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The Bargmann-Wigner equations 2

The BW equations for free massless �elds of spin s≥1/2:

T α̇α1···α2s−1
:=∂αα̇ϕαα1...α2s−1

=0

ϕα1...α2s (x) is a symmetric, complex-valued spin-tensor on R3,1.

The equations are non-Lagrangian unless s=1/2.

For s>1/2 they satisfy the Noether identities

∂α1

α̇ T α̇α1···α2s−1
≡0,

though there are no gauge symmetries.

The equations enjoy in�nite sets of global symmetries and

conservation laws.



Classi�cation of symmetries and conservation laws 3
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SYMMETRIES=(elementary)+(non-elementary)

CONSERVED CURRENTS =(linear) +(quadratic)

The space of Killing spinors Kil(k,l):

∂
(α
(α̇ζ

α1...αk)
α̇1...α̇l )

=0.



Symmetries 4

δεϕα1···α2s =εZα1···α2s

Symmetries of order p+2s−1:

Zα1···α2s =ξβ1···βp+2s−1β̇1···β̇p+2s−1∂β1β̇1···∂βp+2s−1β̇p+2s−1
ϕα1···α2s

+Υβ1···βp−1β̇1···β̇4s+p−1∂β1β̇1···∂βp−1β̇p−1

×∂α1β̇p
···∂α2s β̇2s+p−1

ϕ̄β̇2s+p···β̇4s+p−1
+ (lower orders)

ξ∈Kil(p+2s−1,p+2s−1) Υ∈Kil(p−1,4s+p−1)



Conserved currents 5

jα1α̇1
=
1

2
ϕ̄α̇1α̇2...α̇2sQ

α̇2...α̇2s
α1

+c.c.

Characteristics of order p:

Qα̇2···α̇2s
α1

=ξβ1···βp+2s−1β̇1···β̇pα̇2···α̇2s∂β1β̇1···∂βpβ̇p
ϕα1βp+1...β2s+p−1

+Υβ1···βp−1β̇1···β̇2s+pα̇2···α̇2s∂β1β̇1···∂βp−1β̇p−1

×∂α1β̇p
ϕ̄β̇p+1···β̇2s+p

+ (lower orders)

ξ∈ipKilR(p+2s−1,p+2s−1),

Υ∈Kil(p−1,4s+p−1)

(
s∈N, p∈2N
s∈N−1

2
, p∈2N−1

)
.



General �eld equations 6

Consider a set of �elds φi subject to a system of PDEs

Ta(φ)=0.

Geometrically, one can think of T 's as a section of some

(in�nite-dimensional) vector bundle E→M over the con�guration

space of �elds M.

The shell: Σ={ φ∈M | T (φ)=0 }

The operator of universal linearization

Jia=∂iTa

de�nes the map of vector bundles J:TM→E .



Symmetries and adjoint symmetries 7

A vector �eld Z=Z i∂i on M is called a symmetry of the �eld

equations if

J(Z )|Σ=0 ⇔ Z iJia=Ab
aTb.

Sym(T ) is the space of all symmetries.

Let E∗ denote the vector bundle dual to the dynamics bundle E .

A section P={Pa} of E∗ is called an adjoint symmetry if

J∗(P)|Σ=0 ⇔ JiaP
a=Bb

i Tb.

AdSym(T ) is the space of all adjoint symmetries.



Characteristics and conservation laws 8

A section Q of E∗ is said to generate an identity for the equations if

QaTa=

∫
divj ⇒ divj|Σ=0

j is a conserved current.

Each characteristic Q is an adjoint symmetry, but not vice versa.

Char(T ) is the space of all nontrivial characteristics.

CL(T ) is the space of all nontrivial conservation laws.

There is a one-to-one correspondence between the spaces of

nontrivial characteristics and conservation laws:

Char(T )=CL(T )



The Lagrange anchor 9

A vector bundle homomorphism V :E∗→TM is called a Lagrange

anchor, if the following diagram of maps on-shell commutes:

TM
J // E

E∗
V

OO

J∗ // T∗M

V ∗

OO

Explicitly,

V i
a∂iTb−V i

b∂iTa=Cd
abTd .

[P.O. Kazinski , S.L. Lyakhovich, A.A. Sharapov, JHEP (2005)]

Example: For Lagrangian equations

E=T∗M, Ti=∂iS=0, V=id:TM→TM.



Generalization of the Noether theorem 10

Any Lagrange anchor de�nes the map

V :AdSym(T )→Sym(T )

In particular, if Q∈Char(T )⊂AdSym(T ) is a characteristic, then

Z=V (Q)

is a symmetry.

