
Introduction
Feynman rules

Scattering amplitudes
Summary and outlook

On Higher Spin Interactions
with a Scalar Matter Field

Xavier BEKAERT

Laboratoire de Mathématiques et Physique Théorique (Tours, France)

21 May 2009 @ 4th International Sakharov Conference on Physics

based on X. B. , E. Joung and J. Mourad, arXiv:0903.3338 [hep-th].

X. Bekaert On Higher Spin Interactions with a Scalar Matter Field



Introduction
Feynman rules

Scattering amplitudes
Summary and outlook

Higher-spin interactions and amplitudes
Toy model: Scalar matter

Perturbative & Power counting: UV behaviour

Roughly, cubic vertices with bosons of spin S seem to require for
consistency terms with S derivatives (or more).

S = 1: Yang-Mills theory is renormalizable.
S = 2: Gravity is non-renormalizable.
Graviton exchange scattering amplitude grows like A ∼ −s when square
of energy s→∞ (at fixed scattering angle).

S > 2: Higher the spin, worse the divergence...
Higher-spin exchange scattering amplitude A ∼ (−s)S−1 when s→∞ .

⇒ Problem for any finite number of fields with spin S > 2.
But not always for an infinite set of fields with unbounded spin.
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A famous example: string theory

String theory properties:
Spectrum contains all possible spins

S = 2: single massless spin-two ⇒ incorporates gravity
S > 2: ∞ tower of massive higher-spin fields

Non-local interactions
unbounded spin ⇒ unbounded number of derivatives.

Ultraviolet softness
fixed scattering-angle amplitude A → 0 when energy square s→∞ .

Perturbative finiteness
although the theory is non-renormalizable by “naive” power counting, the
higher-spin interactions somehow provide an UV regularization.

Conclusion:
Adding an infinite number of problems with increasing difficulty
can be a solution!
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∃? another example

Higher-spin gauge theory?
Spectrum contains all possible spins with multiplicity one
(single “Regge trajectory”)

S = 2: single massless spin-two ⇒ incorporates gravity
S > 2: ∞ tower of massless higher-spin fields

Non-local interactions
unbounded spin ⇒ unbounded number of derivatives.

Perturbative finiteness?
plausible: Huge gauge symmetry fixes, maybe uniquely, the interactions
(M.A. Vasiliev)

Ultraviolet softness?
plausible (X.B., E.Joung and J. Mourad)
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Strategy

Make use of the known propagators and cubic vertices
including:

scalar matter field (straight lines) and
higher-spin gauge field (curly line).

�
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Compute the tree-level exchange amplitude when
the interaction is mediated by a massless higher-spin particle
in the elastic scattering process φφ → φφ
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or in the elastic scattering process φ φ̄ → φ φ̄
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Plan of the talk

1 Introduction
Higher-spin interactions and amplitudes
Toy model: Scalar matter

2 Feynman rules
Scalar field propagator
Symmetric tensor gauge field propagator
Cubic vertices

3 Scattering amplitudes
Elastic scattering
Single gauge boson exchange
Infinite Tower
Softness and finiteness

4 Summary and outlook
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Scalar field propagator
Symmetric tensor gauge field propagator
Cubic vertices

Klein-Gordon action

Skin
0 [φ ] = −1

2

∫
dnx

(
ηµν ∂µφ∗(x) ∂νφ(x) + m2 φ∗(x)φ(x)

)
,

⇒ Scalar field propagator = 1
p2+m2 .

�
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Quadratic action

Skin
2 [h ] = −

∑
S>0

1
2 S!

∫
dnx

(S)

h µ1...µS
(x) �

(S)

h
µ1...µS (x) + . . .

⇒ Symmetric tensor gauge field propagators = 1
p2 Resµ1...µS | ν1...νS

.

