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Oppenheimer & Volkoff (1939)
EOS of free Fermi gas of neutrons

Myax[FFG] = 0.7 M,

theory might allow us to calculate true M.« = Muax[P(p)] - .
. if we knew true EOS

observations give { M.} (ideally: NS mass function ...)

Alas, very strong selection effect in the data ... observational and
evolutionary bias - only binary NS are involved...

Mypax[EOS] > maz{Mys} | = ML
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Highest precisely measured pulsar masses

1975

PSR 1913+16 (NS+NS) Hulse - Taylor binary pulsar
1989: PSR 1913+16 1.442 £ 0.003 Mg

2003: PSR 1913416 | 1.4408 + 0.0003 Mg |
Weisberg & Taylor (2003)
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1989: PSR 1913+16 1.442 £ 0.003 Mg

2003: PSR 1913416 | 1.4408 + 0.0003 Mg |
Weisberg & Taylor (2003)

2008 +lo

PSR 1903+0327 (NS+MS) | 1.67 + 0.02 Mg | (99.7%) Freire et
al. (2011)
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Highest precisely measured pulsar masses

1975

PSR 1913+16 (NS+NS) Hulse - Taylor binary pulsar
1989: PSR 1913+16 1.442 £ 0.003 Mg

2003: PSR 1913416 | 1.4408 + 0.0003 Mg |
Weisberg & Taylor (2003)

2008 +lo

PSR 1903+0327 (NS+MS) | 1.67 + 0.02 Mg | (99.7%) Freire et
al. (2011)

v

PSR J1614-2230 (NS+WD) | 1.97 £ 0.04 M, | Demorest
et al. (2010)
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Importance of nuclear (strong) interactions

An EOS must satisfy:

Mipax[EOS] > 2.0 My,
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Today: dominating effect of strong interactions for NS is an

(observational) fact!
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Importance of nuclear (strong) interactions

An EOS must satisfy:

Mipax[EOS] > 2.0 My,

Oppenheimer, Volkoff (1939)  Mpnax|FFG] = 0.7 Mg

Today: dominating effect of strong interactions for NS is an

(observational) fact!

n?l)xb /Mmax [FFG] > 2.8

P. Haensel and J.L. Zdunik (CAMK)

2.0 M, pulsar and EOS Ginzburg 2012, May 28 -

June 3,

2012
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EOS of "cold dense matter” - baryons + leptons

’

normal nuclear density ’ po =2.7 % 10" gem

‘Fundamental theory of matter: QCD ‘

Terrestrial nuclear physics:

Only three lightest quarks involved, confined into baryons: nuclei, nucleons:
u, d; hyperons, hypernuclei: additionally s

Many-body theory of nuclear matter = EOS for p < po

" Effective matter constituents”: baryons , leptons e, u

" Effective theory”: nuclear forces result from exchange of (virtual) mesons

Basic question: how far this " effective theory” (hadrons+leptons) can
be used in dense cold matter?
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EOS of "cold dense matter” - quarks + leptons
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EOS of "cold dense matter” - quarks + leptons

Two remarkable features of the QCD: confinement of quarks and
asymptotic freedom
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Two remarkable features of the QCD: confinement of quarks and
asymptotic freedom

Prediction: for p 2 paec cold matter is a plasma of quarks interacting via exchange
of gluons. Maybe a small admixture admixture of electrons

Both the value of p4ec and the EOS for p > pgec are difficult to calculate: matter is
a strongly-interacting quark-gluon plasma

A solid result of QCD: for mean energy of constituents of dense matter (resulting
from Fermi statistics) > Aqcp ~ 1000 MeV

1 2

the EOS is P~ Pl Asymptotic Freedom of the QCD
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EOS of "cold dense matter” - quarks + leptons

Two remarkable features of the QCD: confinement of quarks and
asymptotic freedom

Prediction: for p 2 paec cold matter is a plasma of quarks interacting via exchange
of gluons. Maybe a small admixture admixture of electrons

Both the value of p4ec and the EOS for p > pgec are difficult to calculate: matter is
a strongly-interacting quark-gluon plasma

A solid result of QCD: for mean energy of constituents of dense matter (resulting
from Fermi statistics) > Aqcp ~ 1000 MeV

the EOS is P~ %pcz Asymptotic Freedom of the QCD

Asymptopia is reached for p > 10'® g cm ™2 - far larger than maximum density
reached at centers of massive neutron stars (5 x 10*® g cm ™2, only are
relevant for NS )
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Calculating EQS: Baryons + leptons

Nucleons

v
Hyperons & nucleons
v
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Calculating EQS: Baryons + leptons

Nucleons

2BF: a few thousands of data on
nucleon-nucleon scattering,

6 [or]
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Hyperons & nucleons

NH: hypernuclei, > -atoms
HH: AA hypernuclei

+ symmetries of strong
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Calculating EQS: Baryons + leptons

Nucleons

2BF: a few thousands of data on
nucleon-nucleon scattering,
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3BF: °H , 3He . Examples of successful models: Argonne

a . ..
He [ nnpp |, nuclear matter in V18(nucleons only), Nijmegen
ESCO08(nucleons and hyperons)

Schulze & Rijken (2011)

atomic nuclei ...

