Interstellar magnetic fields

Katia FERRIÈRE

Institut de Recherche en Astrophysique et Planétologie, Observatoire Midi-Pyrénées, Toulouse, France

Ginzburg Conference on Physics Moscow – 28 May - 2 June, 2012

Outline

Katia FERRIÈRE Interstellar magnetic fields

Outline

- 2 Observational status
- 3 Situation in external galaxies
- Predictions from dynamo theory

Early history

• Alfvén (1937)

Cosmic-ray confinement implies "the existence of a magnetic field in interstellar space"

• Fermi (1949)

The main process of [cosmic-ray] acceleration is due to [interstellar] magnetic fields ... The magnetic field in the dilute matter is ~ 5 μ G, while its intensity is probably greater in the heavier clouds"

- Hall; Hiltner (1949); Davis & Greenstein (1951)
 - Linear polarization of starlight
 - Tue to elongated dust grains aligned by an interstellar magnetic field

• Kiepenheuer (1950)

Galactic radio synchrotron emission

Outline

- Situation in external galaxies
- Predictions from dynamo theory

Linear polarization of starlight & dust emission

- Optical starlight is polarized $\| \vec{B}_{\perp} \|$
- Infrared dust thermal emission is polarized $\perp \vec{B}_{\perp}$

Linear polarization of starlight & dust emission

Heiles & Crutcher (2005)

- \ll In Galactic Disk : \vec{B} is horizontal
 - Near the Sun : \vec{B} is nearly azimuthal $(p \simeq -7^{\circ})$

Zeeman splitting

Figure Credit: Robishaw & Heiles

Stokes parameter V gives B_{\parallel} in neutral regions

- In atomic clouds : $B \sim a \text{ few } \mu G$
 - In molecular clouds : $B \sim (10 - 3000) \,\mu\text{G}$

・ロト ・ 四ト ・ ヨト ・ ヨト ・

æ

Faraday rotation of point sources

- $\Delta \theta = \mathbf{RM} \lambda^2$ where $\mathbf{RM} = C \int n_{\rm e} \mathbf{B}_{\parallel} dl$
- \Rightarrow RM probes B_{\parallel} in ionized regions

RMs of pulsars & EGRSs with $|b| < 8^{\circ}$ (Han 2009)

RMs of EGRSs with $\delta > -40^{\circ}$ (Taylor et al. 2009)

・ロト ・四ト ・ヨト・ヨト・

Faraday rotation of point sources

In ionized regions

- - In Galactic Disk : \vec{B}_{reg} is horizontal & mostly azimuthal Near the Sun : \vec{B}_{reg} is CW $(p \simeq -8^{\circ})$ \vec{B}_{reg} reverses direction with decreasing radius \vec{B}_{reg} is neither pure ASS nor pure BSS
 - In Galactic Halo : \vec{B}_{reg} is CCW at z > 0 & CW at z < 0 (inner halo) \vec{B}_{reg} has vertical component Toward SGP : $(B_{reg})_z \simeq +0.3 \,\mu\text{G}$

Toward NGP : $(B_{reg})_z \simeq ?$

Diffuse synchrotron emission

$$\mathcal{E} = f(\alpha) n_{\text{rel}} \mathbf{B}_{\perp}^{\alpha+1} v^{-\alpha} \quad \mathbf{\&} \quad \vec{\mathcal{E}} \perp \vec{\mathbf{B}}_{\perp}$$

- \Rightarrow Total intensity probes B_{\perp} (strength only)
 - Polarized intensity probes $(\vec{B}_{ord})_{\perp}$

(strength & orientation)

Figure Credit: Wolfgang Reich

ヘロト 人間 トイヨト イヨト

Diffuse synchrotron emission

$$\mathcal{E} = f(\alpha) n_{\text{rel}} \mathbf{B}_{\perp}^{\alpha+1} v^{-\alpha} \quad \mathbf{\&} \quad \vec{\mathcal{E}} \perp \vec{\mathbf{B}}_{\perp}$$

- \Rightarrow Total intensity probes B_{\perp} (strength only)
 - Polarized intensity probes $(\vec{B}_{ord})_{\perp}$

(strength & orientation)

Diffuse synchrotron emission

In general ISM

- \ll Near the Sun : $B_{ord} \sim 3 \,\mu G \& B_{tot} \sim 5 \,\mu G$
 - In Molecular Ring : $B_{tot} \sim 7 \,\mu G$
 - In Galactic Disk : \vec{B}_{ord} is horizontal
 - In Galactic Halo : \vec{B}_{ord} has vertical component
 - Global spatial distribution : $L_{\rm B} \sim 12 \ \rm kpc$ & $H_{\rm B} \sim 4.5 \ \rm kpc$