�

Constrained formalism (Frønsdal; 1978)
Double-traceless gauge field, traceless gauge parameter
Unconstrained formalism (Francia, Mourad, Sagnotti; 2007)
No trace constraints ⇒ easier to couple with currents
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Minimal coupling

Smin
1 [φ, h ] = −

∑
S>0

cS

S!

∫
dnx

(S)

h µ1...µS
(x) Jµ1...µS (x)

Arbitrary coupling constants cS ∈ R
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Gauge invariance of the action

S[φ, h ] = Skin
0 [φ ] + Smin

1 [φ, h ] + Skin
2 [h ] + higher .

Gauge invariance under

δε

(S)

h µ1...µS
(x) = ∂µ1εµ2...µS

(x) + permutations + O(h) ,

At linear order in the gauge fields:

⇒ ∂µ1J
µ1...µS (x) ∝ Klein-Gordon equation

Minimal coupling of gauge fields with
conserved currents for the matter field
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Conserved current

Set of symmetric conserved currents of all ranks
(Berends, Burgers, van Dam; 1986)

Jµ1...µS
(x) =

( i

2

)S

φ(x)
↔
∂ µ1 · · ·

↔
∂ µS

φ∗(x)

Real
Bilinear in the complex scalar field
Number of derivatives = Rank
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Cubic vertex

S1[φ, h(S) ] =
cS

S!

∫
dnx

(S)

h µ1...µS
(x) Jµ1...µS (x)

= −
∫

dn`

(2π)n

dnk

(2π)n
φ∗(`) φ(k)

(S)

h µ1...µS
(`− k)×

× cS

S!

(
kµ1 + `µ1

2

)
. . .

(
kµS + `µS

2

)
.

⇒ Cubic vertex = − cS

S!

(
kµ1+`µ1

2

)
. . .

(
kµr +`µS

2

)
.
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Elastic scattering
Single gauge boson exchange
Infinite Tower
Softness and finiteness

Mandelstam variables

Elastic scattering φ(k1) φ(k2) → φ(`1) φ(`2)

Mandlestam variables

s = −(k1 + k2)
2 , t = −(k1 − `1)

2 , u = −(k1 − `2)
2 .

In the center of mass:
s = (Energy)2

t = - (Momentum transfer)2

θ = Scattering angle, determined by

sin2(θ/2) = −t/(s− 4 m2) , cos2(θ/2) = −u/(s− 4 m2)
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Tree-level scattering amplitude: single gauge boson

Elastic scattering φ(k1) φ(k2) → φ(`1) φ(`2)

(S)

A(s, t, u) = t-channel spin-S exchange amplitude
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For bosons, the total amplitude for the scattering process
φ(k1) φ(k2) → φ(`1) φ(`2) contains the sum of the t and u channel
amplitudes:

(S)

A total(φφ → φφ) =� +�
=

(S)

A (s, t, u) +
(S)

A (s, u, t) .
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Result of the computation for spin S > 1

In four-dimensional spacetime (n = 4), the amplitude can be
expressed in terms of Chebyshev polynomials of the first kind TS

(S)

A (s, t, u) = − aS
1

`2P t

(
− `2P

8
(s + u)

)S 2
S!

TS

(
s− u

s + u

)
.

where
`P is a constant with the dimension of a length (say Planck’s length),
aS := `6−n−2S

P c2
S > 0 are non-negative dimensionless constants.

t 6= 0 ⇐⇒ θ 6= 0

In five-dimensional spacetime (n = 5), the amplitude can be
expressed in terms of Legendre polynomials PS .
In higher dimensions (n > 6), the amplitude can be expressed in
terms of Gegenbauer polynomials C

n
2−2

S .
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Crossing

Elastic scattering φ(k1) φ̄(k2) → φ(`1) φ̄(`2)

(S)

A(u, t, s) = (−1)S
(S)

A(s, t, u)

�
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Asymptotic behaviour (in n = 4 dimensions)

If `P is thought as Planck’s length and m as the proton mass, then
`P m ≈ 10−19 � 1 .

