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                                                  Abstract 
A central idea of this talk is that the black hole horizon is an 
appropriate geometrical layout required to interface the classical 
and quantum realms. Forming the black hole horizon is attended 
with the transition from the classical regime of evolution to the 
quantum one. This statement is based on the following criterion for 
discriminating between the classical and the quantum: creations 
and annihilations of particle-antiparticle pairs are impossible in the 
classical reality but possible in the quantum reality. Technically, 
one can switch from the classical picture of field propagation in 
flat spacetime to the quantum picture by changing the overall sign 
of the spacetime signature. To describe a selfgravitating object at 
the final stage of its classical evolution, it is pertinent to use either 
Foldy–Wouthuysen representation of the Dirac equation in curved 
spacetimes or Gozzi classical path integral. In both approaches, 
maintaining the dynamics in the classical regime is controlled by 
supersymmetry. 



Four views on the physical reality 
First  Our world is essentially classical  
Quantum phenomena could be in principle accounted 
for by invoking an appropriate set of hidden variables  
This view goes back to Schroedinger, de Broglie, and 
Einstein 
In the 50s, Bohm translated it into a specific model  
In this century, `t Hooft speculated that the ontology 
of the Planck region is governed by deterministic laws 
Second. (Currently this is the superior paradigm.)  
 Our world is fundamentally quantum 

There is no classical object whose existence is firmly 
certified, and whose individuality is preserved in time 
Example: the present speaker is a superposition of 
alive and dead Kosyakov 
The existence of the universe as a well-definite object 
is a mere appearance 
If the famous Bell inequality is shown to be violated, 
then deterministic descriptions with hidden variables 
are necessarily nonlocal  
Third. (Copenhagen interpretation)  
 Our world is partly classical and partly quantum 

Fourth. (Duality, holographic correspondence, etc.) 
  A given realm may appear both as classical and      
quantum, but these two looks pertain to space-times 
of nearby dimensions 



Our concern here is with the third view. This raises the 
natural question of what is a demarcation line between 
the classical and the quantum. Naively, all quantum 
phenomena are associated with small distances, and 
classical phenomena are thought of as macroscopic. 
But what is the criterion for “smallness”? Are giant 
molecules small or large? What’s about such quantum 
phenomena as superconductivity and superfluidity 
whose characteristic scale lengths are macroscopic? 
Normally, classical and quantum phenomena are 
mixed. Meanwhile there is a natural layout which has 
a clear demarcation line separating the classical from 
the quantum. I mean the event horizon of black holes  
 

The classical and the quantum 
 
What is the criterion for discriminating between the 
classical and the quantum? It is common to see the 
statement that a quantum phenomenon is what is 
described by an expression containing ’s, while a 
classical one is free of this dependence. However, our 
interest here is with the conceptual difference of 
classical and quantum objects and their behavior. 
 
Let us compare the respective properties of particles 
and fields in the classical and quantum pictures.  



A convenient framework bringing together the 
classical and quantum treatments is provided by the 
path integral approach 
A quantum-mechanical particle can be described by  
 

  (1)  

 
Whatever the kind of the world line  passing 
through the points  and , it 
contributes to the Feynman path integral provided that 
the Lagrangian  is real, and expression (1) is well 
defined for this path. To illustrate, the Poincare–
Planck  Lagrangian 
  (2)  
is real and finite only for timelike paths. If  is a 
null curve, then . If  is spacelike, then  is 
complex-valued. Since the imaginary part of  can be 
both positive and negative values, (1) is ill-defined.   
 
By contrast, the Brink–Deser–Zumino–Di Vecchia–
Howe Lagrangian 

  (3) 

is real and finite for all timelike, null, and spacelike 
curves. 



