



G-Bounce

Alexander Vikman

31.05.2012

THIS TALK IS BASED ON

- Imperfect Dark Energy from Kinetic Gravity Braiding arXiv:1008.0048, JCAP 1010:026, 2010
- The Imperfect Fluid behind Kinetic Gravity Braiding arXiv:1103.5360, JHEP 1111 (2011) 156
- G-Bounce, arXiv:1109.1047, JCAP 1111:021, 2011

IN COLLABORATION WITH

Cédric Deffayet, Damien Easson, Oriol Pujolàs, Ignacy Sawicki

Motivation

- General class of models "perfect" imperfect fluids
- G Bounce
- Open problems

ORIGIN OF THE UNIVERSE?

- Was there a beginning of time i.e. of the quasiclassical universe? Was there a strong quantum gravity époque in our past?
- If there was a beginning, was the universe collapsing or expanding immediately afterwards?
- If the universe experienced an early period of inflation, which *all* observations currently *perfectly* confirm, what happened *before inflation*? Indeed, *inflation* is not past-complete Borde, Guth, Vilenkin (2001), *Vilenkin's talk today*

CAN ONE CONSTRUCT A **STABLE** (WITH REAL SOUND SPEED AND WITHOUT GHOSTS) **CLASSICAL MODEL** WHERE A **SPATIALLY FLAT** FRIEDMANN UNIVERSE **BOUNCES**: GOES FROM COLLAPSE TO EXPANSION **???**

OBSTACLE: TO BOUNCE ONE HAS TO VIOLATE NULL ENERGY CONDITION (NEC), $T_{\mu\nu}n^{\mu}n^{\nu} \ge 0$ BUT NORMAL FIELDS AND PERFECT FLUIDS CANNOT DO IT!

go to imperfect fluids i.e. to even less canonical fields!

GO G!

G STANDS FOR GALILEON

Nicolis, Rattazzi, Trincherini, (2008)

In current literature: *Galileons* = scalar-tensor theories with

higher derivatives in the action

but with equations of motion which are *all* of the *second order - NO* Ostrogradsky's *ghosts*

the most general theory of this type was derived by Horndeski (1974), and rederived by Deffayet, Gao, Steer, Zahariade (2011)

International Journal of Theoretical Physics, Vol. 10, No. 6 (1974), pp. 363-384

Second-Order Scalar-Tensor Field Equations in a Four-Dimensional Space

GREGORY WALTER HORNDESKI

Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada

Received: 10 July 1973

International Journal of Theoretical Physics, Vol. 10, No. 6 (1974), pp. 363-384

Second-Order Scalar-Tensor Field Equations in a Four-Dimensional Space

GREGORY WALTER HORNDESKI

Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada

Received: 10 July 1973

 $\begin{aligned} \mathcal{L} &= K + \mathcal{G}\phi_{;\mu}^{;\mu} + \\ &+ \mathcal{G}_2 R + \mathcal{G}_2' \left[\left(\phi_{;\mu}^{;\mu}\right)^2 - \phi_{;\mu}^{;\nu}\phi_{;\nu}^{;\mu} \right] + \\ &+ \mathcal{G}_3 G_{\nu}^{\mu} \phi_{;\mu}^{;\nu} - \frac{1}{6} \mathcal{G}_3' \left[\left(\phi_{;\mu}^{;\mu}\right)^3 - 3\phi_{;\lambda}^{;\lambda}\phi_{;\mu}^{;\nu}\phi_{;\nu}^{;\mu} + 2\phi_{;\alpha}^{;\mu}\phi_{;\beta}^{;\alpha}\phi_{;\mu}^{;\beta} \right]_{Kobayashi, Yamaguchi, Yokoyama (2011)} \end{aligned}$

where we have 4 free functions!

 $K(\phi, X)$ and $\mathcal{G}_i(\phi, X)$

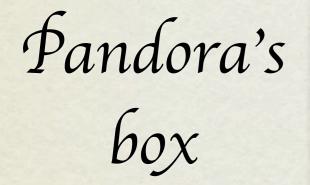
$$\mathcal{G}_i' = \frac{\partial \mathcal{G}_i}{\partial X}$$

WHY IS THIS G INTERESTING?

One can **stably violate** the most basic of the classical energy conditions-Null Energy Condition (NEC): $T_{\mu\nu}n^{\mu}n^{\nu} \ge 0$ which in cosmology reduces to: $p + \varepsilon \ge 0$ or $\dot{H} \le 0$

WHY IS THIS G INTERESTING?

