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The exact conformally-invariant solution of renormalized quantum field theory equa-
tions is considered. Dynamical equations form an infinite system of equations for vertices,
This system does not determine the vertices uniquely; it must be supplemented by axio-
matic requirements (locality, crossing symmetry etc.). The latter were not taken into con-
sideration in the course of the solution of equations, therefore the solution obtained con-
tains a number of arbitrary functions. The role of the mentioned additional requirements
for the construction of the unique solution is discussed. The vertices are considered, con-
taining conserved external lines (the current and the energy-momentum tensor). It is
shown that the generalized Ward identity makes it possible to obtain these vertices ex-
plicitly up to an arbitrary transverse part.

1. Introduction

The problem of internal consistency of local quantum field theory required the
development of a calculational technique considerably proceding beyond the scope
of the usual perturbation theory. By the present paper we begin the systematic ac-
count of non-peturbational solutions of the exact quantum field theory equations.
The solution of the problem of internal consistency supposes two successive stages:
firstly the asymptotic behaviour of the Green function at small distances (near the
cone) must be obtained and secondly this solution at small distances must be sewed
together with the solution at large distances. This secorid task is necessary for the
transition to the mass shell.

+ In the present paper we make an attempt of a partial solution of the problem of
the Green function asymptotic behaviour near the cone: we assume that at small
distances the conformal symmetry is dynamically relaized.
<+ It is important that the basic system of unrenormalized Schwinger-Dyson equa-
tions for the Green functions is not a suitable tool for dealing with our problem,
because the appearance of the dynamical symmetry of the asymptotic solution is
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closely connected with the infiniteness of the renormalization. Therefore it is neces-
sary that all the renormalization and the functional resolution of the uncertainty of
the type 0 X o caused by the so-called “overlapping” divergences, should be carried
out directly within the basic system of equations for the Green functions. This pro-
gramme was realized for the Schwinger-Dyson system of equations by one of the
present authors in refs [1,2] (see also ref. [3]) where the completely renormalized
system of equations for the Green functions was obtained. This system of renormal-
ized equations will serve as the starting point of the further investigation. Since the
mass corrections are neglegible when one considers the asymptotic behaviour near
the cone, we may confine ourselves to the study of equations in the limit of zero
experimental mass.jThe system of renormalized equations in this case is known as a
system of bootstrap equations recently studied by several authors in refs. [4—8]. It
was shown that these equations possess a conformally invariant solution.

Such a solution takes place under some particular choice of dimensionless coupling
constants; it wad realized in refs. [4—9] in a form of a skeleton expansion for the
Green functions. The higher-order n-point Green functions (n = 4) were represented
by expansions in skeleton diagrams constructed from conformally invariant vertices
and propagators. Equations for the one-particle and vertex Green functions (in a
three-vertex approximation) play the role of self-consistency conditions and are used
to determine the coupling constants and scale dimensions of fundamental fields. In
the present work we make an attempt to solve the system of renormalized equations
with zero experimental mass (bootstrap equations) exactly, without the use of
skeleton expansions for the higher-order Green functions. Since the exact system of
renormalized equations contains an infinite number of relations connecting vertices
with different number of particles, we have to deal with an infinite system of integro-
differential equations. However, a remarkable property of these renormalized equa-
tions is that the assumption about the conformal invariance of the solution makes it
possible to diagonalize these equations [10—13], and as we shall show, to obtain the
exact solution.

We shall consider for definiteness the system of renormalized equations of the
theory with the pseudo-scalar interaction Ly = )@75 W, which was also considered
in ref. [2]. By putting Z; = 0 we obtain the system of bootstrap equations:

(1.1

(1.2)

(1.3)
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(1.4)

which form the basis of our approach. The vertex I"}im) here is the one-particle irre-
ducible vertex. It may be obtained from the Green function by subtraction of all
diagrams which may be divided by cutting a line in any direction, see for example
(3.4). The vertices M, (™) and M, M™ do not contain diagrams which may be divided
by cutting a line in the transverse direction. In particular at m = 0 one has for the

vertexM,Eo)
g @ @ . (1.5)

where M, = Méo), r,= I‘,gm. The sign T denotes the summation over all possible
decompositions of external lines into groups K| ... Kg and /; .../, and the sym-
metrization over these indices. Since the field ¢(x) is psuedoscalar the vertices I';
may have only an even number of external lines.