We may restrict our consideration to timelike paths if 
we discriminate between smooth and piecewise 
smooth curves, notably, - or -shaped curves. One 
may think of a -shaped timelike curve as either path 
of a single particle moving from the remote past to a 
cusp point and then back in time or a history of the 
annihilation of a pair that occurs at this cusp point. 
Likewise, a -shaped curve is interpreted as either 
path of a single particle that runs initially from the far 
future to a cusp point and then again to the future or a 
history of the birth of a pair at this point. Any - or - 
shaped path passing through the end points contributes 
to the Feynman path integral (1).  
Quantum description leaves room for both particles 
and antiparticles together with their creation and 
annihilation 
 
Classical particles are governed by the principle of 
least action. It can be formulated for smooth timelike 
and null world lines. However, it defies unambiguous 
formulation for - and -shaped world lines. Any 
spacelike hyperplane intersects a -shaped curve twice 
or fails to intersect this curve at all. The same is true 
for -shaped curves. Although the classical picture 
allows the coexistence of particles and antiparticles, 
creations and annihilations, represented by   

- and -shaped world lines, are banned. 



Therein lies the fundamental difference between the 
quantum and classical viewpoints on particles: 
creations and annihilations of pairs are permissible 
in the quantum reality and impermissible in the 
classical reality 
 
With - and -shaped world lines it is possible to form 
closed paths for virtual particles. The above statement 
translates into the well-known criterion: the classical picture 
is displayed as a tree diagram, whereas the quantum picture 
is represented by loops. Usual derivations of this criterion 
are based on comparison of the powers of Planck’s constant 

 entering in different terms of a perturbation series. The 
separation into trees and loops need not be related to the 
dilemma of whether or not the  present in the expressions.   
Physically, to discriminate between loops and trees we must 
decide between the feasibility of creations and annihilations 
of pairs and veto on these processes. 
 
Hawking radiation associated with the pair creation 
and annihilation processes near the black hole 
horizon is a characteristically quantum phenomenon 
 
The key difference between the classical and quantum 
manifestations of the same field is due to the different 
boundary conditions. Consider first a massless scalar field 
in flat spacetime. The Fourier transform of the retarded 
Green's function 



  (4)  

 
gives an accurate account of how this field propagates in  
classical theory. If the integration over the variable   
is carried out, then the poles at 
 

   

 
are avoided by the path of integration. 
 
The propagation of a free massless field in quantum theory 
is described by the Feynman propagator 
 

  (5) 

 
which obeys the causal boundary condition. It follows the 
prescription for avoiding the poles 
 

  (6) 
 
where  denotes . Exact propagators of interacting fields 
are given by the spectral Kallen–Lehmann representation 
 

  (7) 

  



where the lower limit  represents the mass gap in the 
spectrum of this theory, and  is a polynomial-bounded 
monotone nondecreasing function which takes into account  
loop contributions.  obeys the causal boundary condition. 
 
In order to bridge the gap between the retarded and causal 
boundary conditions, we “euclideanize” both descriptions 
 
Assuming that the integrand decreases sufficiently fast as   
approaches infinity, it is possible to rotate the integration 
path in a clockwise direction by  in the complex -plane  
without crossing the poles. This operation is similar to the 
Wick rotation. Introducing the variable  makes the 
length squared of  positive definite: 
 
  (8)  
 
Analytical continuation of space variables to the imaginary 
axes 
  (9)  
 
performed together with analytical continuation in -space, 
introduces the Euclidean metric 
 
  (10) 
 
If we carry out the Wick rotation of the integration path of 
the Feynman propagator in a counterclockwise direction by 



 in the complex -plane without crossing the poles which 
is equivalent to introducing  then the length squared 
of  becomes negative definite: 
 
  (11)  
 
Analytical continuation of time variable to the imaginary 
axis 
  (12)  
 
performed together with the Wick rotation, introduces the 
Euclidean metric 
  (13)  
 
We change the overall sign of the spacetime signature in 
the classical description of field propagation for it to be 
treated as the quantum description of field propagation. 
Two Lorentzian metrics of opposite signatures can always 
be analytically continued to two Euclidean line elements of 
opposite sign, such as those shown in (10) and (13). 
 
Taken alone, the sign of the Lorentzian metric is of no 
particular importance, its choice is a matter of convention 
However, if this overall sign is changed as one passes from 
some region of spacetime to a contiguous region, then this 
change of sign is evidence of switching from the classical to 
quantum regime of field propagation. 
 



