Ginzburg Conference on Physics, Lebedev Physics Institute, Moscow, 28 May - 2 June 2012

Lagrange anchor, symmetries and conservation laws of free massless fields

in collaboration with Dmitry Kaparulin and Simon Lyakhovich

Tomsk State University

The BW equations for free massless fields of spin $s \ge 1/2$:

$$\mathcal{T}^{\dot{lpha}}_{lpha_{1}\cdotslpha_{2s-1}}:=\partial^{lpha\dot{lpha}}arphi_{lphalpha_{1}\dotslpha_{2s-1}}=0$$

 $\varphi_{\alpha_1...\alpha_{2s}}(x)$ is a symmetric, complex-valued spin-tensor on $\mathbb{R}^{3,1}$.

- The equations are non-Lagrangian unless s=1/2.
- For s>1/2 they satisfy the Noether identities

$$\partial^{\alpha_1}_{\dot{\alpha}} T^{\dot{\alpha}}_{\alpha_1 \cdots \alpha_{2s-1}} \equiv 0,$$

though there are no gauge symmetries.

 The equations enjoy infinite sets of global symmetries and conservation laws. D. Lipkin, J. Math. Phys. (1964) .

S. Anco, J. Pohjanpelto, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.(2003) ; SIGMA (2008).

M.A. Vasiliev, O.A. Gelfond, E.D. Skvortsov, Theor. Math. Phys. (2008) .

SYMMETRIES=(elementary)+(non-elementary)

CONSERVED CURRENTS =(linear) +(quadratic)

The space of Killing spinors Kil(k, l):

$$\partial^{(\alpha}_{(\dot{\alpha}}\zeta^{\alpha_1...\alpha_k)}_{\dot{\alpha}_1...\dot{\alpha}_l)}=0.$$

$$\delta_arepsilon arphi_{lpha_1 \cdots lpha_{2s}} = arepsilon Z_{lpha_1 \cdots lpha_{2s}}$$

Symmetries of order p+2s-1:

$$Z_{\alpha_{1}\cdots\alpha_{2s}} = \xi^{\beta_{1}\cdots\beta_{p+2s-1}\dot{\beta}_{1}\cdots\dot{\beta}_{p+2s-1}}\partial_{\beta_{1}\dot{\beta}_{1}}\cdots\partial_{\beta_{p+2s-1}\dot{\beta}_{p+2s-1}}\varphi_{\alpha_{1}\cdots\alpha_{2s}}$$

$$+ \gamma^{\beta_{1}\cdots\beta_{p-1}\dot{\beta}_{1}\cdots\dot{\beta}_{4s+p-1}}\partial_{\beta_{1}\dot{\beta}_{1}}\cdots\partial_{\beta_{p-1}\dot{\beta}_{p-1}}$$

$$\times \partial_{\alpha_{1}\dot{\beta}_{p}}\cdots\partial_{\alpha_{2s}\dot{\beta}_{2s+p-1}}\bar{\varphi}_{\dot{\beta}_{2s+p}\cdots\dot{\beta}_{4s+p-1}} + \text{ (lower orders)}$$

$$\xi \in \mathrm{Kil}(p+2s-1,p+2s-1) \qquad \gamma \in \mathrm{Kil}(p-1,4s+p-1)$$

$$j_{\alpha_1\dot{\alpha}_1} = \frac{1}{2} \bar{\varphi}_{\dot{\alpha}_1\dot{\alpha}_2\dots\dot{\alpha}_{2s}} Q_{\alpha_1}^{\dot{\alpha}_2\dots\dot{\alpha}_{2s}} + c.c.$$

Characteristics of order *p*:

$$\begin{aligned} Q_{\alpha_{1}}^{\dot{\alpha}_{2}\cdots\dot{\alpha}_{2s}} = & \xi^{\beta_{1}\cdots\beta_{p+2s-1}\dot{\beta}_{1}\cdots\dot{\beta}_{p}\dot{\alpha}_{2}\cdots\dot{\alpha}_{2s}}\partial_{\beta_{1}\dot{\beta}_{1}}\cdots\partial_{\beta_{p}\dot{\beta}_{p}}\varphi_{\alpha_{1}\beta_{p+1}\dots\beta_{2s+p-1}} \\ & +\Upsilon^{\beta_{1}\cdots\beta_{p-1}\dot{\beta}_{1}\cdots\dot{\beta}_{2s+p}\dot{\alpha}_{2}\cdots\dot{\alpha}_{2s}}\partial_{\beta_{1}\dot{\beta}_{1}}\cdots\partial_{\beta_{p-1}\dot{\beta}_{p-1}} \\ & \times\partial_{\alpha_{1}\dot{\beta}_{p}}\bar{\varphi}_{\dot{\beta}_{p+1}\cdots\dot{\beta}_{2s+p}} + \quad \text{(lower orders)} \\ & \xi \in i^{p}\text{Kil}_{\mathbb{R}}(p+2s-1,p+2s-1), \\ & \Upsilon \in \text{Kil}(p-1,4s+p-1) \quad \left(\begin{array}{c} s \in \mathbb{N}, & p \in 2\mathbb{N} \\ s \in \mathbb{N} - \frac{1}{2}, & p \in 2\mathbb{N} - 1 \end{array}\right). \end{aligned}$$

Consider a set of fields ϕ^i subject to a system of PDEs

 $T_a(\phi)=0.$

Geometrically, one can think of T's as a section of some (infinite-dimensional) vector bundle $\mathcal{E} \rightarrow M$ over the configuration space of fields M.