⇒ High-energy regime s� `−2
P � m2

Regge limit (s large, t fixed)

(S)

A (s, t, u) ∼ − 1
`2P t

aS

S!

(
− `2P

2
s
)S

,

Fixed scattering-angle limit (s and t large, t/s fixed)

(S)

A (s, t, u) ∼ − 1
4

aS

S!

(
− `2P

8
sin2(θ/2) s

)S−1

TS

(
1 + cos2(θ/2)

sin2(θ/2)

)
.
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Tree-level scattering amplitude: infinite tower

Elastic scattering φ(k1) φ(k2) → φ(`1) φ(`2)

A(s, t, u) = t-channel total exchange amplitude

�
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Summation of the amplitudes for all spins

The total amplitude including all possible gauge boson exchanges is the
(possibly infinite) sum

A(s, t, u) :=
∑
S>0

(S)

A (s, t, u)

Let us denote by a(z) the generating function of the coefficients aS > 0 ,
in the sense that

a(z) :=
∑
S>0

aS

S!
zS .
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Summation of the amplitudes for all spins

Exact sum

A(s, t, u) = − 1
`2P t

[
a
(
− `2P

8
(√

s +
√
−u

)2
)
+

+a
(
− `2P

8
(√

s−
√
−u

)2
)
− a0

]
.

Remark: a(z) analytic around the origin =⇒ A(s, t, u) also is
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Asymptotic behaviour (in n = 4 dimensions)

High-energy regime s� `−2
P � m2

Regge limit (s large, t fixed)

A(s, t, u) ∼ − 1
`2P t

a
(
− `2P

2
s
)

,

Fixed scattering-angle limit (s and t large, t/s fixed)

A(s, t, u) ∼ 1
sin2(θ/2) `2P s

[
a
(
− `2P

8
[
1− cos(θ/2)

]2
s
)

+a
(
− `2P

8
[
1 + cos(θ/2)

]2
s
)
− a0

]
.
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Softness φφ → φφ

High-energy regime s� `−2
P � m2

Regge limit (s large, t fixed)

a(−∞) = 0 ⇐⇒ A(s, t, u)→ 0 ,

Fixed scattering-angle limit (s and t large, t/s fixed)

a(−∞) = constant =⇒ A(s, t, u)→ 0 .
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Softness φ φ̄ → φ φ̄

Crossing s↔ u ⇐⇒ a(z)→ a(−z)

High-energy regime s� `−2
P � m2

Regge limit (s large, t fixed)

a(+∞) = 0 ⇐⇒ A(u, t, s)→ 0 ,

Fixed scattering-angle limit (s and t large, t/s fixed)

a(+∞) = constant =⇒ A(u, t, s)→ 0 .
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Finiteness

The UV softness of tree-level scattering amplitudes is a strong indication
in favour of UV finiteness because loop diagrams are built out of off-shell
tree diagrams.

Example: Box diagram
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Box diagram

�

is proportional to

∫
d4p

A
(
φ(k1)φ(k2)→ φ(k1 + p)φ(k2 − p)

)
A

(
φ(k1 + p)φ(k2 − p)→ φ(`1)φ(`2)

)
(
(k1 + p)2 + m2

) (
(k2 − p)2 + m2

)
and is UV finite if a(z) goes to some constant when z → ±∞.
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Heuristic arguments

Alternating sum:
The particle-particle interaction is attractive/repulsive when an
even/odd particle is exchanged so that compensations are possible
(similarly to boson/fermion compensations in SUSY theories).
Effectively super-renormalizable:
If a(z) goes to some constant when z → ±∞ then, at large energy,
the amplitude A(s, t, u) for the exchange of an infinite tower of
massless higher-spin particles mimics A(0)(s, t, u), the amplitude for
the exchange of a single massless scalar particle.
Therefore, in the UV the higher-spin interactions may effectively
behave as the spin-zero interaction (which is super-renormalizable).