[D.S. Kaparulin, S.L. Lyakhovich, A.A. Sharapov, JMP (2010)]

Example: For Lagrangian equations Ti=∂iS

J=J∗ ⇒ AdSym(T )=Sym(T ), V=id, Char(T )=Sym(S)

In general, the map V from the characteristics to symmetries is

neither injective nor surjective.



Integrability condition 11

A Lagrange anchor is strongly integrable if

[Va,Vb]=Cd
abVd , Cd

abC
e
cd+V i

c∂iC
e
ab+cycle(a,b,c)=0.

The vector �elds Va=V i
a∂i form an integrable distribution on M.

The strongly integrable Lagrange anchor de�nes the Lie algebroid

V :E∗→TM over M with Lie bracket

[ea,eb]=Cd
abed

ea being frame sections in E∗.



Generalization of the Dickey bracket on conservation laws 12

The symmetries form a Lie algebra acting on the space of

characteristics

(Z ,Q) 7→ Q′=ZQ

Given a strongly integrable Lagrange anchor V , one can endow

Char(T ) with the structure of Lie algebra:

[Q1,Q2]V =V (Q1)Q2=−V (Q2)Q1.

The map

V :Char(T )→Sym(T )

is then a Lie algebra homomorphism,

[V (Q1),V (Q2)]=V ([Q1,Q2]V ).



Lagrange anchor for Bargmann-Wigner equations 13

Let Q=Q(ϕ,∂ϕ,···) be a characteristic for the BW equations, i.e.,

Q
α1···α2s−1

α̇ T α̇α1···α2s−1
+c.c.=∂µj

µ,

then

Zα1···α2s =V (Q)α1···α2s =i2s∂(α2α̇2
···∂α2sα̇2s Q̄

α̇2···α̇2s

α1)

is a generator of global symmetry

δεϕα1···α2s =εZα1···α2s .

The di�erential operator V of order 2s−1 is the Poincar�e covariant

and strongly integrable Lagrange anchor.



Quantization 14

The quantum average

〈O〉=
∫

[Dφ]O[φ]Ψ[φ],

O is a physical observable,

Ψ is a probability amplitude on the con�guration space of �elds.

For Lagrangian equations(
δS

δφi
+ih̄

δ

δφi

)
Ψ[φ]=0 ⇒ Ψ[φ]=e

i
h̄
S[φ].

e
i
h̄
S[φ] is Feynman's probability amplitude.



A generalized Schwinger-Dyson equation 15

The SD equation for a strongly integrable Lagrange anchor:

TaΨ[φ]=
(
Ta(φ)+ih̄V i

a(φ)∂i
)

Ψ[φ]=0.

[S.L. Lyakhovich, A.A. Sharapov, JHEP (2006)]

Compatibility conditions:

[Ta,Tb]=C c
ab(φ)Tc .

For the Bargmann-Wigner equations we have(
T α̇α1···α2s−1

−i2sh̄∂α1α̇1
···∂α2s−1α̇2s−1

δ

δϕ̄α̇α̇1···α̇2s−1

)
Ψ[ϕ]=0,

(
T̄αα̇1···α̇2s−1

−i−2sh̄∂α1α̇1
···∂α2s−1α̇2s−1

δ

δϕαα1···α2s−1

)
Ψ[ϕ]=0.



Path-integral representation for the probability amplitude 16

Ψ[ϕ]=

∫
[DY ]e

i
h̄
Saug[ϕ,Y ]

The action of augmented theory :

Saug[ϕ,Y ]=

∫
d4x

(
Y
α1...α2s−1

α̇ T α̇α1···α2s−1
(ϕ)

+
i2s

2
∂α1(α̇1

...∂α2s−1α̇2s−1
Y
α1···α2s−1

α̇2s) ∂α2sα̇1Ȳ α̇2···α̇2s
α2s

+c.c.
)
.

Classically, there is no interaction between ϕ's and Y 's:

δSaug=0 ⇒ ∂αα̇ϕαα1...α2s−1
=0, ∂(α1α̇Y

α2···α2s)
α̇ =0.

[S.L. Lyakhovich, A.A. Sharapov, JHEP (2007)]



Summary 17

The Bargmann-Wigner equations for massless �elds of spin

s≥1/2 admit a Poincar�e invariant Lagrange anchor. It is given

by a di�erential operator of order 2s−1.

The Lagrange anchor takes each conservation law to a

symmetry and almost all the symmetries of the

Bargmann-Wigner equations comes from the adjoint

symmetries via the anchor map.

The corresponding quantum probability amplitude on the

con�gurations space of �elds is given by an essentially nonlocal

functional for s>1/2.


