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introduction

The SU(5) model of grand unification in its initial form® was rejected by
later experiments? and required a certain modification.? In reference 4, a
modified model was suggested that not only granted a vacancy for the
lepton, but also had all its coupling constants asymptotically vanishing;
this provided mathematical consistency in the theory suggested. This
model, however, contained, as a matter of fact, two and a half
generations.

In view of the recent experimental data,’ it is of interest to introduce
extra generations into the model of Reference 4.

The goal of our work was to construct a realistic asymptotically free
SU(5) model of grand unification with no fewer than three generations
of particles; we succeeded in doing so with four generations.

The model constructed contains rather many superfluous particles,
such as the heavy Dirac (24_+10_+ 5* )-plet, but correctly describes the
low-energy physics. This heavy multiplet was introduced in order to
achieve the following goals: (1) to guarantee asymptotic freedom with
respect to every coupling constant (in Reference 4 the heavy 24-plet
sufficed, whereas the (10_+ 5* )-plet proved important for us here) and
(2) to split the masses of leptons and quarks.

Usually, to achieve the latter goal within an SU(5) scheme, one
includes a Higgs multiplet with 45 or more components.® The authors of
Reference 4 chose to leave the 7 lepton without the accompanying light
neutrino. Within the present model, the necessary mass difference
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between leptons and quarks is provided by introducing a heavy (as
heavy as 10!2 Gev in the case under consideration) generation.

The SU(3) x SU(2) x U(1) composition of our model is as follows:
apart from four usual and one Dirac heavy generations, it contains a
heavy (above a few My,) leptonic triplet, an octet of neutral quarks, and
two weak doublets of triplet quarks with 4/3 and 1/3 charges.

1. LAGRANGIAN

We consider an SU(5) model with the following Lagrangian:
L=LG+LI"+LS! (].1)

where Lg, Ly, and Lg are the kinetic part, Yukawa coupling, and
interaction of spinless bosons, respectively.

The kinetic part L; is completely determined by the multiplet
composition of the model: the 24-plet of vector bosons V', the 24-plet of
fermions B, two (5_+ 10* )-plets of right fermions 0% and Y ¥ (j=1,2),
three (5*_+ 10 )-plets of left fermions *67 and “Y§, (x=1,2,3), and one
(5*_+10 )-plet of right fermions n% and KJ;, which, together with 67
and *yj,, form a heavy generation of Dirac 4-component fermions
(therefore, the model contains four chiral and one Dirac generations). It
also contains a (24 +5 + 5 )-plet of spinless bosons ¢* M,, and N,.
The light generations contain the usual fractionally charged quarks u, d,
¢, and s of all three colors and the usual leptons (e, g, v,, v,)-

The Yukawa coupling L, is chosen not to be of the most general form,
but the particular form taken survives under radiational corrections:

Ly=—B[(K:P + K2Q)F*"
+(KpP +K3Q)D*)¢* B’
— [V KE (T hgas)
+a,"Binz (¢°24.0)

+ 64 By 05 (M™* %)
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+ g BN *2,)

+0% "BFBR(N**1%a)

+f {0 0L (M**2, rKd)

+f‘£‘ de.R zw;‘"f'(NK*gxﬂ’f')

+ Ko Y W (M® ey px00)+hec.] (1.2)
Here P=(1+y5)/2 and @=(1—y,)/2 are projectors onto the left and
right parts of spinors, respectively, F**'=if* and D**
=2tr(A*{4%, 2’}), where f*#" are the SU(5) structure constants, A* are
generators of the 5 representation normalized as tr (1°4#)=14,,, the

tensor #,,, is the projector onto the 10-dimensional space of skew
symmetrical rank 2 tensors,

P avea= 30 sdpa— Oaadso),
and I'* are generators of the 10 -representation
Tasca =22 parv (RO )P e ca-
The most general Yukawa coupling may be written if the terms

obtained from (1.2) by the interchange M—N are added to it.
The scalar interaction has been taken in the form

Lg= —§A3($?)* — §(¢*D*P$*)253.
— 222232 (M * M)p? +1022,02(¢°D**P $P)
x (M**3%,M)
+322(M* M)2 +(M—N)]
— Zan(M T MY(N " N)—83p22(M T NN M). (1.3)

This self-coupling is not of the most general form either. It could also
include the terms
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[AM*N)$* +h.c.],
[A(¢°D*PFYM** N +h.c.],
[MM*MYM*N)+he], [AN*NYN*M)+he.]

