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The problem setting

Given:
Classical gauge theory defined by field equations.

Problems:

Construct the classical BRST complex
Quantize the dynamics
Connect symmetries with characteristics (conservation laws).

The motivation is two-fold:

It is a matter of principle to identify a general structure (more
general than the variational) which is sufficient to construct
the classical BRST complex, to relate symmetries and
conservation laws, and to quantize the theory;
Many important field equations are not variational.



Examples of non-Lagrangian field equations.

The list of the best known examples includes:
Interacting massless higher spin field equations, (anti-)self-dual
Yang-Mills and Donaldson-Ulenbeck-Yau equations, Hitchin
systems, 5-branes.

Some other classical field equations, being quite reasonable as such,
but non-variational, are sided away, because no perspectives are
seen to quantise, and/or to apply Noether theorems.
Examples of this type: the gravity equations involving only
irreducible components of the curvature tensor

R=Λ, or R̃µν=0, R̃µν≡Rµν−
1
d

gµνR, gµν R̃µν≡0

The eq. R=Λ probably defines topological theory in d=4.
The eqs R̃µν=0 comprise all Einstein’s solutions, with all the
possible cosmological constants - noticed by Einstein.



General gauge dynamics: condensed notation.

General classical dynamics are defined by two principal constituents:

A set of fields φi ;
A set of field equations Ta(φ)=0.

The “condensed” indices i ,a include the space-time point xµ, and
all the discrete indices labeling components of fields, or equations.
The field equations T (φ)=0 are PDE’s in xµ.
Functions of fields, F (φ) are understood as the local functionals,
the derivatives ∂i by fields φi are variational.
In Lagrangian theory, i and a coincide, in general they don’t.
Lagrangian field equations read Ti (φ)≡∂iS(φ)=0



The Dynamics Bundle and the Shell

The set of all the field configurationsM3φ is considered a
manifold, and the solutions to the field equations form a
sub-manifold Σ⊂M, called the shell .

Σ={φ∈M|T (φ)=0}.

A vector bundle E7→M is assumed to exist such that the l.h.s. of
the field equations Ta(φ) are the components of the certain section
of this bundle

T=Ta(φ)ea∈Γ(E).

We term E as the dynamics bundle.
In Lagrangian theory E is identified with T∗M, and the field
equations are just components of an exact one-form:

T≡dS(φ)=∂iS(φ)dφi∈Λ1(M).



Regularity conditions in general dynamics.

Consider the Jacobi matrix Jia≡∂iTa(φ)
The regularity implies that

rankJ|UΣ=const

The map defined by J,

Γ(TM)
J−→Γ(E)

in general, is neither surjective, nor is it injective, and the same is
true for the dual map defined by the transposed Jacobi matrix J∗

In Lagrangian theory, where E=T∗M, J is the symmetric Van
Wleck matrix: ∂iTj=∂

2
ijS(φ) whose on-shell kernel defines the

gauge symmetry, and simultaneously, Noether identities.



Gauge algebra and Noether identities in general dynamics.

The rectangular Jacobi matrix Jia=∂iTa(φ) has different left and
right on-shell kernels spanned by basis elements R i

α(φ) and Z a
A(φ):

R i
αJia

∣∣
Σ

=0, JiaZ a
A

∣∣
Σ

=0.

Basis elements R i
α(φ) of the left kernel are understood as gauge

symmetry generators. The right kernel basis elements Z a
A(φ) are

understood as generators of Noether identities.
Both sets of generators are defined modulo on-shell vanishing terms.
From the regularity of Jia follows that the left kernel distribution is
integrable on shell, and the right kernel is generated by Noether
identity generators

R j
α∂jR i

β−R j
β∂jR i

α=U(φ)γ
αβR i

γ+W ia
αβTa, Z a

ATa≡0,

In Lagrangian theory J is symmetric, and R i
α and Z a

A coincide.
In general, they don’t.
The condensed indices α,A labeling symmetries and identities can
run the different sets.



Gauge symmetry and Noether identities: examples of asymmetry

1. Maxwell electrodynamics in the strength tensor formalism
Consider anti-symmetric rank 2 tensor subject to free Maxwell
equations

T ν≡∂µFµν=0, Tµνλ≡∂[µFνλ]=0. (1)

There are no gauge symmetry for F , but the identities exist:

∂νT ν≡0, ∂[ρTµνλ]≡0. (2)

2. Self-dual Yang-Mills fields
The (anti-)self-duality equations are invariant with respect to the
usual gauge transformations of the Yang-Mills field Aµ. These
equations are independent, however - no gauge identities at all.
A similar phenomenon is observed with DUY equations.



