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1 Preface

In our paper we discuss some geometrical ideas to determine phase transi-

tions in complex liquid membranes. Such membranes exist in many physical

media.It is worthwhile to note that the description of phase transition in

liquid membranes represents from the physical point of view far reaching

generalization of the theory of holes introduced by Yakov Frenkel as early

1920’s [2].

Beside the great physical interest their study leads to highly nontrivial

mathematical problems,concerning with the very new fields of geometry and

topology.

2 Introduction.

The membranes that we shall consider here are thin and flexible sheets of

amphiphilic molecules. Such a construction distinguishes this object from

similar systems like liquid interfaces or shells. On the interface of liquids the
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exchange of particles between both volume phases occurs. It corresponds

to finite surface tension ≈ 100 erg/sm2. For membranes which are in equi-

librium with the solvent of amphiphilic molecules the number of molecules

is fixed. That means zero surface tension. So, the energy of membranes is

characterized mainly by bending energy but not by a surface tension. For

liquid membranes which we are discussing the characteristic bending module

is of the order of temperature, κ ≃ 10−14 erg. This is the principal distinction

with shells where characteristic bending energy is of the order 1011 erg, 25

orders higher than in the case of liquid membranes. So, for membranes we

must use statistical mechanics approach , whereas for shells we apply elas-

ticity theory. In solvents lipids or surfactants bilayers typically form closed

surfaces or vesicles. The characteristic length scale of vesicle is of order

1− 10 µm. There are a diversity of forms of membranes[3, 4]. Better known

membranes with simple topology like sphere and torus but in experiments

one observed membranes with higher genuses, e.g. with g = 2, 3 [5, 6]. Here

g is the number of handles.

There exist also non-compact membranes like a stack of layers which

posses cylindrical or plane geometry. Such super-molecular aggregates can

be self-organized on a large scales and exhibit phases with different types of

orientational and translational order.

For example spherical vesicles can be organized in three-dimensional cu-

bic lattice, or infinite cylinders can be packed in two-dimensional hexagonal

lattice. Let us mention that in this case, crystalline order exists on large

scales (in typical examples of order 10−4 cm, whereas on the smaller scales

the system remains liquid. There exist also other structures builded by in-

finite layers. The simplest example is the one-dimensional lattice of almost

plane layers. Such a structure Lα called laminar is the analogy of smectic

liquid crystal. There exists also the phase Qα with a space cubic symmetry
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and the bloc structure generated by infinite periodic surface of complicated

topology. Schematically such structure can be determined in thermodynamic

limit g → ∞, as a three-dimensional cubic set of ”handles”. This structure

is principally different from a topologically trivial cubic lattice of spherical

vesicles. The melting process of periodically distributed phase Qα leads to

the isotropic phase,so called sponge phase L3. The structural bloc of the

phase Qα is non-periodic minimal surface with finite density of handles g,

however the space distribution of g is determined by the nearest order. In

our talk we consider the new method of classification of different types of

membranes and their phase transitions.

3 Willmore surfaces and Minimal surfaces in

S3

Here we discuss some mathematics which we use to describe phase transitions

in membranes.

Let M2 be a surface (closed, with boundary or non-compact) embedded

in R3.

Definition 1 A surface M2 is called Willmore surface if it is an extremum

of the Helfrich-Willmore (HW) functional:

F =
∫
M2

H2 dA (1)

where H is the mean curvature, and dA is an area element.

By Gauss-Bonnet theorem (HW) functional is equivalent to the:

F =
∫
M2

(k2
1 + k2

2) dA
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where k1 and k2 are the principal curvatures of M and

H =
k1 + k2

2

Therefore the extremum of functional (1) determine the most plane surfaces

of fixed topology. The following result due to J.Weiner [7] is important for

future use.

Proposition 1.