[MM*NYM*N)+h.c.]. (1.4)

However, these terms, if not included, do not reappear after radiational
corrections are taken into account once the Yukawa interaction is
chosen the way it is. Besides, the cubic terms in the spinless fields,

qu!=01Mx‘(¢ﬂ1}¢)M1+azN“(¢ﬂ xN;
+[a, ME*(¢*1%)N, +h.c.] +bD* PP, (1.5)

may be added to Lg without affecting the asymptotic freedom.*

2. RENORMALIZATION GROUP EQUATIONS
The one-loop approximation of the renormalization group equations'*
for the dimensionless couplings of our model is a system of three sets of

equations.
The first set is the sole equation for the gauge coupling constant

g=—1g". 2.1

Here the dot stands for differentiation with respect to r=1log K/1672.
This equation is readily solved to give

g (n=g5-[1+5951]" " (22)

allits solutions are asymptotically free, in the sense that they tend to zero
as t—00.
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The second set of equations is formed by those for the Yukawa
coupling constants

KF=%iK,ImK}* Kp,—4t5]a
+ K[ —30g%+20|K2|+ % K3|+ata+3v*y
+3(0 0, +05 9, +11)],
Kp=10iK;Im K K}
+Kp[ —30g% + 10|K3 + 28| K3 +a*a+3v*y
+30, %0, +6,10,+142],
a=(—5Kp+%Kp)t*5, +a[ —2¢> + 10|K3| + % K3
+iata+3vIyv+? 1+ [f 1 f1+%$0:01 Ja,
t=(—5Kp+%Kp)a*é, +1[ -3¢ + 1> + 31K
KE|+2a*a+22616,+4650,+2te(f 7 £5)].
v=v[ 18842 + 10|KZ| +*K3| +a*a+%v*v]
+[3f2 f2+6KK* ]y,
8, =(—5Kt+%K¥at+6,[ 49> +3|K2 + 24 K3
+3507 0, + 4 + 2t (f 5 f)]+[Saa* +1 T £1104,
6,=0,[ —141g? + 31K} + HIK3| +olrl> + 330,70,
+2tr(fy f1)+24t (KT K)]+f2f 3 62,
Fi=fi[—18g*>+%63 6, +2tr (f { f1)+24tr(K*K)]

+3f1f 1 fi+f1[Saa* +%8,6{]1—18K*Kf,,
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Ja=fo[ —18g> + 11> + 2861 6, + 2tr (f 5 1>)]
+3f2f 3 fa+f2[Bvw" +6KK*]+$6,05 f,
K=K[-1$8g2+125} 6,4+ 2tr (f { f1)+24tr (K*K)]
+12KK*K=3Kfi f{ +[3w* +3f 5 f,]K. (2.3)

We look for solutions to this set in the form® w(f)=a() g(¢). The
differential equations for @(#) have nonzero stationary solutions @ (1)
=const.

It is an easy matter to check that the neighborhoods of many of these
stationary points contain solutions @(¢) that tend to these stationary
points. The existence of these solutions allows one to obtain a mass
hierarchy of fermions different from that which originates from the
hierarchy of the vacuum expectation values of Higgs fields. We discuss
this question in more detail below.