One can **stably violate** the most basic of the classical energy conditions-Null Energy Condition (NEC): $T_{\mu\nu}n^{\mu}n^{\nu} \ge 0$ which in cosmology reduces to: $p + \varepsilon \ge 0$ or $\dot{H} \le 0$



WHY IS THIS G INTERESTING?

One can **stably violate** the most basic of the classical energy conditions-Null Energy Condition (NEC): $T_{\mu\nu}n^{\mu}n^{\nu} \ge 0$ which in cosmology reduces to: $p + \varepsilon \ge 0$ or $\dot{H} \le 0$

 Healthy and testable Phantom Dark Energy,

Deffayet, Pujolas, Sawicki, AV, 2010

Bouncing Cosmology for a *spatially flat* Friedmann universe

> Creminelli, Nicolis, Trincherini 2010; Easson, Sawicki, AV; Taotao Qiu, Evslin, Cai, Li, Zhang 2011

 Superinflation with blue spectra of gravity waves

Kobayashi, Yamaguchi, Yokoyama 2010

Pandora's

бох

SIMPLEST INTERESTING SUBSECTOR OF GALILEONS /HORNDESKI'S THEORIES -

Kinetic Gravity Braiding

 $S_{\phi} = \int \mathrm{d}^4 x \sqrt{-g} \left[K\left(\phi, X\right) + G\left(\phi, X\right) \Box \phi \right]$

Armendariz-Picon, Damour, Mukhanov, Steinhardt 1999/2000

Pujolàs, Deffayet, Sawicki, AV, 2010

kinetic mixing / braiding

 $\partial \phi \quad \partial q$

where
$$X \equiv \frac{1}{2}g^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi$$

Minimal coupling to gravity $S_{tot} = S_{\phi} + S_{EH}$ However, derivatives of the metric are coupled to the derivatives of the scalar, provided $G_X \neq 0$

No "Galilean symmetry"! $\partial_{\mu}\phi \rightarrow \partial_{\mu}\phi + c_{\mu}$

$L^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi + (\nabla_{\alpha}\nabla_{\beta}\phi)Q^{\alpha\beta\mu\nu}(\nabla_{\mu}\nabla_{\nu}\phi) + Z - G_{X}R^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi = 0$ Braiding

EOM is of the second order: $L_{\mu\nu}$, $Q^{\alpha\beta\mu\nu}$, Z constructed from field and it's first derivatives $Q^{\alpha\beta\mu\nu}$ is such that EOM is a 4D Lorentzian generalization of the Monge-Ampère Equation, always *linear* in $\ddot{\phi}$

SHOULD ϕ BE FUNDAMENTAL? NO NOT AT ALL ϕ CAN MODEL SOME HYDRODYNAMICS !

K(X) for equation of state, G(X): transport coefficient

• Shift-Charge Noether Current: - interpret as "particle" current J_{μ}

• New Equivalent Lagrangian: \mathcal{P} pressure!

• Shift-Charge Noether Current: - interpret as "particle" current J_{μ}

• New Equivalent Lagrangian: \mathcal{P} pressure!

$$\nabla_{\mu}J^{\mu} = \mathcal{P}_{\phi}$$

• Shift-Charge Noether Current: - interpret as "particle" current J_{μ}

$$J_{\mu} = \left(\mathcal{L}_X - 2G_{\phi}\right)\nabla_{\mu}\phi - G_X\nabla_{\mu}X$$

• New Equivalent Lagrangian: *P* pressure!

$$\nabla_{\mu}J^{\mu} = \mathcal{P}_{\phi}$$

• Shift-Charge Noether Current: - interpret as "particle" current J_{μ}

$$J_{\mu} = \left(\mathcal{L}_X - 2G_{\phi}\right)\nabla_{\mu}\phi - G_X\nabla_{\mu}X$$

• New Equivalent Lagrangian: *P* pressure!

$$\mathcal{P} = K - 2XG_{\phi} - G_X \nabla^\lambda \phi \nabla_\lambda X$$

$$\nabla_{\mu}J^{\mu} = \mathcal{P}_{\phi}$$

IMPERFECT FLUID FOR TIMELIKE GRADIENTS

 $u_{\mu} \equiv \frac{\nabla_{\mu}\phi}{\sqrt{2X}}$

• **projector:** $\perp_{\mu\nu} = g_{\mu\nu} - u_{\mu}u_{\nu}$

• Four velocity :