The shell: $\Sigma = \{ \phi \in M \mid T(\phi) = 0 \}$

The operator of universal linearization

$$J_{ia} = \partial_i T_a$$

defines the map of vector bundles $J:TM \rightarrow \mathcal{E}$.

A vector field $Z=Z^i\partial_i$ on M is called a *symmetry* of the field equations if

$$J(Z)|_{\Sigma}=0 \quad \Leftrightarrow \quad Z^{i}J_{ia}=A^{b}_{a}T_{b}.$$

Sym(T) is the space of all symmetries.

Let \mathcal{E}^* denote the vector bundle dual to the dynamics bundle \mathcal{E} .

A section $P = \{P^a\}$ of \mathcal{E}^* is called an *adjoint symmetry* if

$$J^*(P)|_{\Sigma} = 0 \quad \Leftrightarrow \quad J_{ia}P^a = B_i^b T_b.$$

 $\operatorname{AdSym}(T)$ is the space of all adjoint symmetries.

A section Q of \mathcal{E}^* is said to generate an identity for the equations if

$$Q^{a}T_{a} = \int \mathrm{div}j \quad \Rightarrow \quad \mathrm{div}j|_{\Sigma} = 0$$

j is a conserved current.

Each characteristic Q is an adjoint symmetry, but not vice versa.

Char(T) is the space of all nontrivial characteristics.

CL(T) is the space of all nontrivial conservation laws.

There is a one-to-one correspondence between the spaces of *nontrivial characteristics and conservation laws:*

 $\operatorname{Char}(T) = \operatorname{CL}(T)$

A vector bundle homomorphism $V: \mathcal{E}^* \rightarrow TM$ is called a *Lagrange* anchor, if the following diagram of maps on-shell commutes:

Explicitly,

$$V_a^i\partial_i T_b - V_b^i\partial_i T_a = C_{ab}^d T_d.$$

[P.O. Kazinski , S.L. Lyakhovich, A.A. Sharapov, JHEP (2005)]

Example: For Lagrangian equations

$$\mathcal{E} = T^*M, \quad T_i = \partial_i S = 0, \quad V = \mathrm{id}: TM \to TM.$$

Any Lagrange anchor defines the map

 $V: \operatorname{AdSym}(\mathcal{T}) \rightarrow \operatorname{Sym}(\mathcal{T})$ In particular, if $Q \in \operatorname{Char}(\mathcal{T}) \subset \operatorname{AdSym}(\mathcal{T})$ is a characteristic, then Z = V(Q)

is a symmetry.

[D.S. Kaparulin, S.L. Lyakhovich, A.A. Sharapov, JMP (2010)]

Example: For Lagrangian equations $T_i = \partial_i S$

 $J=J^* \Rightarrow \operatorname{AdSym}(T)=\operatorname{Sym}(T), \quad V=\operatorname{id}, \quad \operatorname{Char}(T)=\operatorname{Sym}(S)$

In general, the map V from the characteristics to symmetries is neither injective nor surjective.

A Lagrange anchor is strongly integrable if

$$[V_a, V_b] = C^d_{ab} V_d, \qquad C^d_{ab} C^e_{cd} + V^i_c \partial_i C^e_{ab} + cycle(a, b, c) = 0.$$

The vector fields $V_a = V_a^i \partial_i$ form an integrable distribution on M.

The strongly integrable Lagrange anchor defines the Lie algebroid $V: \mathcal{E}^* \rightarrow TM$ over M with Lie bracket

$$[e_a,e_b] = C^d_{ab}e_d$$

 e_a being frame sections in \mathcal{E}^* .

The symmetries form a Lie algebra acting on the space of characteristics

$$(Z,Q) \mapsto Q'=ZQ$$

Given a strongly integrable Lagrange anchor V, one can endow Char(T) with the structure of Lie algebra:

$$[Q_1,Q_2]_V = V(Q_1)Q_2 = -V(Q_2)Q_1.$$

The map

$$V:\operatorname{Char}(T) \to \operatorname{Sym}(T)$$

is then a Lie algebra homomorphism,

$$[V(Q_1),V(Q_2)]=V([Q_1,Q_2]_V).$$

Let $Q = Q(arphi, \partial arphi, \cdots)$ be a characteristic for the BW equations, i.e.,

$$Q^{\alpha_1\cdots\alpha_{2s-1}}_{\dot{\alpha}}T^{\dot{\alpha}}_{\alpha_1\cdots\alpha_{2s-1}}+c.c.=\partial_{\mu}j^{\mu},$$

then

$$Z_{\alpha_1\cdots\alpha_{2s}} = V(Q)_{\alpha_1\cdots\alpha_{2s}} = i^{2s} \partial_{(\alpha_2\dot{\alpha}_2}\cdots\partial_{\alpha_{2s}\dot{\alpha}_{2s}} \bar{Q}_{\alpha_1)}^{\dot{\alpha}_2\cdots\dot{\alpha}_{2s}}$$

is a generator of global symmetry

$$\delta_{\varepsilon}\varphi_{\alpha_{1}\cdots\alpha_{2s}}=\varepsilon Z_{\alpha_{1}\cdots\alpha_{2s}}.$$