The third set of equations serves as the constants of scalar self-
coupling

A34=320484+ 844202+ $2034+ 10(AS202 + Ad2x2)
+24g* — 32|K3| —SAK 3| +4z,A3
—H (") —Ha*a),
034=80834+ 1242834+ (83202 + 32y2) + 1597
—20|K#| — 120|K 3K 3| + 38 K3
+42,03—3(v*v)?—2a*a)?,
Daa =800+ 53852002 + (2643 + 42634
+ 12230422002 + (1043 2002 + 203 2302)A3252
+2(z,+ Zp)AZ202 + 69* — 8(57 8,) 3K

$IKh— v KK v—3a'f { fia,
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Aanr=425251+ 550552 + (26434 + 22534
+ 124300252+ (1043 1303 + 265200303142
+2zg+zy)A52x2+6g* —33|1%a* a
—3%(a* 0,07 a)—8(I11* +67 0,)GIKE +3IK3)
—32v*f 3 fav—16Re [1*(a"6,)(— 4K +156Kp)],
022 =832y + 2203202 + 2434+ 3203
+2234)0% 202 + 20325203242 + 22y + 23 )0 52002
+15¢* —83,* 8,[4{K3| + BIK3 —§ Re K,K3]
+32v*KK*v+2a*f{ fia,
02an2 = (8A22p2+ 1282252+ 243+ 3252,
+203)032n2 + 2032520022+ 224 + 2) 032y
+15¢* —8(|1* + 07 8 )@IKF| + 3IK3| +3 Re KpK})
+&|tPata+a* 6,6, a)—%vTf 5 fov
+18Re[Kpt*(@a*é))],
1200 = 1848 + 104} 202 + 2040282 + 4421242030282

+ 2411;;1“1 + %6$1M2 + 42.\!)'%{‘ +%Q‘

—atr(fyf 1 f1f 1) —192tr (KK KK™*)—1$(876,)%,

AZe=18284+ 1048252 + 208232 + 442 2320002n2
+ 24A$2N2 + %ﬁé;mz + 4ZN’1§“‘ + %&g"

—4tr (fof 3 f20 ) —58(* + (31 6,)%),

391
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A2pane = (A2ra+ A2)(1242 252 + 26%232) + 4032 pn
+ 2852wz + 244220243252 — 3503200203202
+2(za+ zp)Aien + 389* — 11203 6,
=24t (K*Kfof )31 £ 1 f101+ 03 /7 f20),
02pan2=20%2p2(Apa+ A34) + 8Akan203202
+ 1063252+ 35022020322 + 22pg + 2x) 022y
+$39* +311265 6, +24tr (f,f s KK™)
=307 f 1 f101+03 f2f 3 62),
where
z,=10|K| +%#K3|+3v*v+a*a—154%,
2y =1203 8,4+ 2tr (f{ f1)+24tr (K*K)—3¢847,
zy=3(|t1* +67 0,) +21r (f 3 f2)—¥g".

For some solutions of the equations for the Yukawa coupling constants,
(2.4) have solutions of the form

(1) =% g(1). (2.5)

The existence of such solutions of the set (2.4) imposes restrictions on the
choice of solutions of the set (2.3).
Here we list some solutions of the sets (2.3, 2.4):

IR3=128 122 126 127 1.34
IR3|=1.63 3.13 235 137 24l
I7HPRE=0 227 0 222 177
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I7222=331 0 282 222 177

I7112=360 0 1.87 237 0

I7222=0 443 3.07 278 4.43

[5,/=0.514 0.7870 0 0

[7,2=0 0 0.563 0.566 0

72,=0.596 0.594 0.582 0.592 0.594

2,=0.985 0.785 0.967 0.979 1.25

T2:2=0.0545 0.153 0.112 0.0220 0.125
T2.y2=—0.0709 —0.165 —0.0602 —0.0606 —0.153
32,,2=0.115 0.878 0.539 —0.0564 0.507
52:4:=—0.876 —1.13 —0.600 —0.596 —1.03
72.=1.16 121 1.14 0.940 0.951