Such is the case for contiguous regions inside and outside 
the event horizon of a Schwarzschild black hole. The 
Schwarzschild metric describing an isolated spherically 
symmetric stationary black hole reads 
 

  (14)  

 
Here,  is the round metric in , and  is the 
Schwarzschild radius which represents the event horizon of 
this black hole. In the Schwarzschild exterior  , the 
Killing vector field  is interpreted as the asymptotic 
time translation. In the Schwarzschild interior  , r is a 
time coordinate, and the integral lines of the vector field 

 are incomplete timelike geodesics which terminate 
at . Once the Euclideanization has been performed, the  
regions inside and outside the boundary  take the 
Euclidean metrics of the type of (10) and (13), respectively. 
What happens to the physical reality at the surface of the 
collapsing star when the Schwarzschild radius  is 
crossed? Does the classical picture give way to the quantum 
picture?  
 
Locally  is a perfectly regular surface. The singularity 
at  is a mere coordinate singularity in the original 
Schwarzschild coordinate frame. In some other coordinates, 
the metric is smooth at . However, globally,  
acts as a point of no return. Every light cone tilts over at this 
point, so that the roles of t and r are interchanged.  



 
In summary the event horizon of a Schwarzschild black 
hole shows a clear demarcation between spacetime regions 
characterized by opposite signatures. This geometrical 
layout provides an explicit scheme for interfacing the 
classical and the quantum.  
 
We pass over charged black holes described by the Reissner 
– Nordstrom solution [which can be obtained from (14) by 
replacing  with  where q is the charge of the 
hole]. The major conclusion that such objects are suitable to 
studying a classical-quantum phase transition still stands. 

 
The Foldy–Wouthuysen picture 
 
L. L. Foldy and S. A. Wouthuysen, “On the Dirac theory of spin-  particles and its nonrelativistic 
limit,” Phys. Rev. 78 (1950) 29. 
 

There is a unitary transformation that diagonalizes the free 
Dirac Hamiltonian  with respect to positive and negative 
energies, 
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The standard representation of Dirac matrices is assumed, 
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Positive energy states are ascribed to a Dirac particle while 
states of negative energy are attributed to its antiparticle. 
Thus, the free Dirac equation 
 

  (15) 

 
is unitarily equivalent to a pair of two-component equations 
 

  (16) 

A separation of positive- and negative-energy states is still 
possible in the presence of an external time-independent 
magnetic field of arbitrary strength . Case found  
 
K. M. Case, “Some generalizations of the Foldy–Wouthuysen transformation,” Phys. Rev. 95 (1954) 
1323. 
 

the Foldy–Wouthuysen transformation of the Dirac equation 
into 

  (17)  

 
where  is the vector potential of this field . The 
energy gap of the Dirac sea is not penetrated in the constant 
magnetic field because this field leaves the energy of the 
Dirac particle unchanged.   



However, the separation is not possible with time-dependent 
electromagnetic fields and scalar potentials; the positive- 
and negative-energy solutions may mix when the interaction 
is sufficiently strong  
 
E de Vries “Foldy–Wouthuysen transformations and related problems” Fortschr Phys 18 (1970) 149 
 
B. Thaller, The Dirac Equation (Berlin, Springer, 1992). 

  
The energy gap of the Dirac sea is no longer insuperable. 
Creations and annihilations are made possible. 
 
A Dirac particle manifests itself as a classical entity only  
in the case that the Hamiltonian can be diagonalized with 
respect to positive and negative energies. 
 
In a curved spacetime the Dirac equation can be written  
  
Yu. N. Obukhov, “Spin, gravity, and inertia,” Phys. Rev. Lett. 86 (2001) 192;  gr-qc/0012102. 

 
in the Foldy–Wouthuysen form for stationary metrics 
 
  (18)  
 
where V and W are arbitrary functions of spatial coordinates 

. Schwarzschild geometry is a particular case of 
(18). When employing isotropic coordinates, the metric  
(14) takes the form (18) with 
 

  (19) 



 
To be more specific, Dirac particles in curved backgrounds 
are governed by the covariant Dirac equation 
 
  (20) 
 
where,  is the spinor covariant derivative 
 

  (21)  

 
  is the gravitational 

gauge potential.  
 