• Time derivative: () $\equiv \frac{\mathrm{d}}{\mathrm{d}\tau} \equiv u^{\lambda} \nabla_{\lambda}$

Shift-symmetry $\phi \rightarrow \phi + c$ violates $\phi \rightarrow -\phi$ and introduces **arrow of time**

 ϕ is an *internal clock*

• Expansion :
$$\theta \equiv \perp^{\lambda}_{\mu} \nabla_{\lambda} u^{\mu} = \dot{V}/V$$

comoving volume

EFFECTIVE MASS & CHEMICAL POTENTIAL

 $\kappa \equiv 2XG_X$

- charge density: $n \equiv J^{\mu}u_{\mu} = n_0 + \kappa \theta$ "Braiding"
- energy density: $\mathcal{E} \equiv T^{\mu\nu} u_{\mu} u_{\nu} = \mathcal{E}_0 + \theta \phi \kappa$
- effective mass per shift-charge / chemical potential:

$$m \equiv \left(\frac{\partial \mathcal{E}}{\partial n}\right)_{V,\phi} = \sqrt{2X} = \dot{\phi}$$

SHIFT-CURRENT AND "DIFFUSION"

$J_{\mu} = n u_{\mu} - \frac{\kappa}{m} \perp_{\mu}^{\lambda} \nabla_{\lambda} m$ Diffusion"

§ 59, L&L, vol. 6

$\kappa \equiv 2XG_X \quad \begin{array}{ll} \text{Is a "diffusivity"} \\ \text{transport coefficient} \end{array}$

Particle / charge current is not parallel to energy flow!

DIFFUSION OF CHARGE?

For incompressible motion $\theta \equiv 0$ equation of motion is:

$$\dot{n} = -\overline{\nabla}_{\mu} \left(\mathfrak{D}\overline{\nabla}^{\mu} n \right) + \mathfrak{D} a^{\mu} \overline{\nabla}_{\mu} n$$

where the diffusion constant: c.f. § 59, L&L, vol. 6, p 232

 $a^{\mu} \equiv \dot{u}^{\mu}$

 $\mathfrak{D} \equiv$

4-acceleration:

spatial gradient:

$$\overline{oldsymbol{
abla}}_{\mu}\equiv \perp_{\mu}^{
u}
abla_{
u}$$

 κ

 $n_m m$

IMPERFECT FLUID ENERGY-MOMENTUM TENSOR

• Pressure

 $\mathcal{P} = P_0 - \kappa \dot{m}$

• Energy Flow

No Heat Flux!

$$q_{\mu} = -\kappa \perp^{\lambda}_{\mu} \nabla_{\lambda} m = m \perp^{\lambda}_{\mu} J_{\lambda}$$

Energy Momentum Tensor

$$T_{\mu\nu} = \mathcal{E}u_{\mu}u_{\nu} - \perp_{\mu\nu}\mathcal{P} + 2u_{(\mu}q_{\nu)}$$

Solving for \dot{m} for small gradients or small κ one obtains "bulk viscosity" but change of frame results in a prefect fluid with vorticity up to $\mathcal{O}(\kappa^2)$

ENERGY CONSERVATION IN COMOVING VOLUME

Energy conservation: $u_{\nu}\nabla_{\mu}T^{\mu\nu} = 0$

$dE = -\mathcal{P}dV + md\mathcal{N}_{dif}$ Euler relation: $\mathcal{E} = mn - P_0$

Momentum conservation: $\perp_{\mu\nu} \nabla_{\lambda} T^{\lambda\nu} = 0$

COSMOLOGY

$$q_{\mu} = 0$$
 and $\theta = 3H$
Friedmann Equation:
 $H^{2} = \kappa m H + \frac{1}{3} \left(\mathcal{E}_{0} + \rho_{\text{ext}} \right)$
 $r_{\text{c}}^{-1} = \kappa m$ "crossover" scale in DGP

EQUATION OF MOTION IN COSMOLOGY (CHARGE CONSERVATION)

 $\dot{n} + 3Hn = \mathcal{P}_{\phi}$ If there is shift-symmetry then $\mathcal{P}_{\phi} = 0$

nxa

3

ACTION FOR THE COSMOLOGICAL PERTURBATIONS

$$S_2 = \int \mathrm{d}^3 x \, \mathrm{d}t \, A \left[\dot{\zeta}^2 - \frac{c_{\mathrm{s}}^2}{a^2} \left(\partial_i \zeta \right)^2 \right]$$

where
$$A = \frac{Xa^3}{(H - m\kappa/2)^2}D$$

$$D = \frac{\mathcal{E}_m - 3H\kappa}{m} + \frac{3}{2}\kappa^2$$

Controls "ghosts" D > 0 No ghosts!