In the skeleton theory the vertices entering eqs. (1.1y—(1.4) possess the following
interpretation: I‘(m) is the sum of dlagrams which cannot be divided by cutting a
line in any chrectlon Ry (m) (orR, R (m) ) is the sum of diagrams which cannot be divided
by cutting a fermion and a boson (or two fermion) lines in the transverse directjon;
the vertices M, (™) and M ™) are sums of diagrams which cannot be divided by cutting
a line in the transverse dlrectlon The simplest equations of the system (m =0,n=1)
are given in sect. 3.

Equations for the self-energy may be conveniently (see eq. (3.16)) written in the
following form [2]:

(67) -~ 1B (1.6) |
(57 - QB OE T B

where G and D are Green functions (2.1), the dots denote the amputation at the
corresponding external lines, see (2.11), (2.12), the index 4 means the derivative
wn.h respect to the external momentum.

" Egs. (1.1), (1.3), (1.6), (1.7) are the dynamical equations, while egs. (1.2), (1.4)
serve as the definition of vertlcesR(m) :de(m’ Egs. (1.1),(1.2),£1.5),(1.6)
determine the fermion field. They conserve the number of fermion legs and fall into
independent groups, characterized by a definite value of m. Egs. (1.3), (1.4) deter-
mine the boson.field and connect with each other the groups of equations with dif-
ferent m.

The system of equations (1.1)=(1.7) must be supplemented by axiomatic require-

.
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ments (spectrality, positivity, locality, etc.), also by the boundary ¢onditions on the
mass shell. The latter are not needed within the framework of the conformally in-
variant theory where the two- and three-point Green functions are known explicitely.
Egs. (1.1}—(1.7) together with these additional requirements must determine not
only the Green functions but also the coupling constant (the normalization of the
three-point vertex) and the dimensions of the fields ¢ and . The present work solves
only a part of the problem — the general conformally invariant solution of the dy-
namical equations is obtained (sects. 3—5). Egs. (1.1)—(1.7) as they are do not deter-
mine the Green functions uniquely, the solution obtained contains a considerable
arbitrariness (sect. 5). In particular it admists any kind of symmetry compatible with
the conformal one. This arbitrariness may be partially excluded with the aid of
general principles of the quantum field theory discussed in sects. 5—7. The general-
ized Ward identities for the current and the energy-momentum tensor, which reflect.
the conservation laws and commutation rules, are of special importance for the ex-
clusion of the mentioned arbitrariness (sect. 4). The Euclidean formulation of the
quantum field theory suggested in ref. [14] will be used throughout the present
paper.

The paper is organized as follows. It is shown in sect. 3 that the assumption about
the conformal invariance of the theory makes it possible to eliminate the auxiliary
vertices M{™ and R{™ from the system of equations.

This is possible due to the fact that the conformal group determines the three-
point vertices up to a constant factor. The system (1.1)—(1.7) in its final version
(egs. (3.15), (3.18)—(3.20)) consists of equations connecting only the vertices I‘,(,m)
with different number of external lines. It is important for the derivation of these
equations that the vertices r‘,ﬁm) and not the Green functions, enter eqgs. (1.1)—(1.7).
If one has used the system of equations for the Green functions instead of egs.
(1.1)—(1.7) the mentioned programme would not have been realizable because the
Green functions, contrary to the r,ﬁ’") , contain the diagrams which may be divided
by cutting a line.