12.=136 164 1.15 115 1.64

7202 =0.493 —0.0796 0.311 0.248 —0.0447
32ya=—0.274 —0.199 —0.201 —0.229 —0.235

The rest of the charges are equal to zero. Note that, since the equations
for the Yukawa couplings are invariant under the transformations

+ + i +
fi—u fiuf, frousfuy, K—e*<u,Kuf,
a—u,a, v—e®un, 6,—eu,d,,
52—>e‘“u351,

KF—PB"FKF, KB—WLW'KD, f—>ei(¢'+ﬂ)f (2.6)

with u; and wu, unitary 2x 2 matrices and u, and u, unitary 3x3
matrices, we are able to create a whole family of solutions by applying
(2.6) to any solution of the set (2.3) found.
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3. SOLUTIONS FOR YUKAWA CONSTANTS THAT HAVE THE
ASYMPTOTIC FORM (1) =a,-g(1)

The set (2.3) of equations for the Yukawa coupling has the form
w;=f{(w). 3.1)

By introducing the new functions

5 @(?)
()= 3.2
=" (3.2)
and the new variable x in place of ¢
x=—%logyg, (3.3)
it is reduced to the form
d@; _ _
_&‘?=fi(m)+%mi (3.4)

(certainly, g(r)=1).

Some stationary points of this set were written in the preceding
section. Here we are going to study their stability.

The behavior of solutions of (3.4) near the point @(f) = @, is subject to
the equation

d
a;a')= ACI)*F%GB, (35)
where =& —®, and
ofi
"'_awj iy (3.6)

It may be easily verified that the matrix A4 that governs this behavior has
the property A;;=A; =0 if @,;,=0 while @;, #0.
We are interested in the behavior of the deflections @, for all i such that
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@;0=0. Hence we consider only the corresponding matrix block of A. By
applying transformations (2.6), we can come to the situation when the
matrices f,, and f,, are diagonal and the value of K, is real.

For

RE"=0, ;0=0, 310=0, EIU=0, KD(]:O (3.?)

(it is only for these values that we succeeded in finding asymptotically
free solutions of (2.4) for the scalar self-couplings), the part of the matrix
A that corresponds to vanishing @;, is diagonal with some diagonal
elements 4,.

From (3.7), it follows directly that the solutions @(r) that correspond
to vanishing @,, behave at large ¢ as

@;~exp[(4;+3) logg **]=g%, (3.8)
where
= —2i—1. (.9)

The values of the powers a; for the solutions listed in the preceding
section are the following:

i o; o; o; o o;
Im K 4.59 437 4.55 4.60 4.86
ReK, 9.71 9.25 9.59 9.68 10.22

a, -098  —197 —09  —189  —131
a, -230 -106 —208 —189  —13I
as -098  —106 —09  —100  —0.60
vy = = 0.24 0.09 2.28
v, 0.71  —090 — — 1.39
va 0.71  —001 0.62 0.57 2.28
t 3.56 2.80 2.43 2.35 2.76
51 3.72 221 2.67 1.60 2.29
52 2.40 3.12 1.54 1.60 2.29
83 3.72 3.12 2.67 2.49 3.00
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i o -7 o; o o
&2 1.44 —1.75 —0.48 —0.16 —1.78
fy 1.99 1.38 1.69 1.33 1.05
3t — 0.59 — — 1.50
2t 2.95 2.09 2.25 2.08 2.66
* 2.54 1.15 0.71 1.01 1.50
32 3.32 — — — —
52 2.54 1.15 1.12 1.42 1.50
2 3.32 2.66 2.25 2.08 2.66
K" 2.34 3.61 275 3.63 3.56
K* 3.43 3.30 2.11 3.14 2.67
K3! 3.43 4.18 3.13 4.10 3.56
Kt 432 2.25 445 3.63 3.56
K?? 5.41 1.93 3.80 3.14 2.67
K3? 5.41 2.82 4.82 4.10 3.56

Initial values for those w; whose a; is positive may be taken from a
small neighborhood of the curve @;o9(t), whereas those for w; with
negative o; should lie on the special curve @;,g(f). We exploit this
possibility below.