X. Bekaert On Higher Spin Interactions with a Scalar Matter Field



Introduction
Feynman rules

Scattering amplitudes
Summary and outlook

Elastic scattering
Single gauge boson exchange
Infinite Tower
Softness and finiteness

Heuristic arguments

Alternating sum:
The particle-particle interaction is attractive/repulsive when an
even/odd particle is exchanged so that compensations are possible
(similarly to boson/fermion compensations in SUSY theories).

Effectively super-renormalizable:
If a(z) goes to some constant when z → ±∞ then, at large energy,
the amplitude A(s, t, u) for the exchange of an infinite tower of
massless higher-spin particles mimics A(0)(s, t, u), the amplitude for
the exchange of a single massless scalar particle.
Therefore, in the UV the higher-spin interactions may effectively
behave as the spin-zero interaction (which is super-renormalizable).

X. Bekaert On Higher Spin Interactions with a Scalar Matter Field



Introduction
Feynman rules

Scattering amplitudes
Summary and outlook

Elastic scattering
Single gauge boson exchange
Infinite Tower
Softness and finiteness

Heuristic arguments

Alternating sum:
The particle-particle interaction is attractive/repulsive when an
even/odd particle is exchanged so that compensations are possible
(similarly to boson/fermion compensations in SUSY theories).
Effectively super-renormalizable:
If a(z) goes to some constant when z → ±∞ then, at large energy,
the amplitude A(s, t, u) for the exchange of an infinite tower of
massless higher-spin particles mimics A(0)(s, t, u), the amplitude for
the exchange of a single massless scalar particle.

Therefore, in the UV the higher-spin interactions may effectively
behave as the spin-zero interaction (which is super-renormalizable).

X. Bekaert On Higher Spin Interactions with a Scalar Matter Field



Introduction
Feynman rules

Scattering amplitudes
Summary and outlook

Elastic scattering
Single gauge boson exchange
Infinite Tower
Softness and finiteness

Heuristic arguments

Alternating sum:
The particle-particle interaction is attractive/repulsive when an
even/odd particle is exchanged so that compensations are possible
(similarly to boson/fermion compensations in SUSY theories).
Effectively super-renormalizable:
If a(z) goes to some constant when z → ±∞ then, at large energy,
the amplitude A(s, t, u) for the exchange of an infinite tower of
massless higher-spin particles mimics A(0)(s, t, u), the amplitude for
the exchange of a single massless scalar particle.
Therefore, in the UV the higher-spin interactions may effectively
behave as the spin-zero interaction (which is super-renormalizable).

X. Bekaert On Higher Spin Interactions with a Scalar Matter Field



Introduction
Feynman rules

Scattering amplitudes
Summary and outlook

Summary

Computation of tree-level two-scalar scattering amplitudes with
gauge boson exchanged of any spin
Exact summation of tree-level two-scalar scattering amplitudes
Some Feynman diagrams can be seen to be UV finite if the
generating function of coupling constants a(z) goes to some
constant when z → ±∞.

Of course, this does not imply that the corresponding total one-loop
amplitudes are finite because other diagrams should be taken into
account, some of which might include higher-order vertices which are not
considered in the present paper.
Nevertheless, it is already suggestive to observe that some Feynman
diagrams may be UV finite if all contributions of the whole infinite tower
of gauge fields are summed and if the coupling constants cS behave
nicely for large spin S .
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Higher-order vertices
Consistency? ⇒ fix the coefficients aS

Inconsistency? ⇒ perturb around (anti) de Sitter space-time

Around (anti) de Sitter space-time
Feynman → Witten diagrams
Test AdS4/CFT3 higher-spin/O(N)-model conjecture
(Klebanov & Polyakov 2002, Petkou 2003, Sezgin & Sundell 2003,
Leonhardt-Manvelyan-Rühl 2004, ...)