If the covariant Dirac equation (21) can be brought into the 
form 

  (22) 

with 

  (23)  

 
then there is a unitary transformation  
such that  

 
 

 (24) 



  

 

  (25)  

 
Here,  is the spin matrix , and  

. 
 
The feasibility of a Foldy–Wouthuysen transformation is 
another way of stating that the system enjoys the property 
of supersymmetry  
 
 
R. P. M. Romero, M. Moreno, and A. Zentella, “Supersymmetric properties and stability of the 
Dirac sea,” Phys. Rev. D 43 (1991) 2036. 

 
The origin of the Foldy–Wouthuysen picture for a Dirac  
particle in an external electromagnetic field is related to the 
existence of a supercharge.  
 
If the Dirac sea is stable, then the positive- and negative-
energy solutions are supersymmetric partners of each other. 
When the supersymmetry is broken, it is impossible to 
obtain an exact block-diagonalized Hamiltonian for this 
system. 
 
These reasonings can be extended to curved spacetimes.  
 
 
S. Heidenreich, T. Chrobok, H.-H. v. Borzeszkowski, “Supersymmetry, exact Foldy–Wouthuysen 
transformation, and gravity,”  Phys. Rev. D 73 (2006) 044026. 



A supercharge can be constructed for a relatively wide class 
of stationary metrics, including that defined in (18). 
 
The Foldy–Wouthuysen transformed Hamiltonian  is 
proportional to the square root of the super-Hamiltonian 
 
  (26)  
 
For the metric (18),  is given by 

  (27)  

Here,  is the involution operator  (a Hermitian 
and unitary operator, ,  , which anticommutes 
with both the Hamiltonian and the  matrix, , 

).  
 
Consider a self-gravitating Dirac field  which arranges 
itself into a spherically symmetric collapsing wave packet. 
Let the total mass of the wave packet be equal to , the 
parameter that enters in the definition of the Schwarzschild  
radius . Before a black hole state settles down, the 

 is assumed to model an astrophysical collapsing object in 
the Schwarzschild spacetime.  
 
Our interest here is with the “last stage” of evolution of the 
wave packet just before its shrinking down to below the 
horizon. At this stage, the wave packet  is governed by the 
diagonalized Hamiltonian (24).  
 



It is desirable to find an exact solution to this problem.  
 
This solution should exhibit a singular point after which 
this classical regime of evolution is no longer valid.  
 
The singularity is just the point in which the supersymmetry 
must be violated. 
 
For more detail see 
 
B. P. Kosyakov, “Black holes: interfacing the classical and the quantum,” Found. Phys. 38 (2008) 
678 
 
 

The classical path integral 
 
E. Gozzi, “Hidden BRS invariance in classical mechanics,”  Phys. Lett.  201 (1988) 525 
 
E. Gozzi, M. Reuter, and W. D. Thacker, “Hidden BRS invariance in classical mechanics. II,”  Phys. 
Rev.  D 40 (1989) 3363 
 
A. A. Abrikosov, Jr., E. Gozzi, and D. Mauro, “Geometric dequantization,” Ann. Phys. (N. Y.) 317 
(2005) 24;   quant-ph/0406028 
 

The probability amplitude of finding a classical system at a 
phase space point  at time  if it was at 

 at time  is given by  
 

  (28) 

 
 

Here  is the solution to the classical equation of motion 



, with  being a symplectic matrix, and H the 
Hamiltonian of this system. The integration is over the all 
phase space paths with fixed end points  and . 
  
