<u>Particle Production & Minimum Bias</u> <u>Distributions at the LHC</u>

Nick Brook University of BRISTOL

Motivation

p-p collision reveal rich structure of QCD

- Parton densities
- Parton showers
- Hard scattering
- Multiple parton interactions
- Hadronisation

Not as clear cut but convenient process breakdown

Motivation

LHC opens up a brand new kinematic regime for QCD

- Soft particle production
- Improve event generators
- Multi-parton interactions
- pQCD calculations
- PDF constraints
- Multijet production

Acceptance of LHC Expts

Ginzburg Conference - May'12

Multiplicity distributions - central region

ATLAS ∖s = 7 TeV New J Phys 13 (2011) 053033 Data 2010 PYTHIA ATLAS AMBT PYTHIA ATLAS MC09 PYTHIA DW Data Uncertainties ---- MC / Data 60 80 100 120 140 160 180 200 n_{ch}

Pre-LHC MC tune fail to describe high n_{ch} tails

Multiplicity distributions - forward region

Ginzburg Conference - May'12

60

n_{ch}

Charged particle pseudorapidity distributions

Charged Particle Transverse Momentum

Mean p_{T} grows with CoM energy

LHC measurement in line with lower energy data

Charged Particle Transverse Momentum

Identified Charged Particles

- ALICE has several barrel detectors dedicated to PID
 - dE/dx, transition radiation, ToF, Cherenkov radiation

- LHCb has dedicated PID detectors
 - 2 RICH detectors

Identified Charged Particles

ALI-PREL-10393

MC models do not describe detail of particle spectra at low $p_{\rm T}$

Charged Particle Ratios

 P/π , K/π ratio underestimated by models at high p_T LHCb tune – specifically looked at species production

K_S^0 production

 p_T > 2 GeV/c - MC falls more slowly than data

Λ production

 Λ production not as well described as K_S^0

A production ratios

AntiParticle/particle ratio flat (~1) in central region Ratio falls off go to forward region MC predictions remain essentially flat

$\Lambda(\Lambda bar)/K_{s}^{0}$ production ratios

Ratio rises at p_T raises as

Rise in forward region greater than MC predictions

Ginzburg Conference - May'12

 ϕ production 2.44 < y < 4.06do/dp_T (µb/(MeV/c)) LHCb $\sqrt{s} = 7 \text{ TeV}$ X-section underestimated Phys.Lett. B703 by MC (2011) 267-273 LHCb Data Flatter rapidity distribution LHCb MC Perugia 0 MC than MC 10-2 Ratio p_T spectra closer to PO tune 1000 2000 3000 4000 0 1400 $0.6 < p_T < 5.0 \text{ GeV/c}$ 1200

 $\sigma_{pp o \phi X} = 1758 \pm 19 (ext{stat}) \ +43 \ -14} (ext{syst}) \pm 182 (ext{scale}) \mu b$ $p_T \in [0.6, 5.0 \text{ GeV/c}] \ y \in [2.44, 4.06]$

Ginzburg Conference - May'12

5000

Ξ, Ω production

- Agreement between ALICE & CMS
 - Slightly different samples inelastic vs NSD
- MC yields greatly underestimate data

> versus mass

- <p_T> increases with mass as expected
- ISR parameterisation significantly below data @ 7 TeV
 - Nucl.Phys. B114 (1976) 334

Baryon transport

 α parameters fixed ($\alpha_J = 0.5, \alpha_P = 1.2$)

LHC data consistent with lower energy data

Summary

- Plethora of soft QCD measurements coming from the LHC
 - Many papers from all 4 experiments
 - Consistency across the experiments + complementarity
- Overall MC generators need further tuning
 - Pre-LHC tunes struggle to describe data
 - Strangeness & baryon production problematic
- Further measurements to come

Backup slides

LHCb consistency check

Ginzburg Conference - May'12