SOUND SPEED

 $c_{\rm s}^2 = \frac{\mathcal{P}_m + 2\dot{\kappa} + \kappa \left(4H - \kappa m/2\right)}{\mathcal{E}_m - 3\kappa \left(H - \kappa m/2\right)} \neq \frac{\dot{\mathcal{P}}}{\dot{\mathcal{E}}}$

The relation between the equation of state, the sound speed and the presence of ghosts is very different from the k-*essence* & perfect fluid.

A manifestly stable *Phantom* ($w_X < -1$) is possible even with a *single* degree of freedom and *minimal* coupling to gravity

G BOUNCE IDEA I

- Consider matter with constant equation of state radiation, dust, spatial curvature etc... $p_{ext} = w \rho_{ext}$ with w = const
- Shift-symmetric Lagrangian for the scalar field $K(\mathbf{x}, X)$ and $G(\mathbf{x}, X)$
- Phase space is two dimensional $(m,
 ho_{
 m ext})$
- Go to new coordinates $(m,H)\,$ by solving the Friedmann equation
- Integral of motion i.e. 1st integral

$$I(m,H) = \frac{n^{1+w}}{\rho_{\text{ext}}}$$

G BOUNCE IDEA II

• In new coordinates (m,H) at $H=0\,$ pose conditions

$\rho_{\text{ext}} > 0, \ D > 0, \ \dot{H} > 0, \ c_{\text{s}}^2 > 0$

• These conditions are on the range of chemical potential Δm and on the equation of state K(m) along with the transport coefficient $\kappa(m)$ or on K(X) and G(X)

"Healthy" Bounce!

IS IT POSSIBLE TO SATISFY ALL THESE CONDITIONS ?

SIMPLE HIERARCHY

if K(m) and $\kappa(m)$ satisfy the hierarchy:

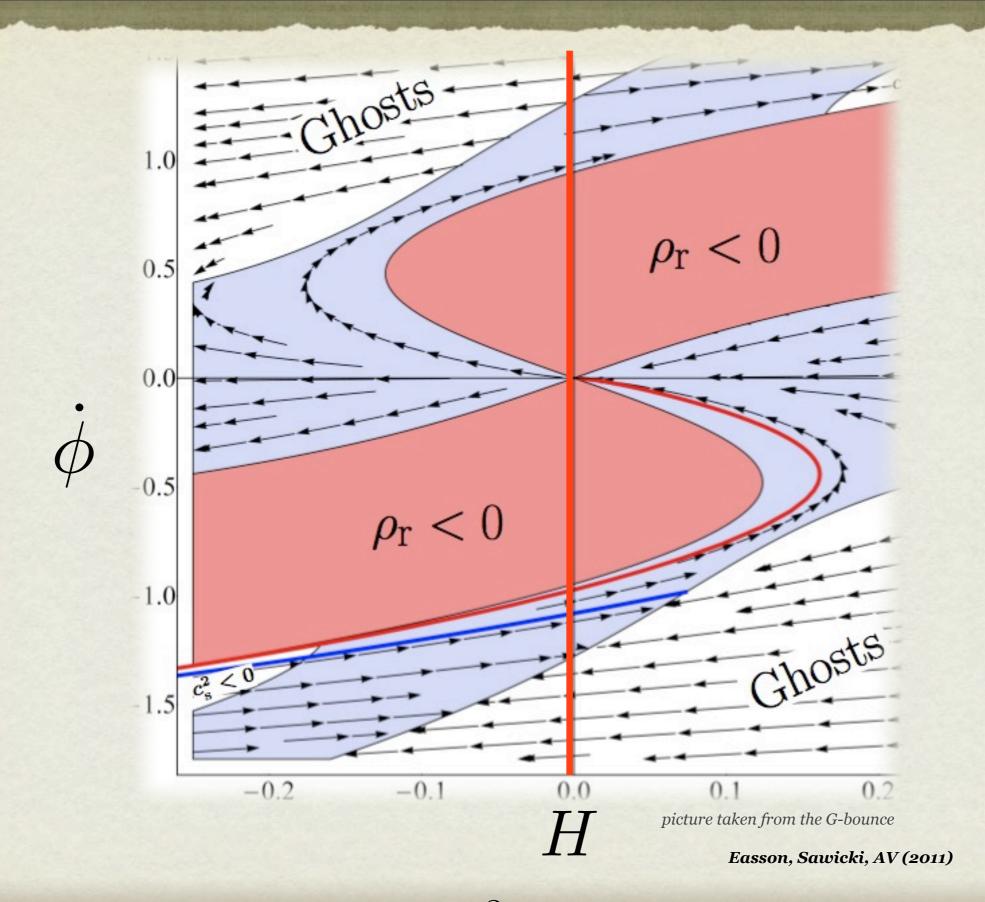
$$K > mK_m > \frac{1}{2} (m\kappa)^2 > 0 > \frac{1}{2} m^2 K_{mm} > -\frac{3}{4} (m\kappa)^2$$

