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The Bargmann-Wigner equations

The BW equations for free massless fields of spin s>1/2:
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Pary...cn, (X) is @ symmetric, complex-valued spin-tensor on R3:!.

@ The equations are non-Lagrangian unless s=1/2.
@ For s>1/2 they satisfy the Noether identities
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though there are no gauge symmetries.

@ The equations enjoy infinite sets of global symmetries and
conservation laws.



Classification of symmetries and conservation laws
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SYMMETRIES=(elementary)+(non-elementary)
CONSERVED CURRENTS =(linear) +(quadratic)

The space of Killing spinors Kil(k,/):
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Symmetries
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Symmetries of order p+2s—1:
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Conserved currents
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General field equations

Consider a set of fields ¢ subject to a system of PDEs

Ta(¢):0'

Geometrically, one can think of T's as a section of some
(infinite-dimensional) vector bundle £— M over the configuration
space of fields M.

The shell: Y={ ¢eM | T(¢)=0 }
The operator of universal linearization
Jia:ai Ta

defines the map of vector bundles J: TM—E&.



Symmetries and adjoint symmetries

A vector field Z=Z78; on M is called a symmetry of the field
equations if '
J(2)|s=0 <& Z'Jp=AT,.

Sym(T) is the space of all symmetries.
Let £* denote the vector bundle dual to the dynamics bundle £.

A section P={P?} of £* is called an adjoint symmetry if
J*(P)|g=0 & JaP?=B}Tp.

AdSym(T) is the space of all adjoint symmetries.



Characteristics and conservation laws

A section @ of £* is said to generate an identity for the equations if
Q? Ta:/divj = divj|x=0
j is a conserved current.

Each characteristic @ is an adjoint symmetry, but not vice versa.

Char(T) is the space of all nontrivial characteristics.

CL(T) is the space of all nontrivial conservation laws.

There is a one-to-one correspondence between the spaces of
nontrivial characteristics and conservation laws:

Char(T)=CL(T)



The Lagrange anchor

A vector bundle homomorphism V:E€*— TM is called a Lagrange
anchor, if the following diagram of maps on-shell commutes:
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VT * TV*

e~ 1M

Explicitly, ' .
VI9; Ty— V0 T,=CY% Ty.
[P.O. Kazinski , S.L. Lyakhovich, A.A. Sharapov, JHEP (2005)]

Example: For Lagrangian equations

E=T*M, T:=0,5=0, V=id: TM—TM.



Generalization of the Noether theorem

Any Lagrange anchor defines the map

V:AdSym(T)—Sym(T)
In particular, if Q€Char(T)CAdSym(T) is a characteristic, then
Z-v(Q)

is a symmetry.
[D.S. Kaparulin, S.L. Lyakhovich, A.A. Sharapov, JMP (2010)]

Example: For Lagrangian equations T;=8;5
J=J* = AdSym(T)=Sym(T), V=id, Char(T)=Sym(S)

In general, the map V from the characteristics to symmetries is
neither injective nor surjective.



Integrability condition

A Lagrange anchor is strongly integrable if
[Vaavb]:C:b Va, C:Ib fd+vci8f speycle(a,b,c)=0.
The vector fields Va:VEj@,- form an integrable distribution on M.

The strongly integrable Lagrange anchor defines the Lie algebroid
V:E*— TM over M with Lie bracket

[ea,eb]=Cgped

e, being frame sections in £*.



Generalization of the Dickey bracket on conservation laws

The symmetries form a Lie algebra acting on the space of
characteristics

(ZaQ) — Q,:ZQ

Given a strongly integrable Lagrange anchor V/, one can endow
Char(T) with the structure of Lie algebra:

[Q1,Q]v=V(Q1)Q=—V(Q2) Q1.

The map
V:Char(T)—Sym(T)

is then a Lie algebra homomorphism,

[V(Q1), V(@)]=V([Q1,Q]v)-



Lagrange anchor for Bargmann-Wigner equations

Let Q=Q(p,0p,:-) be a characteristic for the BW equations, i.e.,
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is a generator of global symmetry
65(pa1...a2s:€Za1...azs.

The differential operator V of order 2s—1 is the Poincaré covariant
and strongly integrable Lagrange anchor.



Quantization

The quantum average

()= [IbslolevIg),
O is a physical observable,

V is a probability amplitude on the configuration space of fields.

For Lagrangian equations
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e 511 is Feynman's probability amplitude.



A generalized Schwinger-Dyson equation

The SD equation for a strongly integrable Lagrange anchor:

T W[g)=(Ta(@)+ihVi(#)0; ) W[g]=0.

[S.L. Lyakhovich, A.A. Sharapov, JHEP (2006)]
Compatibility conditions:

[Ta’Tb] = C;b(¢)Tc

For the Bargmann-Wigner equations we have
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Path-integral representation for the probability amplitude

Vlgl= | [DYeiSecte

The action of augmented theory :
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Classically, there is no interaction between ¢'s and Y's:
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[S.L. Lyakhovich, A.A. Sharapov, JHEP (2007)]



Summary

@ The Bargmann-Wigner equations for massless fields of spin
$>1/2 admit a Poincaré invariant Lagrange anchor. It is given
by a differential operator of order 2s—1.

@ The Lagrange anchor takes each conservation law to a
symmetry and almost all the symmetries of the
Bargmann-Wigner equations comes from the adjoint
symmetries via the anchor map.

@ The corresponding quantum probability amplitude on the
configurations space of fields is given by an essentially nonlocal
functional for s>1/2.