The differential operator V of order 2s-1 is the Poincaré covariant and strongly integrable Lagrange anchor.

The quantum average

$$\langle {\cal O}
angle {=} \int [D \phi] {\cal O} [\phi] \Psi [\phi],$$

 ${\cal O}$ is a physical observable,

 Ψ is a probability amplitude on the configuration space of fields.

For Lagrangian equations

$$\left(rac{\delta S}{\delta \phi^{i}} + i\hbar rac{\delta}{\delta \phi^{i}}
ight) \Psi[\phi] = 0 \quad \Rightarrow \quad \Psi[\phi] = e^{rac{i}{\hbar}S[\phi]}.$$

 $e^{i \over \hbar S[\phi]}$ is Feynman's probability amplitude.

The SD equation for a strongly integrable Lagrange anchor:

$$\mathbb{T}_{a}\Psi[\phi] = \left(T_{a}(\phi) + i\hbar V_{a}^{i}(\phi)\partial_{i}\right)\Psi[\phi] = 0.$$

[S.L. Lyakhovich, A.A. Sharapov, JHEP (2006)] Compatibility conditions:

$$[\mathbb{T}_a,\mathbb{T}_b]=C^c_{ab}(\phi)\mathbb{T}_c.$$

For the Bargmann-Wigner equations we have

$$\begin{pmatrix} T^{\dot{\alpha}}_{\alpha_{1}\cdots\alpha_{2s-1}} - i^{2s}\hbar\partial_{\alpha_{1}\dot{\alpha}_{1}}\cdots\partial_{\alpha_{2s-1}\dot{\alpha}_{2s-1}} \frac{\delta}{\delta\bar{\varphi}_{\dot{\alpha}\dot{\alpha}_{1}\cdots\dot{\alpha}_{2s-1}}} \end{pmatrix} \Psi[\varphi] = 0, \\ \begin{pmatrix} \bar{T}^{\alpha}_{\dot{\alpha}_{1}\cdots\dot{\alpha}_{2s-1}} - i^{-2s}\hbar\partial_{\alpha_{1}\dot{\alpha}_{1}}\cdots\partial_{\alpha_{2s-1}\dot{\alpha}_{2s-1}} \frac{\delta}{\delta\varphi_{\alpha\alpha_{1}\cdots\alpha_{2s-1}}} \end{pmatrix} \Psi[\varphi] = 0. \end{cases}$$

$$\Psi[arphi] = \int [DY] e^{rac{i}{\hbar} S_{\mathrm{aug}}[arphi,Y]}$$

The action of *augmented theory* :

$$S_{\text{aug}}[\varphi,Y] = \int d^4x \Big(Y^{\alpha_1 \dots \alpha_{2s-1}}_{\dot{\alpha}} T^{\dot{\alpha}}_{\alpha_1 \dots \alpha_{2s-1}}(\varphi) \Big)$$

$$+\frac{\dot{r}^{2s}}{2}\partial_{\alpha_1(\dot{\alpha}_1}...\partial_{\alpha_{2s-1}\dot{\alpha}_{2s-1}}Y^{\alpha_1\cdots\alpha_{2s-1}}_{\dot{\alpha}_{2s})}\partial^{\alpha_{2s}\dot{\alpha}_1}\bar{Y}^{\dot{\alpha}_2\cdots\dot{\alpha}_{2s}}_{\alpha_{2s}}+\text{c.c.}\Big).$$

Classically, there is no interaction between φ 's and Y's:

$$\delta S_{\mathrm{aug}} = 0 \; \Rightarrow \; \partial^{lpha \dot{lpha}} arphi_{lpha lpha 1... lpha_{2s-1}} = 0, \; \; \partial^{(lpha_1 \dot{lpha}} Y^{lpha_2 ... lpha_{2s})}_{\dot{lpha}} = 0.$$

[S.L. Lyakhovich, A.A. Sharapov, JHEP (2007)]

- The Bargmann-Wigner equations for massless fields of spin s≥1/2 admit a Poincaré invariant Lagrange anchor. It is given by a differential operator of order 2s−1.
- The Lagrange anchor takes each conservation law to a symmetry and almost all the symmetries of the Bargmann-Wigner equations comes from the adjoint symmetries via the anchor map.
- The corresponding quantum probability amplitude on the configurations space of fields is given by an essentially nonlocal functional for s > 1/2.