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Scalar field description of the Universe evolution

!

Modern insights to the equation of state:
around cosmological constant but with hints on its evolution

Phantom component of the large-scale Universe: Non-Hermitian
if not a myth then how to understand such a QFT?  Lagrangians!?



FRW cosmoloqy for flat space
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What is driving the Universe evolution?
Cosmological constant vs. matter+energy density?

Consider our Universe filled by a barotropic fluid with an equation of state
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where p and p are energy density and pressure of the fluid,
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Dark energy is characterized by a negative pressure with




Quintessence fields

It is well accepted that for a given cosmological evolution h(t)
satisfying certain simple conditions one can employ a scalar field
to build the cosmological model with the Lagrangian
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which contains the above mentioned evolution as a particular solution.



Gauge transformation:
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What about superaccelerated evolution w<-127?



Dark energy (DE) change (=evolution) with red shift z
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FIG. 4: Constrains on wiz) using WMAFP + 157 "gold” SNla
data 4+ 5D5S with /without DE perturbation. Median{central
line), 68% (inner, dark grey) and 95% {outer, light grey) inter-
vals of wiz) using 2 parameter expansion of the EOS in (4).
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Thus w = w(t) is adynamical variable and one crosses the divide linew = -1 .
One needs a multicomponent scalar QFT to justify such a behavior .
Quintom, hessence, hybride » scalar QFT with two components.

Caldwell R. R., A Phantom menace ? , Phys. Lett. B 545, (2002) 23
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Fic. 12.— Constrains on evolving equation of state, w( z) = wy+wgz/(1+2),
in flat universe.



Superaccelerated evolution

R
It can be designed with “phantom” fields L =@T — V().

Evidently phantom fields have an energy unbounded from below

L = Hpniom = -7° + V()

phantom phantom

Classically not! Because

p isreal = -¢° + V(@) > 0during classical evolution

BUT catastrophe against perturbations?



No ! Classical phantom fields may well be originated
from a CPT invariant non-Hermitian but crypto-Hermitian QFT !

Andrey Smilga
Instructive exercise:

PT-symmetric QM oscillators H=p® +x*(ix)?, 0 < & < 2

(rigorously proven to possess areal energy spectrum bounded from below)

Sample A: & =1 | Dorey,Dunning,Tateo, 2001

Classics: H=p® +ix® > %, = 3ix/ —220 5 Rex =0, x,, =i f(t)

Cosmology: p and p arereal = x’ and V(x,) are real!

S s = Idt (- (F(©)> - f°(t)) reall but*“phantom’
“phantom” oscillator

Quasiclassics: x(t) =i f(t) + ox(t); S@ = Idt SX(t) (- 87 +6f(t) ) ox(t)  real

guantum fluctuations



Il
N

Sample B: E

Andrianov, 1982

Classics: H=p" - e

a bad solution s Imx=0 - X = 4AX 3, X 2: C+AX 4
cl cl cl cl
infinite  motion
a good solution > REX:O; XC|:|f(t) — f:'4ﬂ«f3, fZ:C-ﬂf4

finite motion!

This classically “crazy” potential, on a curve in the complex coordinate plane (second
solution), generates exactly the same energy spectrum (4 ¢

as atwo-dimensional O(2) symmetric quantum oscillator v 'g) = )'L[*-Tl + {1’?,3 g
with real coordinates in the sector of zero angular momentum.

Perturbations around an imaginary solution q(t) = i&(t) + dq(t) can be
performed along real axis and give a positive Hamiltonian

L2 — p(t)oq(t) — H, H = 1313(1*) + 12)\53“}(5‘3(?)}2



PT symmetric Quantum Mechanics ( = QFT?)

Parity o ) s .
transformation PrP = -z and PpP = —p.

Timereversal 7.7 — 4 and 7TpT = —p. TiT = —i.

PT symmetry H(PT)— (PT)H = 0.

C.Bender et al
1998,...,2008

A PT-symmetric Hamiltonian need not be Hermitian 1 !

But if it has real spectrum it must be crypto-Hermitian !

Theorem: 3C, HC = C H"; positive operator C=C*'= 9%; 9 = 9"
= 3"HI =h; h=h' (Mostafazadeh, 2003)

This operator is essentially non-local! Thus one has two options:
either to work with a local but non-Hermitian QM
or with a non-local (non-Lagrangian!) one but Hermitian

What do you like?
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a Hermitian counterpartner
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with a number of arbitrary parameters characterizing a non-uniqueness of
C-operator



Non-Hermitian (C)PT symmetrlc scalar QFT

— —

(complex) La,crrﬂ,ntfmn of & scalar field
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L = Eﬂ#qﬂﬁ'“ o —V (b, r.-il*],

with the corresponding action,

ae L - 1
nunits G =2 S(60.8%.9) = [ d'ev/Tal(L +GR(),

Newton 8

Employ the potentials satisfying (Vi(P, &))" =V (d*, D),

However the Hermiticity is not required (P, P fé Vid, d*)

This is a generalized condition of (C)PT symmetry



The model based on

1-dim non-Hermitian QM with real energy spectrum

(proof of real spectrum in QM: Gasymov,1980;Curtright, Mezincescu, 2007)
|2 ».
b , .
L=2 42 _ 409 4 Beifx
2 2 May be any

where A and B are real, positive constants unction

b+ 3hd + Aae™® =0,
prohe T dac =1 y =i, € real

Y 4 3hy — iBBe?X = 0,

p and p arereal = ¢° + 7° and V(g, y) are real separately!

