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1 First history note

I suppose I met Vitaly Ginzburg earlier than any other participant of
this Conference since this happened in 1939 - few months after my birth. I
confess I do not remember sufficiently well this history event but Ginzburg
said me much later that he really observed me in my cradle. And who knows
- perhaps this turned me to theoretical physics after all :)

Vitaly Ginzburg and my father Lev Altshuler were good friends beginning
from 1932 and all the life through. The third friend was Veniamin Tsuker-
man, who was the Head of the X-Ray Lab where 16 years old Vitaly started
working in 1932. In 2006 as a gift to 90 years of Vitaly Ginzburg I wrote
an Article ”Three friends: Altshuler, Ginzburg, Tsukerman”, its English-
language version is placed at the UFN/tribuna web site.

Vitaly Ginsburg, Lev Altshuler, Veniamin Tsukerman in front of
Tsukerman’s cottadge in Nuclear Center Arzamas-16 (Town Sarov), 1955
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Also the book ”Extremal States of Lev Altshuler” was published in Fiz-
matlit Publ in 2011 where there is also the contribution by Vitaly Ginzburg
and plenty of documents and witnesses.
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2 Second History Note.

Problem of Dimensionality.

Integral form of Einstein equations

There are no dynamical answer yet to the questions: why observed Uni-
verse is 3+1 dimensional? Why, if we suppose higher dimensions of equal
rights at the Big Bang, only 3 space dimensions expand to large volume?
Beginning from the Ehrenfest pioneer work (1920) a number of important
observations about the privileged character of 3+1 space-time were made. In
frames of string theory and branes’ dynamics interesting attempts to explain
the expansion of 3 dimensions based upon the observations that 2 + 2 < 5
and 4 + 4 < 10 were made by

- Brandenberger R.N. and Vafa C., , Nucl. Phys., vol. B316, p.391 (1989).
and
- Karch A. and Randall L., Relaxing to Three Dimensions, Phys. Rev.

Lett., 95:161601 (2005), Preprint hep-th/0506053
correspondingly, etc., etc. Here the special role of (3+1) is revealed in

totally different context.
Altshuler (1966, 1985) and independently Lynden-Bell (1967) proposed

the integral representation of Einstein equations. This ”integral” approach
was also developed by Sciama, Weylen, Gilman (1969, 1970) and Raine
(1981).

- Altshuler B.L., ”Integral form of Einstein equations and covariant for-
mulation of Mach’s principle”, ZhETP, vol. 51, p. 1143 (1966). [Sov. Phys.
JETP, vol. 24, p. 766 (1967)].

- Lynden-Bell D., ”On the Origins of Space-Time and Inertia”, Monthly
Notices Roy. Astron. Soc., vol. 135, 4, p. 413-428 (1967).

- Sciama D.W., Waylen P.C., Gilman R.G., ”Generally Covariant Integral
Formulation of Einstein’s Field Equations”, The Physical Review, vol. 187,
p. 1762-1766 (1969).

- Gilman R.G., ”Machian theory of inertia and gravitation”, The Physical
Review, vol. D2, 1400-1410 (1970).

- Raine D.J., ”Mach’s principle and space-time structure”, Rep. Prog.
Phys., vol. 44, p. 1151 (1981).

- Altshuler, Boris L., ”Mach’s Principle. Part I. Initial state of the Uni-
verse”, International Journal of Theoretical Physics, vol. 24, 1, p. 99-107
(1985).
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RAB −
1

2
gABR = κTAB (1)

gAB(x) = κN
∫
Gret
AB

PQ(x, y|g)TPQ(y)
√
−g dNy. (2)

which we write down here for space-time of arbitrary dimensionality N .
This integral form is the vivid formulation of Mach’s principle as Einstein

put it: ”Space-time must be totally created by matter”.
Kernel Gret

AB
PQ(x, y|g) in integral formulation (indices A,B refer to the

point x; P,Q - to y) is a bi-tensor Green function on the background space-
time described by the same metric and is the retarded solution of the equation