Reducibility of gauge symmetries and identities in general dynamics.

Both gauge symmetry and Noether identity generators can be

reducible, i.e. the “null-vectors”
(1)

R ,
(1)

Z exist such that

(1)

R α
α1

(φ)R i
α(φ)|Σ=0,

(1)

Z A
A1

(φ)Z a
A(φ)|Σ=0

The reducibility generators
(1)

R ,
(1)

Z can be reducible in their own
turn, so we have a sequence of the “null-vectors”
(k)

R ,
(l)
Z ,[k]=m,[l ]=n. In Lagrangian theory m=n, and the reducibility

generators coincide for Noether identities and gauge symmetries. In
general, these are different.



Reducibility of (m,n)-type.

The reducibility generators are supposed to define morphism of
certain bundles, such that

0←Γ(F∗
m)

(m−1)

R ∗
← ···Γ(F∗

1 )
R∗
←Γ(T∗M)

J∗
←Γ(E∗)

Z←Γ(G1)
(1)

Z←···Γ(Gn)←0

This sequence is on-shell exact as

Im
(k)

R =Ker
(k−1)

R ,ImR=KerJ, Im
(k)

Z =Ker
(k−1)

Z , ImZ=KerJ∗

In Lagrangian theory m=n, Fk=Gk ,∀k , E=T∗M, J=J∗,R=Z ,and
the "wings"outside the central segment, defined by J∗, can be
identified just by taking dual and transposed map.
In general, none of these coincidences occurs, and the theory is
termed (m,n)-reducible.



Gauge theory of (1,1)-type: introducing ghosts

The bundle F7→M that “hosts” the gauge symmetries, is called the
Gauge Algebra Bundle.
The bundle G7→M that “hosts” the generators of Noether
identities, is called the Noether Identity Bundle.
Ghost extension of the configuration space for general (1,1)
dynamics
Consider Z2

⊗
Z -graded bundle

L7→M:L=Π(F [1])⊕Π(E[−1])⊕(G[−2])

The coordinates are denoted correspondingly:

Cα, ηa, ξA, gh(C )=1, gh(η)=−1, gh(ξ)=−2.

In Lagrangian case, ηa would be the anti-field φ∗
i to the original

field φi ; Cα - the gauge ghost, and ξA identified as anti-field to C .



Classical BRST embedding of general (1,1) dynamics

The BRST-differential Q,gh(Q)=1 is sought for in the form

Q≡Q I (ϕ)
∂

∂ϕI
=Ta

∂

∂ηa
+ ηaZ a

A
∂

∂ξA
+ CαR i

α

∂

∂φi
+ ···,

carrying all the information about the classical system (E,T ) as
such. Evaluating the condition Q2=0 in the lowest order in
r -degree, |ξ|r =2, |η|r =1, one immediately comes to the relations
Z a

ATa≡0, R i
α∂iTb=Ua

αb(φ)Ta characterizing Ta(x)=0 as a set of
gauge invariant and linearly dependent equations of motion, with R
and Z being the generators of gauge transformations and Noether
identities, respectively.



Lagrange anchor - a preliminary observation.

Consider first (0,0) type dynamics with E=T∗M, so the left hand
sides of dynamical equations are the components of one-form:

Ti (φ)dφi=T∈ΛT∗M, Σ={φ∈M|Ti (φ)=0} Jij=∂iTj

The fact that the dynamics are Lagrangian means that dT=0, or
that the Jacobi matrix is symmetric, J∗=J, i.e. the following
diagram commutes:

Γ(TM)
J // Γ(T∗M)

Γ(TM)
J∗

//

id

OO

Γ(T∗M)

id

OO



Lagrange anchor: a diagrammatic definition.

The Lagrange anchor V defines a bundle homomorphism
V :E∗→TM such that the diagram

Γ(TM)
J // Γ(E)

Γ(E∗)
J∗

//

V

OO

Γ(T∗M)

V ∗

OO
(3)

commutes on the shell. Off shell this explicitly reads

V i
a∂iTb−V i

b∂iTa=C c
abTc

If the anchor was invertible, V −1 would be an integrating multiplier
for the inverse problem of variational calculus, i.e.
∃S(φ):∂Si=(V −1)a

i Ta.