2 g2 |
h? = QT — ‘E—} + Ae™ _ Be P

Less = 30" = BRePo(5y)?,

where yg 18 a homogeneous purely imaginary solution of the dynamical system




Cosmological evolution characteristic of the model

/_

Fig. 1. (left) Plot of the Hubble parameter representing the cosmological evolution. The evolution
starts from a Big Bang-tvpe singularity and goes through a transient phase of superaccelerated
expansion | “phantom era”), which lies between two crossings of PDL (when the derivative of h
crosses zero). Then the universe expands infinitely. (right) Plots of the total energy density {blue),
and of the energy density of the normal field (purple) and of the phantom one (green).
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Fig. 2. (left) The evolution starts with a contraction in the infinitely remote past. At the point first
PDL crossing the contraction becomes superdecelerated and turns in a superaccelerated expansion
when h crosses zero. The second PDL crossing ends the “phantom era”; the decelerated expansion
continues till the universe begins contracting. In a finite time a Big Crunch-type singularity is

reached. (right) Plots of the total energy density (blue), and of the energy density of the normal
field (purple) and of the phantom one | green).
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Fig. 3. (left) The cosmological evolution begins with a contraction in the infinitely remote past.
with the first PDL crossing the contraction becomes superdecelerated until the universe stops
(h = 0) and starts expanding. With the second crossing the “phantom era” ends and the expansion
continues infinitely. (right) Plots of the total energy density (blue), and of the energy density of
the normal field (purple) and of the phantom one (green).



[
| 200000 |
400 F
\ 300k 150000 |
3
w0t 100000 F
~_100} 50000 F
1 L L L _ L 1 — L L |:
~0.004 -0.002 0002  0.004 ~0.004 —-0.002 0.002  0.004

Fig 4.

(left) Evolution from a Big Bang-type singularity to an infinite expansion, without any
crossing of PDL. This evolution is thus guided by the “normal” field . (right) Plots of the total
energy density (blue), and of the energy density of the normal field (purple) and of the phantom

one (green). Notice that the energy density of the phantom field {green) is very close to zero, thus
the total energy density is mainly due to the standard field.

the phantom dominance era is transient, the number of the phantom divide line

crossings is even and the Big Rip singularity is excluded.




For comparison a model for evolution
with quintom = quintessence and phantom fields

the Hubble variable:

The evolution begins at + = (0, which represents a standard initial big bang cosmological

singularity, and comes to an end in the big rip type singularity at f = f5.

hi't)

FIG. 2 h{r) dependence in the model, describing the big rip.



Figure 1: The evolution of the effective equation of state of the phantom and normal scalar
fields with Vig, o) = Vi e~hend 4 e for the case Ay = 1.

From: Guo Z. K. et al, Phys. Lett. B 608, (2005) 177



Perturbations around classical solution

a) Scalar field perturbations

the quadratic part of the effective Lagrangian of perturbations:

1 -2 1 =, . A .
Less = 50% — EWMMJE — B (5y)?, g

|

= —dr + %(ﬁmmﬁ + B2 o (5y)2,  am < oY

It is positive, i.e. bounded from below



b) Metric perturbations P = 00,0

The Hamiltonian of the metric perturbations should be naturally added to the
above formulae. The mixed term, including both the metric and scalar field per-
turbations, appears superficially annoving becanse it contains the first derivative of
the term Be*”*, which is imaginary. However, one can show that by a proper choice
of the gange condition this imaginary term can be eliminated.

The relevant terms
2@ 4., & 0
0% = f’-’f T/ —gox (hu:ujihl,:ng.
i (i J. |'_=|! P o
—I—::.LE:,‘:' ("F“h“- — —hg+ —(h— hgo) : (15]
; 2 (1
where h = 1. commas stand for partial derivative and V , is the covariant derivative
operator. The expression (18) is purely imaginary becanse @ is purely imaginary

This combination is not gauge invariant and the suitable gauge choice is evident:
one has to constrain metric perturbations eliminating
the linear combination in parentheses

In this gauge metric perturbations decouple from “phantom” ones and interplay
only with perturbations of quintessence scalar field



Resume’

1) The present-day knowledge of dark energy evolution leaves a room
for eq. of state with w <-1.
2) It poses the problem of existing of an unusual scalar matter
with negative kinetic energy.
3) Such aclassical FT can be derived from
a (C)PT invariant non-Hermitian QFT,
guantizable in quasiclassics and possessing a real energy spectrum.
4) From QM to QFT: are there crypto-Hermitian QFT?
It has not yet been proven rigorously.