Since 

  
 

one may take the Fourier transform of the Dirac delta and 
exponentiate the determinant using an even Grassmannian 
variable  and odd variables  and  to yield 

 (29) 

Here  
  (30) 
 
 

If we define two anticommuting partners of t,  and , and 
assemble the variables  into a single combination of 
supersymmetric phase space coordinates 
  (31) 
  (32) 
then (29) takes a compact and elegant form 
 
  
 

  (33) 

 



where L is the usual Lagrangian  of 
this system. Equation (33) bears the formal similarity to the  
quantum path integral  
 

  (34)  

 
In fact, (33) derives from (34) by replacing the phase space 
coordinates  with the super phase space coordinates  

 and extending the integration over t to an integration 
over the supertime .  
Consider a gravitating fluid in a Schwarzschild background, 
which arranges itself into a collapsing ball. The canonical 
theory of classical perfect fluids is well studied  
 
R. Jackiw, V. P. Nair, S. -Y. Pi, and A. P. Polychronakos, “Perfect fluid theory and its extension,” J. 
Phys. A 37 (2004) R327; hep-ph/0407101. 

 
If we extend this theory to curved spacetimes, construct its 
supersymmetric version by substituting the phase space for 
the super phase space (31)–(32), and write the classical path 
integral (33), then working out this integral, we will find 
that the resulting expression exhibits self-denial of classical 
physics at some point. The supersymmetry structure of (33) 
is automatically broken at this critical point. 
 
A further interesting issue is the relation between Hawking 
radiation and gravitational anomalies 
 
S. Robinson and F. Wilczek, “Relation between Hawking radiation and gravitational anomalies,” 
Phys. Rev. Lett.  95 (2005) 011303;  gr-qc/0502074v3. 



In order to avoid a breakdown of general covariance at the 
quantum level, the total flux in each outgoing partial wave 
of a quantum field in a black hole background must be 
equal to the flux of a (1+1)-dimensional blackbody at the 
Hawking temperature. A gravitational anomaly arising for 
a chiral scalar field in spherically symmetric spacetimes 
with an event horizon, 

  (35)  

can be cancelled by a thermal flux of the form of blackbody 
radiation with  the Hawking temperature . 
 
An anomaly is attributed to non-invariance of the quantum 
path integral measure under the symmetry transformation 
involved. The classical path integral measure is larger than 
the quantum measure because it includes auxiliary fields 

. This aids in cancellating the anomaly and regaining 
the associated symmetry. For a fermion coupled with a 
gauge field, it was shown that the way these auxiliary fields 
E. Gozzi, D. Mauro, A. Silvestri, “Chiral anomalies via classical and quantum functional methods,” 
Int. J. Mod. Phys. A 20 (2005) 5009;   hep-th/0410129. 

transform compensates exactly the Jacobian which arises 
from the transformation of the fields appearing in the 
quantum measure, so that the chiral anomaly is absent at the 
classical level. How does this mechanism for avoiding the 
breakdown of general covariance cease to be true in the act 
of forming a black hole due to the supersymmetry violation 
in the classical path integral, which leaves behind it the only 
possibility for keeping the system to be diffeomorphism 
invariant – to launch Hawking radiation? 



Conclusions  
 
 .Criterion for comparing the classical and the quantum: 

creations and annihilations of particle-antiparticle pairs are 
forbidden in the classical picture, but possible in the 
quantum picture 
 
 Changing the overall sign of the spacetime signature in 

the classical description of field propagation renders it the 
quantum description of field propagation 
 
 The event horizon of a Schwarzschild black hole is a 

boundary which demarcates the classical and the quantum 
 
 A self-gravitating object at the last stage of its classical 

evolution, just before its shrinking down to below the 
horizon, can be described using the Foldy–Wouthuysen  
representation of the Dirac equation in curved spacetimes 
and Gozzi’s classical path integral technique 
 
 In both descriptions, maintaining the dynamics in the 

classical regime is controlled by supersymmetry 
 
 Finding the Foldy–Wouthuysen dynamics for a collapsing 

wave packet   or calculating Gozzi’s path integral for a 
gravitationally collapsing fluid will indicate a critical point 
where a self-destruction of this classical machinery occurs. 
The supersymmetry undergoes a breakdown at this point 