Lagrange anchor for general (1,1) dynamics.

Consider now the case of (1,1) dynamics, and denote gauge algebra
bundle F , and Noether identity bundle G. Then, the regularity of
the (1,1) dynamics is formulated in terms of the following exact
sequence of homomorphisms

0 // Γ(F)
R // Γ(TM)

J // Γ(E)
Z∗

// Γ(G∗) // 0

Its transpose reads:

0 Γ(F∗)oo Γ(T∗M)
R∗

oo Γ(E∗)
J∗

oo Γ(G)
Zoo 0oo

Upon restriction to Σ these sequences make cochain complexes; the
properties Z∗◦J|Σ=0 and J∗◦Z |Σ=0 follow from the differential
consequences of the identity Z aTa=0.



Lagrange anchor for general (1,1) dynamics.

Given the Lagrange anchor, V , the previous two diagrams can be
combined into the following unified one:

0 // Γ(F)
R // Γ(TM)

J // Γ(E)
Z∗

// Γ(G∗) // 0

0 // Γ(G)

W

OO

Z // Γ(E∗)

V

OO

J∗
// Γ(T∗M)

V ∗

OO

R∗
// Γ(F∗)

W ∗

OO

// 0

We know that the horizontal arrows of this diagram make cochain
complexes upon restriction to the shell. Then, the on-shell
commutativity of the squares implies that the upward arrows define
a co-chain map. It is sufficient to have only V providing
commutativity of the central block, then the map W can always be
constructed.



A brief preview of BRST quantization algorithm
for not necessarily Lagrangian dynamics.

1 The classical BRST differential Q is constructed on the bundle
L7→M: L=Π(F)[1]⊕Π(E)[−1]⊕G[−2].

2 Given the Lagrange anchor, the classical BRST differential Q
is promoted to a BRST charge Ω, being a function(al) on a
bundle T∗L. Q defines the first order of Ω in the momenta in
L. The second order is defined by the Lagrange anchor
and the higher orders are sought from the equation {Ω,Ω}=0.

3 Upon quantisation, Ω turns into the quantum BRST operator
Q̂=Ω(φ,φ̄7→ih̄∂)=Qclassical+ih̄(···), Q̂2=0. The operator Q̂
defines the probability amplitude by the equation Q̂Ψ(x)=0.

Identification for Lagrangian system:
a≡i , Ti=∂i s(x), V j

a=δj
a, Q=(·,S), Q̂=Q+ih̄∆, Ψ=e

i
h̄ S



Lagrange anchor and Schwinger-Dyson equation.

Consider field equations Ta and Lagrange anchor V i
a for them

V i
a(φ)∂iTb(φ)−V i

b(φ)Ta(φ)=C c
ab(φ)Tc(φ) (4)

The quantum probability amplitude Ψ(φ) is then defined by the
following generalization of Schwinger-Dyson equation

T̂aΨ(φ)=0, T̂a=ih̄V j
a∂j−Ta(φ) (5)

The anchor definition (4) is a compatibility condition for (5).
Consider adapted coordinates: φ 7→(x,y):Vx=1,Vy =0, Then
Tx=∂xs(x),det∂yTy (x,y) 6=0, and probability amplitude reads:

Ψ(x,y)∼δ(Ty (x,y))e
i
h̄ S(x)

The transformation to adapted coordinates breaks locality, in
general, but for the original fields, the equation (5) is local.



What is the main impact of the Lagrange anchor existence for
general dynamics?

The Lagrange anchor, being found for the system of classical field
equations, allows one to solve the following problems:

Covariantly quantize dynamics in three different ways:
1 Construct the quantum BV master (or Schwinger-Dyson)

equation for the amplitude;
2 Convert not necessarily Lagrangian model in d into an

equivalent topological Lagrangian theory in d+1 dimensions;
3 Embed any field theory model into an augmented Lagrangian

theory that allows to derive the quantum correlators for
original fields.

Connect conservation laws with symmetries;
Equip the variety of conserved currents with the structure of
Poisson algebra (in Lagrangian case that reduces to
Gelfand-Dickey algebra).