ヘロト ヘヨト ヘヨト ヘヨト

Faraday tomography

• Faraday rotation of background point source

 $\Delta \theta = \mathbf{RM} \ \lambda^2$ with $\mathbf{RM} = C \ \int n_e \ B_{\parallel} \ dl$ (rotation measure)

• Faraday rotation of diffuse synchrotron emission

Synchrotron emission & Faraday rotation are *spatially mixed* $\vec{P}(\lambda^2) = \int \vec{P}(\Phi) \ e^{2i\Phi\lambda^2} \ d\Phi$ with $\Phi = C \int n_e \ B_{\parallel} \ dl$ (Faraday depth)

 \mathscr{F} Fourier transform of polarized intensity : $\vec{P}(\lambda^2) \rightarrow \vec{P}(\Phi)$

Credit: Marijke Haverkorn

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

э

Faraday tomography

Also known as rotation measure synthesis

(Burn 1966; Brentjens & de Bruyn 2005)

Figure Credit: Maik Wolleben

ヘロト ヘヨト ヘヨト ヘヨト

Summary of observational results

- Near the Sun
 - $-B_{\rm reg} \simeq 1.5 \ \mu {
 m G}$, $B_{
 m ord} \sim 3 \ \mu {
 m G}$, $B_{
 m tot} \sim 5 \ \mu {
 m G}$
 - \vec{B}_{reg} is horizontal & nearly azimuthal $(p \simeq -7^\circ, -8^\circ)$

In Galactic Disk

- \vec{B}_{reg} is horizontal & mostly azimuthal
- \vec{B}_{reg} reverses direction with decreasing radius
- \vec{B}_{reg} is symmetric in z
- \vec{B}_{reg} is neither pure ASS nor pure BSS
- In Galactic Halo
 - \vec{B}_{reg} has horizontal & vertical components
 - \vec{B}_{reg} is anti-symmetric in z

・ロト ・四ト ・ヨト・ヨト・

Outline

Spiral galaxies

- Observational methods
 - Synchrotron emission (total & polarized)
 - Faraday rotation
- Observational results
 - All spirals have large-scale, regular / ordered \vec{B}
 - In disk : $B_{ord} \sim (1-5) \,\mu\text{G}$ & $B_{tot} \sim (5-15) \,\mu\text{G}$ In halo : $B_{tot} \lesssim 10 \,\mu\text{G}$
 - Edge-on spirals \rightarrow In disk : \vec{B}_{ord} is horizontal In halo : \vec{B}_{ord} has vertical component

Face-on spirals $\rightarrow \vec{B}_{ord}$ follows spiral arms

Face-on spiral galaxy: M51

TI contours + \vec{B} vectors at λ 6 cm (100m Effelsberg + VLA)

Optical image (HST)

Fletcher et al. (2009)

・ロト ・四ト ・ヨト・ヨト・

Edge-on spiral galaxy: NGC 891

TI contours + \vec{B} vectors at λ 3.6 cm (100m Effelsberg)

Optical image (CFHT)

© MPIfR Bonn (Krause 2009)

ヘロト 人間 ト 人間 ト 人間 トー

æ

Elliptical galaxies

- Observational methods
 - Synchrotron emission (total & polarized)
 - Faraday rotation
- Observational results
 - No large-scale, regular \vec{B} Only small-scale, turbulent \vec{B}
 - $B_{\rm tot} \sim a \text{ few } \mu G$

ヘロト ヘヨト ヘヨト ヘヨト

Outline

3 Situation in external galaxies

Field geometry

In the disk

- B_{Φ} dominant because strong differential rotation
- $B_R \sim 0.1 \ B_{\Phi}$
- $B_Z < B_R$, B_{Φ} because disk geometry
- Reversals in B_{Φ} e.g., if strong $\partial \Omega / \partial Z$

In the halo

- $B_Z \sim B_R$ because spherical geometry
- B_{Φ} large if strong differential rotation
- B_R , B_Z large if Galactic wind

Azimuthal structure

- If underlying galaxy is axisymmetric
 - \Rightarrow ASS (*m* = 0) is always easiest to amplify
 - Higher-order modes generally decay in time

- If external disturbance
 - \Rightarrow Possible to excite BSS (*m* = 1)

- If underlying spiral or bar
 - \Rightarrow Possible to excite QSS (*m* = 2)

Vertical symmetry (for ASS)

- Under typical galactic conditions
 - \Rightarrow Both S0 & A0 are amplified
- If the disk dominates \Rightarrow S0 grows faster

- If the halo dominates \Rightarrow A0 grows faster
- Possibly mixed S0-A0 configuration with S0 dominant in the disk A0 dominant in the halo