Solutions of this kind were used earlier to build an asymptotically
supersymmetrical Eg GUM.’

4. VACUUM EXPECTATION VALUES OF SPINLESS FIELDS

Let us look for the vacuum expectation values (VEVs) of spinless fields
within the tree approximation. The potential, as written in terms of the
matrix

w={ A" (4.1)
and the vectors v; and v,,
V1a= <Ma>s Ulu=<Na>$ (42)

is, in the three approximation, equal to

2
m
V(w, vy, vy)= —-—ftrwz—mi,v;' v, —miv3 v,
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—(my207 v, +hc) +3(3A3— 103 )(tr w?)?
+305 trw* + [ (A22p02 —303202) tr w? -5 v,
+405aa0] Wy + 34301 v))?
+(M—N, v,—0,)]
+ A32na (07 01)(0F 02) + O3ana(vy V)03 0;)
+a,0; wo, +a,03 wo, +(a, 07 wo, +h.c.)
+3btrwd. 4.3)

We are looking for the VEVs in the form

4)
—5+%

=
i
i
=
&
[
tTeoeocoo
=
(3]
]
Aaococeoo

=
Parameters p, a, and s may be used as independent ones instead of the

masses m3, my;, and mj. For t=r/s, it is easy to obtain an equation that
has the form

2 b ¢

=a,|R|* +a,|S|* +2 Re(a,,R*S) (4.5)

in terms of the dimensionless variables R=p/s and S=o/s. This
quadratic in the ¢ equation gives a solution for VEVs.

5. MASSES OF VECTOR BOSONS

Since the symmetry group and the Higgs sector of our model are the
same as in Reference 4, the vector boson masses acquired due to
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spontaneous symmetry breaking must also be the same. First of all, one
readily separates massless vector fields: the octet of gluons, i.e., the fields
of the form

0 0
. 0 0

Gi= 0 0] (a=12..8)
0 0 0 0 0
0 0 0 0 0

0

The mass matrix of the other vector fields splits into blocks that
correspond to the eigensubspaces of the operators 4,, G2, andléﬁ,
where Gi =diag(1, —1,0,0,0), G: =diag(1,1, —2,0,0), and X(Y)
=[X, Y]

Sinceall ::harged particles are contained in one-dimensional eigensub-
spaces of 4, Gﬁ, and GE, one immediately finds their masses to be

ms=gz[[n- VL[, w]-[v;w]*)]

H 30+ 30y ) e+ | s
Hence it follows that the leptoquark masses are

2 Rt S
M43, F1L,F1) =M (£4/3, £1, F1H =M (£ 4/3,0,72) (5.2)
cacoall 2
=g (%_%S) s
m? a2 =m?
(£1/3, FLF) =M (113, +1, F1HTM (£1/3,0,F2)

=[G+ +3(pl* +16)], (5.2)
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and the mass of the charged W, boson is equal to
My =mis1,0,0=9"[(r—9)* +3(p* +o1)]. (5.3)

In order to find the mass of the neutral Z boson it suffices to note that we
know the masses of the three out of the four neutral bosons:

A,,G},and G5.
The Z boson must be orthogonal to them,
Z=qg-diag(1, 1,1, 1, —4),
and, according to (5.1), have the mass
mz=%g*(Ip|* +1a]?). (54)

It is seen from the expressions for the vector boson masses (5.2-5.4)
that, so long as we want to obtain the necessary mass hierarchy, the
following estimates are to be held:

my=g[(r—5)*+3(lpl* +o*)]"* ~ 100 GeV,
my o ~10'4-10'% GeV,
(the subscript L.-Q. indicates leptoquarks), so that the inequalities
lg(r—5)| Z 100 GeV
and
lgp| 2100 GeV
|go]| 2100 GeV

are valid. These inequalities imply the following estimates:

|i-1'*<*10‘“,
5

2
h

0.2
(210724, (5.5)
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If now we take (4.5) into account, from which it follows that

