(x)Qkn(x) dx

The polynomials Qk1...kn−1
must be chosen in such a way that

these terms cancel all other contributions to Zk1...kn when the

even-sector fusion rules are violated, i.e. when k1+ ...+kn−1 > kn.

But since the degree of the polynomial Qk1...kn−1
(x) is p+3−2n−

(k1+ ...+kn−1) , the integral actually vanishes at k1+ ...+kn−1 >

kn + 4− 2n.
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For n ≥ 4 a window

kn >
n−1∑
i=1

ki > kn + 4− 2n

opens in configurations of ki violating the even-sector fusion rules,
where the counterterm seems to be incapable of doing its job of
fixing the fusion rules. A similar problem exists in the odd sector.
For n ≥ 4 there is a window

2p− 1 >
n∑

i=1

ki > 2p + 3− 2n

in the configurations of ki, where the odd-sector fusion rules are
violated, but corresponding coefficients Zk1...kn are singular .

We have seen that at n = 4 the problem takes care of itself, in
both even and odd sectors. We have calculated the five-point cor-
relation numbers Ck1k2k3k4k5

, and indeed they automatically vanish
within both even and odd sector windows. As the byproduct of
this calculation we have determined the four-index polynomials
Qk1...k4

,

Qk1k2k3k4
(x) = L′′′p−

∑
k−4(x) ,

where
∑

k = k1 + k2 + k3 + k4.

26



5.Discussion

Identification of MG2/2p+1 as the world-sheet theory of the p-

critical one-Matrix Model suggests that, by choosing suitable res-

onance terms in the of the relation between the couplings tk and

λk, the Matrix Model correlation numbers can be put in agreement

with the fusion rules of MG2/2p+1.

Technically, this is done by constructing the polynomial Q(u), or-

der by order in sk. We have executed this program up to the fifth

order. For higher n direct calculations become rather involved.

But a quick glance at the above results immediately suggests the

general form,

Qk1...kn(u) =
(

d

du

)n−1
Lp−

∑
k−n(u) ,

where again
∑

k = k1 + ... + kn.
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The conjecture I

The partition function of the one-MM is expressed through Q(u)

Z =
1

2

∫ u∗

0
Q2(u) du ,

u∗ is the solution of the ”string equation”

Q(u∗) = 0

Q(u) =
∑

n=0

p−1∑
k1,...kn=1

sk1
...skn

n!
L

(n−1)
p−

∑
k−n

(u)

Here we denote

L
(n)
k (u) =

(
d

du

)n

Lk(u)

The conjecture II

Z coincides with the generating functions
of the correlation numbers in MG2/2p+1

Z =

〈
exp

{
−

p−1∑
i=1

si Õi

} 〉
MG2/2p+1
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