Let M2 be a minimal surface in S3 and γ is a stereographic projection

S3 → R3. Then

γ(M̂2) = M2 and F (M2) = σ(M̂2) (2)

where σ(M̂2) is the area of the minimal surface. This statement is valid

both for closed surfaces and for the one with a boundary. Willmore surfaces

are not exhausted by the projection of minimal surfaces. For example, there

exist an infinite set of Willmore torus which are not equivalent to minimal

torus in S3 [8]. These torus are extremum of (1) but not a minima. This

result, apparently, is true for a surfaces of a higher genus. Willmore surfaces

of higher genus generated by minimal surfaces in S3 were constructed in

[9, 10]. It is important to emphasize that Willmore surfaces embedded in R3

satisfied the following: ∫
M2

H2 dA ≥ 4πn

where n is the number of intersection points (n–different pre-images under

projection). From this and the square estimation of minimal surfaces em-

bedded in S3 follows that all Willmore surfaces for g ≥ 2 have at least points

of intersections 1

1The equivalence between the special Willmore surfaces and minimal surfaces following

from the Proposition 2 leads to a deep analogy with the string theory. Minimal surfaces

M2 ⊂ S3 are the ”world sheets” of the string determined in S3 with Nambu-Goto action.
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4 Phase transitions with a change of mem-

branes’ topology

In the previous section we have shown that Willmore surfaces providing min-

imum of Helfrich energy in the fixed topological class g = const are related

to minimal surfaces and provide the minima of functional F . Therefore in-

stead of calculating the partition function of the Hamiltonian (1) we are able

to calculate the partition function determined by Gibbs factor e−
∫

σ(M̂2)dÂ

for minimal surfaces in S3. Such approach is especially useful to determine

the structures of complex topology, like cubic or sponge phases.Both of these

structures are the phases with finite density of handles. In terminology of

minimal surfaces in S3 such structures according (2) relate to minimal sur-

faces with finite density of holes. Before going to more detailed discussion of

this correspondence, let us add some words with respect to physical proper-

ties of cubic and sponge phase.

Cubic phase of complex liquids are constructed by triple-periodic surfaces.

Elementary cell of such a structure of the scale of 10 µm to 150 µm consists of

a large number of molecules which diffuse freely along the membrane. In this

case cubic structure determined by periodic distribution of mass density ρ(r)

and other characteristics, including g(r) related with this one. The sponge

phase L3 is determined by the short-range order of distribution ρ(r) or g(r).

In the language of a dual system distribution of holes in S3 we can speak

about periodic in cubic case or amorphous in sponge phase distribution of

holes density n(r).

If the energy Eh of the hole creation in minimal surfaces is finite, then

The surfaces M2 play the role of instantons in the Yang-Mills theory determined in the

space S3.
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the mean density of holes can be estimated by

n ≈ 1

ξ2
exp

(
−Eh

T

)
(3)

where ξ2 is the mean size of an elementary cell creating by the holes on a

minimal surface. This size is related with the mean value of physical cell of

a cubic structure by transformation (2). The exponential factor in Formula

(3) has the meaning of the probability of creation of a hole. To estimate ξ

we use the following observation. Let us write full (HW) functional (1) with

the Gaussian curvature term:

F =
κ

2

∫
H2 dA+ κ̄

∫
K dA (4)

where two bending modules κ and κ̄ (saddle-splay) which determine a de-

formation of the membranes with respect to the mean and the Gaussian

curvature correspondingly. The creation of a sponge and a cubic phases de-

pends of a spontaneous rise of a complexity of the topology of the surface,

that is a creation of handles or of passages between a layers. It happens

when κ̄ > 0 since according Gauss-Bonnet theorem the second summand in

(4) is equal 4πκ̄(1−Nh), where Nh is the number of handles. The process of

a spontaneous creation of the handles leads to an appearing of an increasing

number of handles, but of a smaller size. The process stops at the equilib-

rium scale ξ which we search. It happens when when the positive terms of

higher order of the mean curvature will be equal with the negative term of the

Gaussian curvature. For finding ξ we might estimate the summands of order

H−4 and K−2 in the expansion (4). Minimization of the energy developed in

such a way, determine the equilibrium scale ξ

ξ ≃
√
κ

κ̄
a

We used the natural estimate κa2 (a the molecular size) for the fourth order

elasticity moduli.
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It is important to point out that minimal surface on S3 has a surface

tension. The energy determined by the functional (2) proportional to the

area and the coefficient of proportionality has the sense of the surface tension.