4

Hyperons & nucleons

NH: hypernuclei, > -atoms
HH: AA hypernuclei

+ symmetries of strong
interactions
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Calculating EQS: Baryons + leptons

Examples of successful models: Argonne

V18(nucleons only), Nijmegen
2BF: a few thousands of data on ESCO8(nucleons and hyperons)
nucleon-nucleon scattering, Schulze & Rijken (2011)

9p,

3BF: 3H , SHG , 2L 1614-2230 |
‘He , nuclear matter in [ 10030927

atomic nuclei ... L5 1913+16

v
Hyperons & nucleons 1 ]

NH: hypernuclei, ¥~ -atoms
HH: AA hypernuclei

M (M)

05 - -
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interactions
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Calculating EQS: Baryons + leptons

Examples of successful models: Argonne

V18(nucleons only), Nijmegen
2BF: a few thousands of data on ESCO8(nucleons and hyperons)
nucleon-nucleon scattering, Schulze & Rijken (2011)

9p,

3BF: 3H , SHG , 2L . 1614-2230 ]
‘He , nuclear matter in [ 10030927

atomic nuclei ... L5 1913+16

M (M)

L 7.7p,
Hyperons & nucleons 1 22 7
NH: hypernuclei, ¥~ -atoms [
HH: AA hypernuclei

05 - -

0 1 1 1
+ symmetries of strong 10 " R (fm) 1 “

interactions

N

" hyperon puzzle”
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Solution |: Hyperon-hyperon vector-meson repulsion

General feature
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exchange of scalar mesons (spin=0) generates attraction
(softening EOS), but exchange of vector mesons (spin=1)
generates repulsion (stiffening EOS)

P. Haensel and J.L. Zdunik (CAMK) 2.0 M, pulsar and EOS Ginzburg 2012, May 28 - June 3, 2012



Solution |: Hyperon-hyperon vector-meson repulsion

General feature

exchange of scalar mesons (spin=0) generates attraction
(softening EOS), but exchange of vector mesons (spin=1)
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Add a vector meson coupled to hyperons yielding a strong
repulsive contribution at high density Dexheimer & Schramm
(2008), Bednarek et al. (2011), Weissenborn et al. (2011)
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Solution |: Hyperon-hyperon vector-meson repulsion

General feature

exchange of scalar mesons (spin=0) generates attraction
(softening EOS), but exchange of vector mesons (spin=1)
generates repulsion (stiffening EOS)

Add a vector meson coupled to hyperons yielding a strong
repulsive contribution at high density Dexheimer & Schramm
(2008), Bednarek et al. (2011), Weissenborn et al. (2011)

Result: thresholds for hyperons unchanged, but smaller

populations of hyperons and MED = 2.0 Mg

Breaking the SU(6) symmetry can further increase MO
Weissenborn et al. (2011)
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Solution Il: quark matter core

General feature - 1

General feature - 2

P. Haensel and J.L. Zdunik (CAMK) 2.0 M, pulsar and EOS Ginzburg 2012, May 28 - June 3, 2012 10 / 16



Solution Il: quark matter core

General feature - 1

oluds] |

General feature - 2

P. Haensel and J.L. Zdunik (CAMK) 2.0 M, pulsar and EOS Ginzburg 2012, May 28 - June 3, 2012 10 / 16



Solution Il: quark matter core

General feature - 1

e significant overall quark repulsion—> stiff ° l

EOS.Q
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Solution Il: quark matter core

General feature - 1

e significant overall quark repulsion—> stiff ° l

EOS.Q

General feature - 2

e strong attraction in a channel =—> strong
superconductivity

o Perturbatively treated higher-order QCD supplemented with a

MIT Bag constant and strong superconductivity
Weissenborn et al. (2011), Ozel et al. (2010)
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Solution Il: quark matter core

General feature - 1

e significant overall quark repulsion—> stiff ° |

EOS.Q

General feature - 2

e strong attraction in a channel =—> strong
superconductivity

o Perturbatively treated higher-order QCD supplemented with a

MIT Bag constant and strong superconductivity
Weissenborn et al. (2011), Ozel et al. (2010)

o Non-perturbative effective-QCD based model (Nambu -
Jona-Lasinio) + superconductivity: significant vector repulsion

and strong superconductivity
Klahn et al. (2011), Bonanno & Sedrakian (2012)
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Fitting formulae for the EOS for QM

Fitted points: non-perturbative effective
QCD-based (NJL) + color
superconductivity Agraval (2010),
Blaschke et al. (2010)
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o Standard threshold density for hyperons p,, ~ 2py — 3py is
acceptable

e In the hyperon core: strong vector-meson HH repulsion

e Quark core in neutron stars: strong overall repulsion between
quarks and simultaneously strong attraction (pairing) in specific
channels to yield strong superconductivity

o Critical density for quark-hadron transition should be rather low
Perie ™ 2P0 = 3po

e Density jump in hadron-quark transition should not be too large
Polpn S 1.3
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