ECD
ABGCD

PQ(x, y) = δPAδ
Q
B

δN(x− y)√
−g

, (3)

where covariant differential operator ECD
AB is defined on the same background

gAB.
This operator must satisfy simple condition:

ECD
AB gCD = N(RAB −

1

2
gABR), (4)

then its action upon integral form immediately gives Einstein equations.
There are many doubts and questions as regards to integral formulation

of Einstein equations. One of questions was put to the author by John
Archibald Wheeler (in 1968 at the Second International Gravitational Con-
ference in Tbilisi) who said: ”Why don’t you include energy-momentum of
gravitational waves in the source in the RHS of integral form?”. I came back
now to this old stuff not because I found out an answer, but because for the
naturally defined (see below) differential operator ECD

AB the demand of valid-
ity of integral representation of solutions of Einstein equations unexpectedly
proves to be a selection rule for the dimensionality of space-time.
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3 Mach operator

We define the differential operator ECD
AB taking the second variation of the

Einstein Action
∫
R
√
−g:

EAB,CDh
CD =

2√
−g

δ2(R
√
−g)

δgABδgCD
hCD =

2√
−g

δ[
√
−g(RAB − 1

2
gABR)]

δgCD
hCD =[

−gACgBD∇2 − 2RAC,BD +RACgBD +RBCgAD +
1

2
gABgCD∇2+

RABgCD + gABRCD − gACgBDR−
1

2
gABgCDR

]
hCD, (5)

where ∇2 = gPQ∇P∇Q is D’Alambertian, and hCD are small variations of
metric

gCD → gCD + hCD (6)

subject to the transverse gauge condition

∇B(hBA −
1

2
δBAh

C
C) = 0. (7)

First four terms of operator EAB,CD are the standard Lichnerowicz op-
erator 4L which gives the variation of Ricci tensor in the transverse gauge:
2δRAB = (4Lh)AB = −∇2hAB − 2RA

C
B
DhCD +RC

AhBC +RC
BhAC .

Action of ECD
AB upon gCD (instead of hCD) immediately gives LHS of

Einstein Equations, multiplied by N . Thus Green function defined by EG =
δ may be used in presenting Einstein equations in integral form. Let us for
short call the differentaial operator defined above Mach operator.

In what follows the solutions of the homogeneous equation

ECD
AB uCD = 0, (8)

are studied on some elementary backgrounds.
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It is worthwhile to note immediately that in this paper, following
- Gibbons G. and Hartnoll S.A., ”Gravitational instability in higher di-

mensions”, Phys. Rev., vol. D66, (2002) 064024, Preprint hep-th/0206202.
- Kodama H. and Ishibashi A., ”A master equation for gravitational per-

turbations of maximally symmetric black holes in higher dimensions”, Prog.
Theor. Phys., vol. 110, p. 701-722 (2003), Preprint hep-th/0305147.

-Ishibashi A. and Kodama H., ”Stability of Higher-Dimensional Schwarzschild
Black Holes”, Prog. Theor. Phys., vol. 110, p. 901-919, Preprint hep-
th/0305185.

the gauge-invariant tensor variations of the stationary background metrics
of class

ds2 = gabdx
adxb + r2(x)dσ2

n; (9)

are considered. Here xa are coordinates of the m-dimensional space-time,
a = 0, 1 . . . (m − 1); dσ2

n = γijdx
idxj is the metric of the n-dimensional Gn-

invariant space with normalized constant sectional curvature K = 0,±1. So
the dimension of the whole space-time is N = m+ n.

And since tensor modes are transverse and traceless by their definition
the conclusions of this paper do not depend on the choice of transverse gauge
condition.
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4 Ghosts of Mach operator select 4 dimen-

sions. Einstein universe background

ds2 = −dt2 + r20dΩ2
n. (10)

And let us consider this metric as a background in Eq. ECD
AB uCD = 0

written for tensor modes of uAB ”living” on sphere Sn:

ũji = f(t)vji (x
k), (11)

vji (x
k) are tensor eigenmodes of the Laplace-Beltrami operator on n-sphere

of unit radius: 4Snvji = l(l + n − 1) − 2; l = 1, 2 . . . ; n = 3, 4 . . . (tensor
modes do not exist on 2-sphere).