X. Bekaert On Higher Spin Interactions with a Scalar Matter Field



Introduction
Feynman rules

Scattering amplitudes
Summary and outlook

Outlook

Higher-order vertices

Consistency? ⇒ fix the coefficients aS

Inconsistency? ⇒ perturb around (anti) de Sitter space-time

Around (anti) de Sitter space-time
Feynman → Witten diagrams
Test AdS4/CFT3 higher-spin/O(N)-model conjecture
(Klebanov & Polyakov 2002, Petkou 2003, Sezgin & Sundell 2003,
Leonhardt-Manvelyan-Rühl 2004, ...)

X. Bekaert On Higher Spin Interactions with a Scalar Matter Field



Introduction
Feynman rules

Scattering amplitudes
Summary and outlook

Outlook

Higher-order vertices
Consistency? ⇒ fix the coefficients aS

Inconsistency? ⇒ perturb around (anti) de Sitter space-time

Around (anti) de Sitter space-time
Feynman → Witten diagrams
Test AdS4/CFT3 higher-spin/O(N)-model conjecture
(Klebanov & Polyakov 2002, Petkou 2003, Sezgin & Sundell 2003,
Leonhardt-Manvelyan-Rühl 2004, ...)

X. Bekaert On Higher Spin Interactions with a Scalar Matter Field



Introduction
Feynman rules

Scattering amplitudes
Summary and outlook

Outlook

Higher-order vertices
Consistency? ⇒ fix the coefficients aS

Inconsistency? ⇒ perturb around (anti) de Sitter space-time

Around (anti) de Sitter space-time
Feynman → Witten diagrams
Test AdS4/CFT3 higher-spin/O(N)-model conjecture
(Klebanov & Polyakov 2002, Petkou 2003, Sezgin & Sundell 2003,
Leonhardt-Manvelyan-Rühl 2004, ...)

X. Bekaert On Higher Spin Interactions with a Scalar Matter Field



Introduction
Feynman rules

Scattering amplitudes
Summary and outlook

Outlook

Higher-order vertices
Consistency? ⇒ fix the coefficients aS

Inconsistency? ⇒ perturb around (anti) de Sitter space-time

Around (anti) de Sitter space-time

Feynman → Witten diagrams
Test AdS4/CFT3 higher-spin/O(N)-model conjecture
(Klebanov & Polyakov 2002, Petkou 2003, Sezgin & Sundell 2003,
Leonhardt-Manvelyan-Rühl 2004, ...)

X. Bekaert On Higher Spin Interactions with a Scalar Matter Field



Introduction
Feynman rules

Scattering amplitudes
Summary and outlook

Outlook

Higher-order vertices
Consistency? ⇒ fix the coefficients aS

Inconsistency? ⇒ perturb around (anti) de Sitter space-time

Around (anti) de Sitter space-time
Feynman → Witten diagrams

Test AdS4/CFT3 higher-spin/O(N)-model conjecture
(Klebanov & Polyakov 2002, Petkou 2003, Sezgin & Sundell 2003,
Leonhardt-Manvelyan-Rühl 2004, ...)

X. Bekaert On Higher Spin Interactions with a Scalar Matter Field



Introduction
Feynman rules

Scattering amplitudes
Summary and outlook

Outlook

Higher-order vertices
Consistency? ⇒ fix the coefficients aS

Inconsistency? ⇒ perturb around (anti) de Sitter space-time

Around (anti) de Sitter space-time
Feynman → Witten diagrams
Test AdS4/CFT3 higher-spin/O(N)-model conjecture
(Klebanov & Polyakov 2002, Petkou 2003, Sezgin & Sundell 2003,
Leonhardt-Manvelyan-Rühl 2004, ...)

X. Bekaert On Higher Spin Interactions with a Scalar Matter Field


	Introduction
	Higher-spin interactions and amplitudes
	Toy model: Scalar matter

	Feynman rules
	Scalar field propagator
	Symmetric tensor gauge field propagator
	Cubic vertices

	Scattering amplitudes
	Elastic scattering
	Single gauge boson exchange
	Infinite Tower
	Softness and finiteness

	Summary and outlook