then at H = 0:

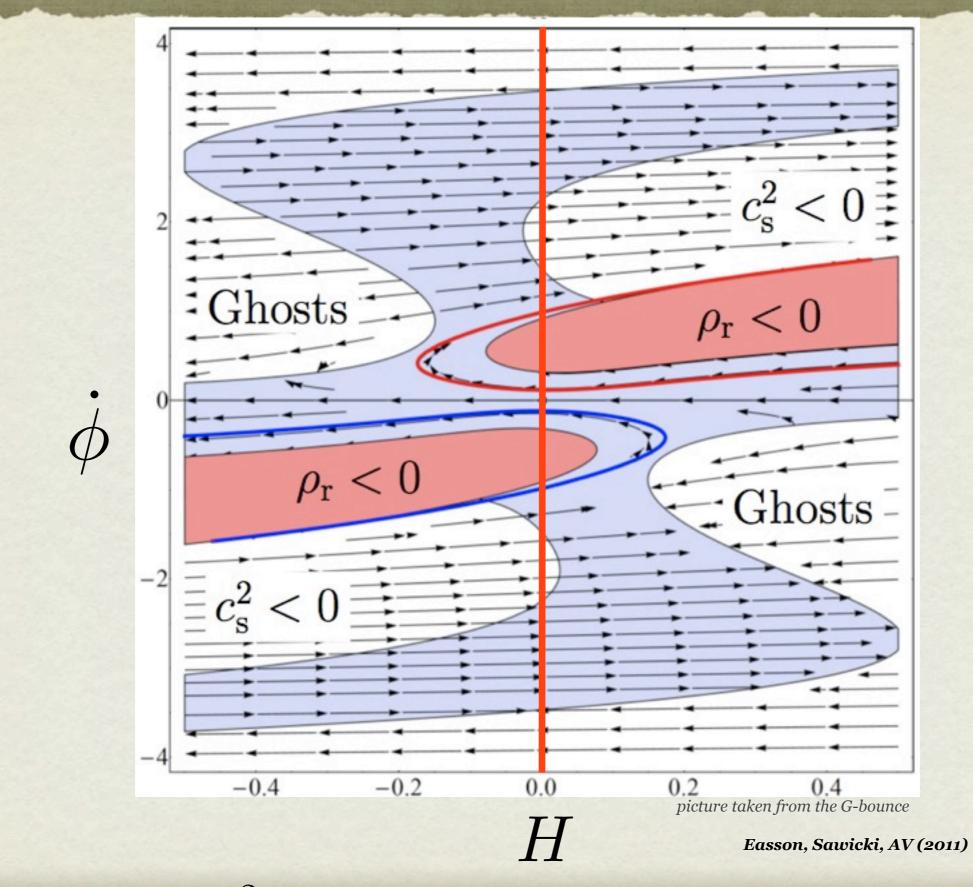
 $\rho_{\text{ext}} > 0, \ D > 0, \ \dot{H} > 0, \ c_{\text{s}}^2 > 0$

does not depend on external equation of state W!

"Healthy" Bounce!