EN 1 __2 Ipzlégzuz"' |0’|2532N1
s 10 05452 :

we can make the preceding estimate more accurate:

F—1|210‘2‘,
s

g-lr—s/=107° GeV, (5.6)
and come to the following values for the weak vector boson masses:

g 2 2y1/2
my~——=(|p|* +|0*)'2,
W \/Ep

2
mzxg \/;(I,Ol’ +|o|?)'2, (5.7
with their ratio

ml:ﬁ:ﬁcosﬂw

m; 2

being determined by the following value of the Weinberg angle 0y, i.e.,
the angle between A and the hyperplane orthogonal to (W, , [W,, W_]):

; tr(AZ,)])?
29— [ o/d _
S = 42 ‘trZ3 b
where Z,=[W,, W_].

In concluding this section, the following remark is in order. The
estimates (5.6) were obtained under the assumption that the coefficients
by the cubic terms in the scalar potentials are small. If, on the contrary,
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they are large, only the weaker estimates (5.5) are valid. In the latter case,
the scalar 24-plet may break SU(5) down not to SU(3) x SU(2) x U(1),
but to SU(3) x U(1), which is then broken down to SU(3) x U(1) by the
scalar 5-plets. An investigation of this sequence of breakdowns of SU(5)
will be performed elsewhere.

6. MASSES OF FERMIONS

The mass matrix of fermions splits into blocks that correspond to
invariant subspaces of the operators 4, G, and G®.
They total nine:

1, 2. Charge +4/3:
r 4 r 2

3. Quarks with a —2/3 charge:

3L by L
12 12
my+3v3s fofs | KR
M_23,0,+2= . ) )
4K:”*p 4K""‘p @?4'

4. Quarks with a +2/3 charge:
3L i L
W34 Y3s
my+(2r—5s)v¥ 2r—$§s)v? K3

Miz3,0,-2 = ) » )
4K3Jtp 4K"*p lellz
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5. Quarks with a —1/3 charge:
B, *Yis Yis
—KeG+9+Kp(3-3) 0 0 By,
M 1310 = 0 my+4v3G—9 MG-D| K&
/2 ~ffe —fio | Bk
6. Quarks with a +1/3 charge:
B, 391 igL
I' -
mg+Kp(3+5+Kp(5—%5) fého Jé"‘o By
Mg, -1,-1)=
1 5 =
7_5 to* m,+a% 0?5 ny.
0 e —fio ] Wis
7. Quarks with a —1 charge:
B, 01 ‘o1

— Kp(r—s)—Kps - 1 5

— 01 — o R

; /2 72 -

M_y,0,0= —=to* m,+a3(s—s) af@G—s) M.
V2 .
—f{p e | Wi

0
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8. Leptons with a + | charge:

B, *Wis
[mg+ K p(r—5)— K ps 0
M 1,0,0= 0 mg —4vis
1
—=bp ~1%o
72
9. Neutral leptons:
By’ B¢ 03
_ K,
mp+ K p(3r—4s) f(l?—%r) 0
15
K, 2
2s—3r) mp—3Kpr — ol
\/E( an g — s pl \m 1
Mg,0,0=
0 —i!a m,—a3%
10
2 i
0 ——& 0
- o 2P

g —

Wis

—4v¥s

ko

xﬂi

2
/10

10. The octet of neutral quarks contained in the multiplet B,

mg=my+%Kps.

403

45
RS,

4
R

- s

sira| B2

Hs

J'Bi

Here my is the mass of the 24-plet and m, and my are the bare masses of
the 5- and 10-plet, respectively. It is rather obvious that there are
massless neutrinos in the model within the tree approximation and that,
by choosing the parameters my, m,, and my appropriately, we can
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obtain the required mass difference between the leptons with the +1
charge and quarks with the +1/3 charge.