Therefore, the interaction between the holes will be short-ranged instead of

real membranes where due to the absence of a surface tension in the HW

functional this interaction is long-ranged. The natural parameter for the

estimation of an energy is its temperature. If R is a radius of the interaction

then for the holes of the distances less than R, the energy of the interaction

U ∼ T . It is possible to neglect the interaction on the large distances. We

can formalize that was said above by considering the following formula for

free energy of the system of holes on the minimal surface in S3.

Fh = Tn ln
n

en0

− Tn ln(1− nξ2) (5)

here n is the density of holes. The first term in (5) determine the free energy

of the ideal gas of holes and the second one determines an increase of a free

energy related with the interaction creating by the nearest holes. We use

(5) to describe a transition from a dilute phase of the holes to the dense

liquid phase. Let us recall that a creation of holes on a minimal surfaces in

S3 corresponds to an increase the genus of a real membrane. Therefore, the

dilute phase of holes can be assumed as a laminar phase Lα of membranes

with rare passages between layers. The liquid holes phase simulates a sponge

phase L3. To determine of the order distribution of holes on the minimal

surface (cubic phases generated by physical membranes) we have to add a

summand in (5) depending not only on the holes mean density but also of

their distribution on the minimal surface. In the mean field theory we infer

one particle distribution function of holes displacement u with respect to

their equilibrium positions:

ρ(u) =
1

Z
exp

[
− 1

2T

∑
q

ε(q) |u(q)|2
]
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where ε(q) is the deformation energy of the holes distributions and

Z =
∫

Du(q) exp

[
− 1

2T

∑
q

ε(q) |u(q)|2
]

The energy ε(q) has the following expansion:

ε(q) = τeff + σeff q2 (6)

where the term τeff is determined by the condensation energy of dense phase

and the deformation energy is related with surface tension σeff . We can find

the mean squared displacement⟨
|u2|

⟩
=

T

σeff
√
τeff

and applying classical Lindemann melting criterion [11] for crystals obtain:

T

σeff
√
τeff

≃ 0.1 ξ2

This determines the melting temperature of crystal of holes on a mini-

mal surface or, according to our principle of equivalence of minimal surfaces

and real membranes, the temperature of phase transition between cubic and

sponge phase.

T ≈≃ 0.1 ξ2 σeff

√
τeff

Let us mentioned that such a phase transition (ordering of holes on minimal

surfaces or handles on Willmore surfaces) does not need a substantial alter-

ation of the mean density. Therefore, it might be considered as a weak first

order transition, so called weak crystallization phase transition [12].

Let us recall that the characteristics of a minimal surface in S3, effective

surface tension σeff and effective energy of holes condensation are related

with physical characteristics of a real membrane in a very sophisticated man-

ner. Some restrictions follow by the very possibility of creation of stable holes

in S3; it is easy to see e.g. that for σeff = const, i.e σeff is independent of

of the shape and distribution of holes the creation of holes is impossible.
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5 Conformal modes of membranes and vesi-

cles

Let us discuss the properties of conformal symmetry for HW functional.

Namely, conformal modes of the HW–functional determine anomalous strong

conformal fluctuation of membranes.

A. The main property of HW functional is its invariance with respect to

conformal transformations of an ambient space. The following statement due

to G.Tomsen was proved in the 20th years of the XX century.

Proposition 2

Let M2 be a Willmore surface and M2R3 is a smooth embedding. The

HW functional is invariant under the conformal group G(R3). The group

G(R3), according to the classical Liouville theorem is generated by dilata-

tion,rotations, translations and inversion. The group G(R3) is isomorphic to

O(4, 1). It follows from the Proposition 2. that the number of geometrically

nontrivial parameters of G(R3) that is not changing the shape of a surface

is equal 4. To estimate the whole number of independent conformal modes

of the HW functional we need to add some restrictions imposed by physical

conditions. The liquid inside the vesicle is incompressible. So we get

V = const

Amphiphilic molecules are densely packed on a surface. Therefore

A = const

Using these properties it is not difficult to determine conformal modes and

the related conformal diffusion.