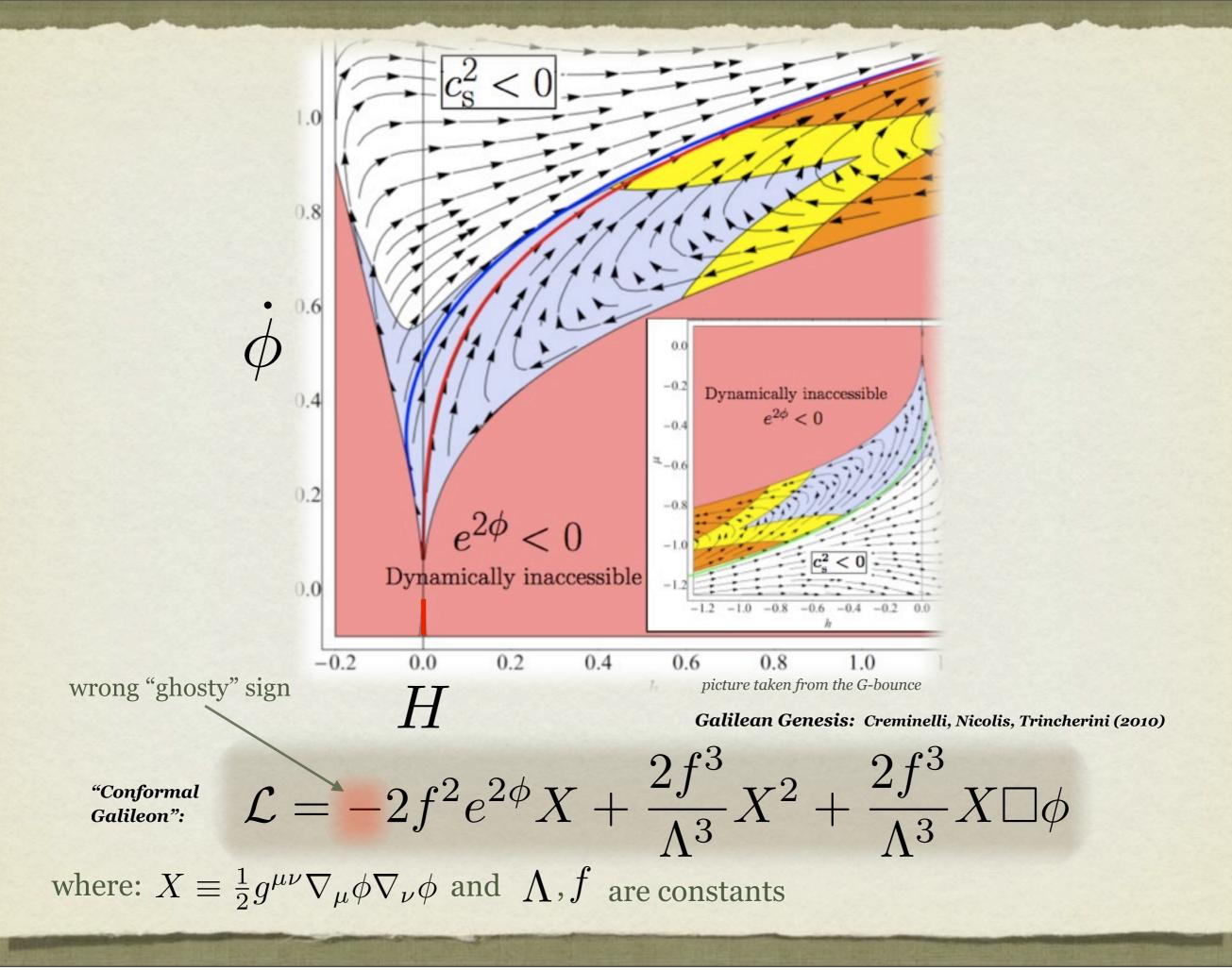


G-Bounce: $\mathcal{L} = X - \alpha X^3 + \varkappa X \Box \phi +$ **Radiation** ρ_r



 $\kappa = 2\beta X + \gamma X^2$ $K = -\Lambda + X - X^3 + \text{Radiation } \rho_r$

CAN ONE GENERALIZE THIS APPROACH FOR SYSTEMS WITHOUT SHIFT-SYMMETRY ?



OPEN QUESTIONS

- Strong coupling?
- Possible anisotropy? Too strong tachyonic / Jeans instabilities?
- Can one arrange a cyclic i.e. oscillating evolution?
- Can one avoid all singularities and troubles for the past?
- Perturbations?
- Any *realistic* scenarios? Smooth transition to standard cosmology and inflation?

THANKS A LOT FOR YOUR ATTENTION!