Then Eq. Eu = 0 comes to:[
d2

dt2
+ µ2

]
f(t) = 0, µ2r20 = l(l + n− 1)− 2− n(n− 3), (12)

here l ≥ 1 and n ≥ 3.

For the most ”ghosts-threatening” lowest value

of momentum number (l = 1) we have:

µ2r2
0 = 4n− 2− n2 (13)

which is positive for n = 3 and negative for
n ≥ 4. Thus Mach operator ’selects’ (1+3)-
dimensional Einstein Universe.
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5 Ghosts of Mach operator select 4 dimen-

sions. De Sitter background

For this highly symmetric background (RAB = c(N − 1)gAB) Eq-s
ECD
AB ũCD = 0 written for traceless modes ũCC = 0 looks as:

(4Lũ)BA − cN(N − 1)ũBA = (−∇2 − cN(N − 3))ũBA = 0, (14)

It is seen that on the De Sitter background (c > 0) mass squared
of traceless modes of Mach operator becomes negative for space-
time dimension N ≥ 4. Actually, as we’ll show now, the ghost-
problems of Mach operator at this background begin for N ≥ 5.

The only difference here from the analogous equation for tensor
variations of Einstein equations is in the term cN(N − 1) in the
LHS. For the ”mass shell” variations of De Sitter space-time this
term must be changed by 2c(N − 1) (cf. Eq. (24) in Gibbons and
Hartnoll (2002)); hence there mass squared of traceless modes is
non-negative and de Sitter space is stable as expected.

Let us now look at the ghosts of Mach operator written on
the De Sitter background which metric we - again in parallel with
analyses of Gibbons and Hartnoll or Ishibashi and Kodama - take
here in a form:

ds2 = −(1− c r2)dt2 +
dr2

1− c r2
+ r2dΩ2

n, (15)

(dΩ2
n is metric of round sphere Sn).
We consider tensor modes on a sphere:
By the standard changing variable r to Regge-Wheeler type

dimensionless coordinate y and rescaling field ϕ:

dy =

√
cdr

1− cr2
, r =

1√
c

tanh y, ϕ = r−n/2Φ (16)

(0 < y <∞) finally we come to a Schroedinger-type equation
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−d
2Φ

dy2
+

[
4l(l + n− 1) + n2 − 2n

4 sinh2 y
− β(n)

4 cosh2 y

]
Φ =

1

c
E2Φ. (17)

Coefficient β(n) in potential in square brackets is crucial. It
is function of dimensionality n. And this ”Schredinger Equation”
actually embraces two different cases of interest with different de-
pendences β(n):

βT = 5n2 + 6n;
β
(e)
T = n2 + 2n.

Here βT (n) is received from Mach operator and β
(e)
T (n) - from

variation of Einstein equations.
Potential V (y) = [· · ·] in square brackets is, as expected, non-

negative for β = β
(e)
T , i.e. for tensor variations of de-Sitter back-

ground. But it is not the case for corresponding eigenmodes of
Mach operator.

Undesirable ghost exists if for E2 < 0 in ”Schredinger equation”
the normalization condition is valid:∫

ϕ2 rn

1− cr2
dr =

∫ ∞
0

Φ2dy <∞. (18)

Ghost appears if negative potential well of V (y) = [·] is suffi-
ciently deep. Fortunately there is exact solution of which clarifies
the word ”sufficiently”:

Φ = (tanh y)l+n/2(cosh y)−γ, γ =
1

2

√
1 + β −

(
l +

n

2
+

1

2

)
, (19)

with the ghost-like negative energy squared E2 = −cγ2 < 0.
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This solution meets normalization condition if here γ > 0. This
is evidently not the case for ”Einstein” values of β = β

(e)
T , hence

there are no normalized ghost modes among Einstein variations
of de Sitter metric. For tensor modes of Mach operator β = βT
normalization condition γ > 0 looks as:

√
5n2 + 6n + 1 > 2l + n + 1 (l ≥ 1, n ≥ 3). (20)

In particular for n = 3 (i.e. for the 5 dimen-
sional space-time this condition comes to 2−l >
0, hence normalization condition is fulfilled for
the ghost-like tensor mode with l = 1.