In sect. 4 the confformal expansion of the vertices I‘gm) (analogous to Fourier-
transformation) is considered, diagonalizing the equations obtained in sect. 3. Simi-
lar expansions for the conformally invariant functions were suggested in refs. [10,
15,16] and [11,17], where they were well-founded. Contrary to ref. [11] we shall
use the expansmn m all the arguments (see eq. (4.11)). It may be well-founded only
for the vertices I'; (m) (because of absence of diagrams which may be divided by
cutting a line). Each vertex is associated with its image p(m (o1 .- 0,42, ) Which
makes lt possible to rewrite the equations for [‘{m) ina form of algebrmc equations
for ,of, and to solve them (sect. 5). Sect. 6 dea]s with the restrictions following
from the crossing-symmetry requirement. In the general case this requirement leads
to homogeneous linear integral equations for the functions p(m (see also refs.
[15,11]). It i 1s shown that these equations are compatible w1th the general expres-
sion for p{ obtained in sect. 5. The vertex with two spinor and two meson lines is
considered. The crossing-symmetry does not lead to any considerable limitations in
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this case. The general solution of integral equations in the case of the vertex with
four meson lines is discussed. A simplest example of a vertex is considered which
may be determined by the crossing-symmetry requirements.

Sec. 7 is devoted to the analysis of generalized Ward identities. It is shown that
in the framework of the conformally-invariant theory these identities permit us to
express the spectral density of the longitudinal part of a vertex with an arbitrary
number of external conserved lines (the current or energy-momentum tensor lines)
in terms of the corresponding lower-order Green function without the conserved
external lines.

As an example the four-point vertex functions are considered, including the cur-
rent or the energy-momentum tensor. The higher-order vertices were considered in
our paper [13].

2. Notations and normalization conditions

Let D;(x) and G4(x) be the Euclidian Green functions of the pseudoscalar and
spinor fields (6 and d are dimensions). The renormalization invariance makes it pos-
sible to normalize them independently. Let us put

d 1 A
Da(x)=iﬂL(x2)*5, Gy0e)=—i ¢4 Td+3) 3

2 -%) 2 2
(4m)? (@4m)? T¢ -d) (x )t****(2 .

With this normalization one has:
Dil(x)=D,_s(x), G7'(x)=G,4_4(x). 2.2)
The Euclidian Green function of three fields

X
‘{nf]’. &, XA -
[ (i) =eITl Gy u)lele> = 2Py (2.3)
Kads
may be expressed through the 75 invariant part [8,9] of the three-point function

- s
“(:I' i { I" £ Adad
= Es ['l',!_f,!_p) (2.4)
d;_ ? "A’.
Here g-is the coupling constant and

Cdl zﬁ(x x x3)

=NDG(d) +d2+8) = 2) Sya, -, +5)%13)Y5S4(d5—dy +6)F32)Byd 4, —5)*12) »

2.5)
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where x;z =x; — X,

50—ty —2 . K- re)e) s, @6
(4.‘.].)2 2 (x2)d+la’2 & (411.)2

N={PG(d) +dy+8)—2)T(4—3(dy +dy +8)T(G(dy —dy +8) +1ITE -2 (d, —d, +5);1
A\
X TGl +dy—8)NN(2 —3(d, +dy — NG (dy —dy +8) +DTE —3(d, —dy +8)} 72 .
d,d,s 7]
The normalized y5 non-invariant function C_' "% (x;x,x3) is given in sect. 4. The
functions (2.6) satisfy the relations [18,9]: '

[dxy Sy (614)82,(42)B5 (x34) = (4m)2S _ 1 (x13)S2_ g, (632085 _5x12)

(2.6a)
S4By Ge1)Bs, (eq)B5 (34) = (4m By _s (x23)B; 5 (x 1982_5,(12)

(2.6b)
B4 s)=TQ -G -A;'(x),  84_ 00)=-TE-DIE-)S7 ().