B. The general case
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Let us remind that the number of conformally nonequivalent compact

surfaces is determined by the genus of a surface
dimR M2

g = 6g − 6 for g ≥ 2

dimR M2
g = 2 for g = 1

dimR M2
g = 0 for g = 0

(7)

Comparing (7) with Liuoville theorem we obtain the number of conformal

mode as 6g − 10 for g ≥ 2.

C. Minimal Willmore surfaces.

The answer for Willmore surfaces obtained by projection of minimal sur-

faces is substantially different. First of all the conditions 6. and 7. now

are not independent. The estimation of moduli parameters of Willmore sur-

faces also needs more sophisticated technique.In the compact case we use the

arguments of paper [13].

Let us denote the Moduli space of Willmore surfaces M2
g as M.

1. Each surface M2
g posses a conformal metric and quadratic holomor-

phic differential ω = Q(z)dz2. For any ω there exists conformal metrics

which determines a surface minimally embedded into S3. The dimension of

the moduli space of such surfaces is equal to 12g − 12. It follows from the

estimation of the space of differentials ω which is 6g − 6 and the dimension

of moduli space of Riemann surfaces which is also 6g − 6. The number of

different embedding of M2
g is determined by the number of different spinor

structure on M2
g . More precisely, if ϕ1 and ϕ2 are a different solutions of the

Gauss–Weingarten equations forM2
g with the same ω and equal determinants

detϕ1 = detϕ2 then they determine the same spinor structure on M2
g . Let us

choose on the space M2
g a basis of homological cycles ai, bi (i = 1, ..., g) cor-

responding to the canonical cuts on M2
g . The spinor structure is determined
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by the monodromy transformation of solutions ϕi

ϕi → (−1)αi+1ϕi

ϕi → (−1)βi+1ϕi

where αi, βi ∈ {0, 1}.
The numbers (αi, βi), α = (αi, ..., αg), β = (βi, ..., βg) are called the θ–

characteristics of M2
g . The θ–characteristics depend on the choice of basis in

M2
g . The invariant is the parity

[αi, βi] =
g∑

i=1

αi βi

Due to the parity it is possible to classify embedding of surfaces up to a

regular homotopy. U.Pincal has shown that two surfaces are equivalent via

a smooth homotopy if the parities of their θ characteristics coincide [14].

Using this result it is easy to estimate the number of conditions L which

determine one valued embedding of a surface M2
g . The monodromy repre-

sentation is the mapping of the fundamental group π1(M
2
g ) → SU(2). The

number L is determined by the triviality of monodromy along an arbitrary

cycle c. The group π1(M
2
g ) is determined by 2g generators with one relation,

and taking into an account the motion along each cycle which is generated

by conformal group SL(2, C) we obtain 6(2g−1) real conditions. Let us add

the general global transformation of S3 so we obtain 12g − 12 conditions.

In this way we have shown that the number of equations and the number

of parameters which determine compact minimal surfaces coincide. Appar-

ently,the number of such surfaces is finite2. Well known examples of such

surfaces were founded by Lawson [9] and Karcher, Pinkal and Sterling [10].

5. Spectral properties.

2It follows from our consideration that toric minimal surfaces does not have conformal

diffusion modes.
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Most of characteristics of membranes can be determined, for example, by

the distribution of marked atoms or the temperature on the surface. This

problem reduces to the to the determination of the spectra of the Beltrami-

Laplace operator ∆ on a surface. A determination of the shape and other

geometrical characteristics of surface of a constant Gauss curvature by the

spectra of ∆ is the classical mathematical problem.For example, from the

spectra it is possible to reconstruct,in a compact case, the volume,genus and

length of closed geodesics. Moreover, in this case it is possible to prove that

the number of surfaces with the same spectra are finite. In our case Willmore

surfaces are determined by the equation

∆H +H(H2 −K) = 0

and not need to be a surfaces with constant Gauss curvature.However,as

we mentioned above, apparently the number of different compact minimal

surfaces in S3 is finite and so the problem of restoring Willmore surfaces from

the spectra of its Laplacian is accessible.
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