

COOLING NEUTRON STARS AND SUPERFLUIDITY OF DENSE MATTER

D.G. Yakovlev, P.S. Shternin

Ioffe Physical Technical Institute, St. Petersburg, Russia

- Introduction
- Cooling of non-superfluid neutron stars
- Neutron Star in Cassiopeia A
- Cooling of superfluid neutron stars
- Conclusions

V. Ginzburg Conference, May 28, 2012

Neutron star structure

Mystery: EOS of superdense matter in the core

For simplicity, consider nucleon core: neutrons protons electrons muons EOS=? Superlfuidity=?

Cooling of neutron stars

Neutrino emission from cores of non-superfluid NSs

Neutrino emission of non-superfluid Neutron star: Murca cooling

Casino da Urca – Urca – Durca – Murca – Kurca

G.A. Gamow

K.P. Levenfish

Hereafter: assume direct Urca is forbidden

Cassiopeia A supernova remnant

Very bright radio source Weak in optics due to interstellar absoprtion

Distance: $3.4^{+0.3}_{-0.1}$ kpc (Reed et al. 1995)

Diameter: 3.1 pc

No historical data on progenitor

Asymmetric envelope expansion Age 330 ± 20 yrs => 1680 from observations of expanding envelope (Fesen et al. 2006)

Cassiopeia A observed by the Hubble Space Telescope

MYSTERIOUS COMPACT CENTRAL OBJECT IN Cas A SNR

Various theoretical predictions: e.g., a black hole (Shklovsky 1979)

Discovery: Tananbaum (1999) first-light Chandra X-ray observations Later found in ROSAT and Einstein archives

Later studies (2000-2009):

Pavlov et al. (2000) Chakrabarty et al. (2001) Pavlov and Luna (2009)

Main features:

- 1. No evidence of pulsations
- 2. Spectral fits using black-body model or He, H, Fe atmosphere models give too small radius R<5 km

Conclusion: MYSTERY – Not a thermal X-ray radiation emitted from the entire surface of neutron star A Chandra X-ray Observatory image of the supernova remnant Cassiopeia A. Credit: Chandra image: NASA/CXC/Southampton/W.Ho; illustration: NASA/CXC/M.Weiss

COOLING NEUTRON STAR IN Cas A SNR

Ho and Heinke (2009) Nature 462, 671

Fitting the observed spectrum with carbon atmosphere model gives the emission from the entire neutron star surface

Conclusion:

Cas A SNR contains cooling neutron star with carbon surface It is the youngest cooling NS whose thermal radiation is observed

	Neutron star parameters		
Mpprox 1.5	$5-2.4 M_{\odot}$	Rpprox 8-18 k	cm
$T_s\sim 2$:	× 10 ⁶ K	$B \lesssim 10^{11} \ { m G}$	

Main features:

- 1. Rather warm neutron star
- 2. Consistent with standard cooling
- 3. Not interesting for cooling theory!!! (Yakovlev et al. 2011)

OBSERVATIONS available for Ho and Heinke (2009) Heinke and Ho (2010): 16 sets of Chandra observations in 2000, 2002, 2004, 2006, 2007, 2009 totaling 1 megasecond (two weeks)

REVOLUTION: Cooling Dynamics of Cas A NS!

Heinke & Ho, ApJL (2010): Surface temperature decline by 4% over 10 years

 M, R, d, N_H are fixed

Cas A neutron star:

- 1. Is warm as for standard cooling
- 2. Cools much faster than for standard cooling

"Standard cooling" cannot explain these observations

Observed cooling $s = -\frac{d \ln T_s}{d \ln t} \approx 1.35 \pm 0.15 \ (2\sigma)$ curve slope Standard cooling $s = -\frac{d \ln T_s}{d \ln t} \approx 0.1$

Table 1. Carbon atmosphere spectral fits, using the best spectral fit (M, R, $N_{\rm H}$) of Heinke & Ho (2010) and Yakovlev et al. (2011), with the addition of 2010 data. Epoch dates are for the midpoints of the observations, or weighted midpoints of merged datasets. Temperature errors are 1σ confidence for a single parameter.

Epoch (Year)	Exposure ks	log Ts K	ObsID(s)
2000.08	50.56	6.3258+0.0019	114
2002.10	50.3	6.3237+0.0018	1952
2004.11	50.16	6.3156+0.0019	5196
2007.93	50.35	6.3108+0.0019	9117, 9773
2009.84	46.26	6.3087+0.0018	10935, 12020
2010.83	49.49	6.3060 ^{+0.0019} 0018	10936, 13177

Superfluidity – neutron stars

Mechanism of superfluidity: Cooper pairing of degenerate neutrons and/or protons due to nuclear attraction

Any superfluidity is defined by critical temperature T_c, that depends on density

Pairing type: singlet-state $({}^{1}S_{0})$ or triplet state $({}^{3}P_{2})$

Inner crust of neutron star: Singlet-state pairing of free neutrons Singlet-state pairing of nucleons in atomic nuclei