(2.6¢)

The normalization factor (2.7) is fixed by the orthogonality conditions (see sect. 4
for the details):

MET XA =ing? (1201 81,1,G1, (*12) » (2.8)
O =gl 1,0 e12) ¥y 41,56 39}
(2.9)

where i/, and 1, are weight functions entering eq. (4.4)—(4.6):
rg+Hre -

=1 6
Hyj2 (1) =5 (4m) G - Hre-3)’ (2.10)
1@ = %50 7T (2.100)

They may be calculated with the aid of egs. (2.6a—c).
Let us introduce the notation for amputated vertices

4 )
4 - 2 A ' t =1 ¥ d.d.6, - r
-_.@‘ - 9 j_q{ _fdxldecd1 (xl —xl)r‘ 172 (x1x2x3)Gd;(x2—x2) %
' : @2.11)
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and similarly for the pseudoscalar leg. Using eq. (2.6a,b) one finds

o e Ol o (2.12)
4
The vertices I' with an amputated spinor leg may be expressed in terms of the 5
non-invariant function C_ (see sect. 4).

With the normalization (2.2), (2.12), all the equations are manifestly invariant
under the substitutiond = 4 — d, § - 4 — §, which is the consequence of the similar
invariance of the Casimir operators of the conformal group. According to eq. (2.2),
(2.12) this substitution corresponds to two different ways of formulation of the
theory: in terms of complete Green funttions and inverse propagators for internal
lines, or with the aid of amputated Green functions. The first way is used every-
where except for sect. 8.

In sect. 3 the functions (2.5) with dimensions d, =d, d; =1 will be used, where
d is the dimension of the spinor field entering eq. (1.1)—(1.5) and [ is arbitrary. As
to the dimensions of fields it is supposed that they are limited within the range

3<d<3, 1<8<3. (2.13)
like in the skeleton [8,9].

@ The system of renormalized equations in conformally invariant field theory
Let us show that the assumption about the conformal invariance. makes it possi-
ble to eliminate the additional vertices R(m) R, RU™) M(m) M(m) from the system

(1.1)—(1.7). We shall illustrate this statement f" irst in an example of the simplest
equations of the system. One has:

(0 - (3.1)
\@\ (3.2)

jogio@ e

(3.4)

P
—
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where R = R{O). Consider the quantity ["@3Dy IGE lRl , Where [ is an arbitrary
dimension. In virtue of the conformal invariance this quantity is proportional to
Cidﬁ defined in sect. 2:

% ¥

where f(7) is a new function. It follows from (3.1) that f(d) = 1. Using eqs. (3.5) and
(3.2) we obtain the known result [10] that the quantity I'’d 5DglGd_ Iy 1 as the
function of the dimension / possesses the pole at / =d. Therefore we may rewrite

eq. (3.1) as:

i 4
‘J‘G'): y A s £ 4 (-6)
4t e 4
where
af@)

Under substitution of (3.3) into (3.6) one has

(3.8)

£

4 A -

s OGN a O &'
7 2 F pl

I being arbitrary. The second term is finite in the limit / = d because of (2.13), so it
does not contribute to eq. (3.6). It follows that the first term has the pole at / =d
with the same residue as the left-hand side has. Finally the system (3.1)—(3.3) takes
the form of one equation connecting directly the vertices I'and T’y :

'3 i )

JL@\" =) c(rY J (39
Led d 4

i

Let us represent the other equations of the system in an analogous form. Without
any loss of generality we shall confine ourselves to the consideration of eq. (1.12)
at m = 0. The final results will be given for the complete system (3.1—4). From
(3.5),(3.7) one hasat/ > d

i@’f_ i@’_KEL = AleA) iq: (3.10)
’ .
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Keeping this in mind one uses the equations:

\( (3.102)

(3.11)

The existence of a pole at I = d of the quantity on the right-hand side follows from
egs. (1.1), which may be rewritten similarly to eq. (3.6) as

(3.12)

The next step consists in the elimination of the vertices M, , determined by egs. (1.5).
Eqgs. (1.5) yield:

(3.13) 4/

where C,, denotes the set of diagrams summed up by means of the symbol Z in egs.
(1.5). According to (3.12) the left-hand side of eq. (3.13) possesses the pole at/ =d.
The right-hand side consists of two terms, the first one possessing the same pole. The
second term is regular like the corresponding term of (3.8), because the integrals

(3.14)

converge. The regularity of this term may be easily proved in the skeleton theory,
where the integrals (3.14) converge in the range of dimensions (2.13). The conver-
gence of these integrals in our approach is secured also by the asumption about the
convergence of conformal expansions for vertices I',, and M,,, see (4.8), (4.11). It is
important that any diagram entering (3.14) may be divided by cutting two lines in
such a way that both resulting subdiagrams are of the same structure as the diagrams
which are summed in eq. (1.5). Therefore the integrals (3.14) converge provided
that (4.9) is satisfied.