7. MASSES OF FERMIONS FOR SPECIFIC VALUES OF
YUKAWA COUPLINGS

To be specific, consider the third of the above-listed solutions of (2.3) for
the Yukawa couplings: Kp=1.12, 3} =1.53, 32=1.70,73'=1.37, f *
=1.75,7,=0.75, and a,=0, with all the other quantities /g being small,
and set r=s in every mass matrix, this being possible because of the
estimates (5.6).

To separate the light fermion blocks, multiply the matrices M _, 3,
M, 3, M_y;5, M to the right by the unitary matrices

1 0 0 0

0 mf/T+nd 0 —1/1+n
0 ”13\/@ —ny nl":!/m
0 mi/T+md  ny mm14n]

where
ny=—v/y/ (V)2 +(v2)%,
ny=—vy//(v1)* +(v;)%,

"3=(%—"3)/\K (v)*+(v)?

where the number ¢, on which n; depends, is equal to —8/3 for the
matrix M _,3, to 2/3 for M, and M_, 3, and to 4 for M,,. In
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addition, multiply the matrix M ., to the left by the unitary matrix

[ o/ /THmE 0 myl/THmd maf/THmE |
0 1 0 0
0 0 —ms - ’
L —U/T+m3 0 myma//1+m} mymsfs/1+m3
where

my=03//(63)* +(83)%,
my=03/1/(02)* +(63)*,

my=/2 (my—Kps)/(p/(03)* +(63).

Then the blocks, lighter than gp~ 100 GeV (and hence lighter than gs
~10'* GeV) are separated:

(= K3 4 n,n,K" 4 n,m,K )
V1+n3

Ml:tz;3=4p s

(—K324+n,n;K*? +n,n,K2?)

14n?

where ny=n3(—8/3) for M, 3 and ny =n3(2/3) for M, ;3;

—K''n,+K?'n,

—K'2n,+K?**n,

(=f 3 +nnsf 3t +nynyf3%)
V1413
ML 13=0 ’

(—f§3+"1”3f§1 +nyn3132)

—f3n+
2t Jim

[— y'ny+f3%n,
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where ny =n4(2/3); and

MI+1 =
1T —f 3 +nnsf5 +nns 32
—my my —f3'ny+f3n 5
J1+n3
o i .
mymy mamy —f 3y, 422y —f P +nnsf3 +nonyf3°
2 myt+f3'ny
J1+m: J1+m? J1+n3

We have v, v; <v, and 82 <65; hence,

0, —v,/v,, m, =1
o3
nyx —1, my 7
2
mg Vi ﬁ
nyx————=«K1, my -~ (mp— Kps).
CSV;  V, pd;

Consider first an approximation for M', ; where only maximal terms
are kept in each element:

137 —f13
M., ;~go

7 1.753—‘ —R-175n,3)
2
It is obvious that, up to the higher-order terms, one has
tr(M' ;MY 3)=(1.37go)?,
det ML, 3=(go)*

1.75
0.75

| r3re-

7, /1313723 —-1.75- 1.37-::3(%):’.
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Thus, we have obtained the masses of two quarks with — 1/3 charges:
m®) s xgo[ 32— 179, 33 +0.7373 [32 - 1.75n,3)),
m?, 3 ~1.37 go. 7.1

Consider now M, ;. It is clear that

detM+1—7detM 1/3

J1+mi

n3=n3(4)

But

1.75 31
M LT3 a2
detM-spl .Y o757 (2 c')

hence,

detM‘H:——m—[detM s +2.92(g0)? 2 ]
1+m3

When mj is not small (m;>1),

2
tr (M, (1 37gaL)
1+m3

and we obtain the masses of the two leptons with + 1 charges:

1) 1
m'y ~m2,

(7.2)
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For large m,, the light sectors of the matrices M, ,,; and M_, look
simple. Taking, for simplicity, the f ¥/ diagonal and large m,, we obtain

m),

a=mY =f11p,
m(f)ua =m? =f{’p. (7.3)
We now identify the particles whose bare masses are m'y, m'}) 5, mf),
m®), 3, m?,, and m?, ; with the electron, d quark, y meson, s quark,
lepton, and b quark, respectively. The radiational corrections must
convert (7.3) into the inequalities
miy >m),
m@) > mu:

The above identification leads to the estimates

m,=f11gp~0.5MeV,

(7.4
m,=1.37go~1.8GeV,
ie.
go~1GeV : (7.5)
and then
gp~/2my, (1.6)

and the case now under consideration leads to a prediction of a lepton
with the mass m'?, =2.4 my,. (7.6)

Now, the use of (7.1-2) for the bare masses of the u meson and s quark
results in the conclusion that

m
m,=m;+2.13 go’g—:ﬂv 100 MeV,

my~12MeV, (1.7
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Therefore,
D 410-2,
as
whence
mg~4.10'% GeV. (7.8)

Let us inspect now the quarks with +2/3 charges. By having identified
the + 1/3 charge quarks with known particles, we agreed that the lightest
of the two quarks whose masses are determined by M"_, ; is the u quark,
while the other one is the top quark from the fourth generation (the A
quark). The lightest in M, ,; is the ¢ quark and the heaviest is the ¢

quark.
Taking the bare masses of these quarks ast

m,~0.3MeV,
my,~ 10-100 GeV,
m.~0.5GeV,

m,~10-30 GeV,
we come to the conditions on the Yukawa coupling constants K”:
det M' ;3 ~(0.003-0.03)(GeV)?,
tr (ML, s M, 3) ~(10-10*)(GeV)?,
det MY, ;3 ~(5-15)(GeV)?,

1 The radiational corrections are expected to make the quark masses several times larger
than their bare values: approximately thrice for masses of about a few GeVs and ten times
for those of about a few MeVs.
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With the estimate of the quantity my/gs obtained above, one may show
that these conditions can be satisfied with a K% of about 0.1.

In conclusion, we present the values of the neutrino masses. Since
det Mg, 0.0,=0, the presence of the four-component massless neutrino is
necessary.

Besides, there are two heavy neutrinos with masses of about mj, one
heavy neutrino with a mass of the order of m, and one light neutrino
with a mass much less than go~ 1 GeV: 0<m,_ <go.

CONCLUSION

Here we list briefly the main results obtained.
We have constructed an SU(5) model of the strong, weak, and
electromagnetic interaction with the following properties:

(1) it is asymptotically free in every coupling constant,

(2) the set of Higgs multiplets provides the breaking of the SU(5)
symmetry down to SU(3) x U(1), the leptoquarks are given masses
above 10'* GeV and the Wboson one of about 100 GeV,

(3) there are four light (up to 100 GeV) chiral generations, one heavy
Dirac generation, and one heavy 24-plet of spinors in the model,

(4) the mass difference (m,/m,)/(m,/m;)=8.5 between leptons and
quarks is provide without introducing an additional Higgs 45-plet,

(5) within the tree approximation, electronic and muonic neutrinos
form a single massless four-component particle via the
Mahmound-Konopinski scheme,'°

(6) the 7 lepton has a light or massless neutrino,

(7) apart from the known particles the model predicts, in one of its
versions, a lepton with a mass of 2.4 my,.

Investigations of the physical consequences of the model and its
modifications are of interest. E.g., the preliminary estimates'? indicate
that the renormalized Weinberg angle in the model is approximately
equal to sin? 6, 2 0.22 and that the proton lifetime exceeds 103 years. If
the terms (1.4) are added to the potential of the scalar self-coupling (1.3),
a heavy axion will appear in our model; this will provide a good
framework for searching for a solution to the strong CP violation®
problem.
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