Neutron star core (typically): Singlet-state pairing of protons Triplet-state pairing of neutrons

Superfluidity – neutron stars

Superfluidity – Critical temperatures

 $T_{cn}(\rho), T_{cp}(\rho)$

 $\Delta_0 \sim 1 \text{ MeV}$ $T_c \sim 10^{10} \text{ K}$ high $T_c !!!$

BCS

A

C86

crust

core

S

1.5

20

15

 $T_{
m cn9}$

10

5

0

At high densities superfluidity disappears

After Lombardo & Schulze (2001) A=Ainsworth, Wambach, Pines (1989) S=Schulze et al. (1996) W=Wambach, Ainsworth, Pines (1993) C86=Chen et al. (1986) C93=Chen et al. (1993)

 $k_{\rm Fn} \, ({\rm fm}^{-1})$

Our task is to study

in neutron star core

Superfluidity – microscopic manifestations

Effects of superfluidity on properties of matter

Cooper pairing at $T < T_c$

- has almost no effect of EOS and hydrostatic structure of neutron stars
- suppresses ordinary neutrino processes (especially at $T << T_c$)
- switches on a new specific mechanism of neutrino emission
- affects heat capacity

Neutrino emission due to Cooper pairing

Flowers, Ruderman and Sutherland (1976) Voskresensky and Senatorov (1987) Schaab et al. (1997)

 $\tilde{n} + \tilde{n} \rightarrow v + v$

Physics: Jumping over cliff from branch A to B

Features:

- Efficient only for triplet-state pairing of neutrons
- •Non-monotonic T-dependence
- Strong many-body effects

Leinson (2001) Leinson and Perez (2007) Sedrakian, Muether, Schuck (2007) Kolomeitsev, Voskresensky (2008) Steiner, Reddy (2009) Leinson (2010)

Temperature dependence of neutrino emissivity due to Cooper pairing

Neutrino luminosity of superfluid neutron star

Effects of Superfluidity on Cooling

Superfluidity naturally explains observations! Both, neutron and proton, superfluids are needed

Superfluidity	Strong proton	Moderate neutron
<i>T_c – profile</i>	>3x10 ⁹ K, profile unimportant	maximum: T _{Cn} (max)~(5-9)x10 ⁸ K and wide T _c –profile over NS core
Appears	Early	a few decays ago
What for?	suppresses neutrino emission before the appearance of neutron superfluidity	produces splash of neutrino emission

Example: Cooling of 1.65 Msun Star

APR EOS Neutrino emission peak: ~80 yrs ago

Neutron stars of different masses

 $M = 1.65 M_{\odot} \quad T_{cn8}^{max} = 8.6$ $M = 1.9 M_{\odot} \quad T_{cn8}^{max} = 8.3$ $M = 1.3 M_{\odot} \quad T_{cn8}^{max} = 8.5$

Cas A neutron star among other isolated neutron stars

 $M=1.0\,M_{\odot}-M_{
m max}$

Slope of cooling curve

Measure $T_s^{\infty}(t) \sim t^{-s} \implies \text{infer } s = -\frac{d \log T_s^{\infty}}{d \log t} = \text{slope of cooling curve}$

- $s \approx 1/12$ = standard cooling (Murca)
 - $s \approx 1/8$ = enhanced cooling (Durca)

>> 0.1 => something extraordinary!

Theoretical model for Cas A NS Shternin et al. (2011) Now: s = 1.35 = very big number=> unique phenomenon! Happens very rarely!

Measurements of s in the next decade confirm or reject this interpretation

CONCLUSIONS

- Observations of cooling Cas A NS in real time matter of good luck!
- Natural explanation: onset of neutron superfluidity in NS core about 80 years ago; maximum T_{cn} in the core >~7 x 10⁸ K
- Profile of critical temperature of neutrons over NS core should be wide
- Neutrino emission prior to onset of neutron superfluidity should be 20-100 times smaller than standard level -> strong proton superfluidity in NS core?
- To explain all observations of cooling NSs by one model of superfluidity, T_{cn} profile has to be shifted to higher densities
- Prediction: fast cooling will last for a few decades
- Cooling of Cas A NS → direct evidence for superfluidity?

Two teams

Minimal cooling theory:

Page, Lattimer, Prakash, Steiner (2004)

Gusakov, Kaminker, Yakovlev, Gnedin (2004)

Superfluid Cas A neutron star:

D. Page, M. Prakash, J.M. Lattimer, A.W. Steiner, PRL, vol. 106, Issue 8, id. 081101 (2011)

P.S. Shternin, D.G. Yakovlev, C.O. Heinke, W.C.G. Ho, D.J. Patnaude, MNRAS Lett., 412, L108 (2011)

Doubts

Carbon atmosphere: why?

Theory: probability to observe is small (too good to be true)

Theory: to explain observations of all cooling neutron stars one needs unusual T_{cn} – profile over neutron star core

Observations: *data processing*???