Thus there are ghosts among tensor modes of Mach operator
written on the 5-dimensional (and higher than 5 dimensions) De
Sitter backgrounds. In particular this means that Integral form
written for tensor modes on De-Sitter background of five and more
dimensions is plagued by the ghosts of the retarded Green function
G.
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6 AdSm × Sn background

Let us mention first the pure AdS. In this case there are no
ghost problems of traceless modes.

It is possible to show also that in RS model the presence of the
Z2-symmetric co-dimension one brane results in the ghost bound
state of tensor mode of Mach operator in the δ-function negative
well potential of the brane.

More interesting is to consider the properties of Mach operator
when the background is the Freund-Rubin AdSm × Sn space-time:

ds2 = dz2 + e−2Hzηµνdx
µdxν + r20dΩ2

n, (21)

which stability was investigated in DeWolfe O., Freedman D.Z.,
Gubser S.S., Horowitz G.T., and Mitra I., ”Stability of AdSp × Mq

Compactifications Without Supersymmetry”, Physical Review D, 65 (6).
Art. No. 064033 (2002), Preprint hep-th/0105047.

For this metric we have:

Rab = −(m− 1)H2gab, Rij =
n− 1

r20
gij =

(m− 1)2

n− 1
H2gij, (22)

and total scalar curvature is given by:

R =
m− 1

n− 1
(m− n)H2. (23)

Homogeneous Eqs. ECD
AB uCD = 0 on the background AdSmXS

n

for two types of tensor modes:
- spherical tensor modes uji = ϕ(n)(z, x

µ)vji (x
k) on Sn and - grav-

itational waves on AdSm which are spherical scalar modes uνµ =
ϕ(m)(z, x

µ)vνµ(xk) (we again omit everywhere the spherical momen-
tum index l) come to two equations for scalars ϕ(n) and ϕ(m) corre-
spondingly:

(4(m)−M2
(n),(m))ϕ(n),(m) = 0, (24)

Where 4(m) = gab∇a∇b is D’Alambertian on AdSm and effective
masses M(n) and M(m) are:
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M2
(n) =

l(l + n− 1)− 2 + 2n

r20
−R =[

(m− 1)2

(n− 1)2
(l(l + n− 1)− 2 + 2n)− m− 1

n− 1
(m− n)

]
H2, (25)

here l = 1, 2 . . .; n ≥ 3;

M2
(m) =

l(l + n− 1)

r20
− 2(m− 1)H2 −R =[

(m− 1)2

(n− 1)2
l(l + n− 1)− 2(m− 1)− m− 1

n− 1
(m− n)

]
H2, (26)

here l = 0, 1 . . .; n ≥ 2.
It is easily seen that Breitenlohner-Freedman condition for AdSm

M2 ≥ [−(m − 1)2/4]H2 which guarantees absence of the ghosts-
solutions is always fulfilled for M2

(n), that is for tensor modes of
Sn.

Whereas for for gravity waves on AdSm, i.e. for M2
(m) it gives for

lower spherical mode l = 0:

mn + 9 ≥ 5(m + n). (27)

Minimal dimension of space-time AdSm per-

mitted by by this expression is m = 6, in this

case we have n ≥ 21, i.e. for total dimension

N = m + n ≥ 27.
For m = n, i.e. for the AdSn × Sn back-

ground, this condition gives n ≥ 9. In this case
R = 0 and for tensor modes under considera-
tion Mach operator comes to the Lichnerowicz
operator 4L. Thus n ≥ 9 (i.e. N = 2n ≥ 18) is a
condition of absence of ghosts of the AdSm ten-
sor modes of Lichnerowicz operator written on
the AdSn × Sn background.
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7 Discussion

Main results of this paper are given by Formulae which show
that (3+1)-dimensional ”Einstein universe” and De Sitter space-
time are singled out by the demand of absence of ghosts of the
naturally defined gravity differential operator. However this is just
a mathematical observation. To connect this result for De Sitter
universe with the possible dynamical answer to the nagging ques-
tion ”Why only 3 space dimensions expand during inflation?” is an
open problem.

There is direct connection between absence of ghosts of this
operator and validity of integral form of Einstein Equations if the
retarded Green function is used there. ”t what is the physics be-
hand the integral form - the physics which will justify its use as a
selection rule (for dimensionalities in particular)?

The ideas of ”gravity without gravity” (rephrasing Weeler’s
favourite saying) or of ”space-time totally created by matter” (which
comes up to Mach’s idea of relativity of accelerated movements)
look quite dynamical. And hystorically Mach’s ideas inspired Ein-
stein for creation of General relativity, which however did not ex-
clude empty (”non-machian”) solutions of Einstein equations.

In string theory graviton is a dynamical excitation of more fun-
damental object and background space-time is Bose condensate of
these excitations, and Einstein’s gravity Action comes up as an
effective one. However string theory suffers from plethora of ad-
missible backgrounds which deprives it of physical predictability.
String theory evidently needs additional selection rules. Can inte-
gral form of Einstein Equations be among such rules?

so nice condition for dimensionalities m,n of AdSm×Sn received
above is so far just a numerology of dimensionalities which may
become science in case dynamical grounds for integral formulation
of Einstein equations will be found out.
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Boundary conditions imposed by integral form (??) upon so-
lutions of Einstein equations (??) are easily received if we ex-
press energy-momentum tensor in the RHS of (??) from (??), (??):
NκTPQ = ECD

PQ gCD, and then integrate (??) by parts. This (with
account ∇MgCD ≡ 0) gives∮ [√

−g(y)∇NyG
ret
AB

Q
Q(x, y)

]
dSNy = 0 (28)

which is the integral over boundary of space-time. Fulfillment of
(??) guarantees the validity of (??).

Now we come to the formulae which will be used in the bulk of
this paper.

Essentially more strong conditions than are imposed upon met-
ric satisfying integral representation (??) if we demand that ”neigh-
boring” solutions of Einstein equations also are purely inhomo-
geneous. Thus we present integral form for the small variations
of metric δgAB = h

(e)
AB (symbol (e) means that this is a solution

of linear variation of Einstein equations (??) on the background
metric gAB satisfying (??)). Variation of (??) gives (symbolically)
δg = δG · T + G · δT . The first term is calculated from varia-
tion of (??) preserving the retarded nature of the Green function:
δG = −G·δE ·G, thus with account of (??): δG·T = −G·δE ·g. Second
term is received from variation of (??), (??): G·δT = G·δE·g+G·E·δg.
This chain of variations gives finally:

h
(e)
AB(x) =

∫
Gret
AB

CD(x, y|g)EPQ
CDh

(e)
PQ(y)

√
−g dNy. (29)

Here, according to the definition of ECD
AB in (??):

ECD
AB h

(e)
CD =

2√
−g

δ(
√
−gκTAB), (30)

which is just the variation of Einstein equations (??).
This Eq. comes to identity if we act upon it with differential

operator ECD
AB . ”Machian” absence of the ”free term” in the RHS

of (??) means the fulfillment, in analogy with (??), of the following
boundary condition:

∮
{
√
−g(y)[(∇NyG

ret
AB

PQ(x, y)) (h
(e)
PQ −

1

2
gPQh

(e)K
K )−

15



Gret
AB

PQ(x, y)∇Ny(h
(e)
PQ −

1

2
gPQh

(e)K
K )]} dSNy = 0. (31)
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