The regularity of the second term in (3.13) gives us the possibility of rewriting
eq. (3.12) in a form similar to that of eq. (3.9). One has at arbitrary m:
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(3.15)

This system constitutes the final result: it does not contain the additional vertices
Rf,m) and M,Sm), Its exact solution will be obtained in sect. 5.

The constant A remains to be found. It may be calculated from the equation for
the self-energy. This equation in a form (1.6) contains the uncertainty 0 X . In
order to resolve this uncertainty we shall use the trick suggested in ref. [19]: the
right-hand side of eq. (1.6) will be considered as the limit of the expression

@ [ 2O - O (3.16)
" Using (3.10) one finds

-] _ ' Fi
(65 =1 = (3.17)

The integral on the right-hand side may be calculated with the aid of egs. (2.6a—b)
and the following relation:

Jdy Gy = 20,85 (1 = 9)B5 7 - x2)

G - 8,)TQ —6,) -
= (5 — 6, — 65) (- xz)HA51+52-2(x1 —x3).

The calculation gives (e =1 — d)
%F(%E){P.”z(d)}_l (xl - xz)p G_l(xl -_ XZ) o
Passing to the limit in eq. (3.17) we obtain finally
gA=—2uy5(d), (3.18)

where 1, 5(d) is the weight function (2.10).

The system (1.3), (1.4), (1.7) may be considered in an analogous manner. Elim-
inating the additional vertices R(’”) and M {m) in the same way as in the course of
derivation of eq. (3.15) we obtam

(3.19)

@

d A - £ #
_;. - 4704, (3.19)

Resolution of the uncertainty in eq. (1.7), similarly to eq. (3.16), gives
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X ﬂg(jf@f_ (o) (3.19b)

s
e=d 4
whence it follows that
gh=2p4(). (3:20)
where 114(8) is the weight function (2.10a).

4. Conformal expansion

The rigorous foundation of the conformal expansion in Euclidean coordinates,
the conformal group being SO(5.1), is given in refs. [11,17]. It is important that the
conformal group structure in the Euclidean space is relatively simple. The similar
analysis in the pseudoeuclidean space is hampered by the complicated geometry of
the SO(4,2) group, more precisely of its universal covering group. For example a
large part of the non-degenerate representations of the latter group has infinite com-
ponent with respect to spin. However the usage of the spectrality and positivity
axioms makes it possible to obtain the conformal expansion in this case too [16].
This question will be considered in more detail in another work. The irreducible
representations of the SO(5,1) group are labeled by three numbers

0=Gs.’.1s}.2) @ U:iz,fl): (41)

I being the dimension and j;, j, the quantum numbers of the SO(4) group (the
Euclidean Lorentz Group). Let us introduce the invariant two- and three-point func-
tions A (x) and C?1°2%3(x | x,x4). Their normalization will be fixed by conditions
analogous to (2.2), (2.8), (2.12)

A7l(x)= AL (x), fdx'l 4-3,61(.74:l - x])C°1%2%3(x xx4) = Ca‘°2°3(xlxzx3) ,

4.2)
where

E=(4—1,[‘2,‘h) B (4_f9j]sf2)' (413}

Representations (4.1) and (4.1a) are equivalent. The amputated functions
C?19293(x 1 x4x3) correspond to representations (4.1a), see also sect. 2. Let us intro-
duce the graphical designations, analogous to (2.5), (2.11)

45, 5 g4 i
i1 oL x5
Clenm) * ~ Cnay® (4.2a)

LR A
The wavy external line will correspond to the quantum numbers of representa-
tions contributing to the expansion (4.6); the solid external lines will correspond to
the quantum numbers of fields. The orthogonality relation for the functions (4.2a)
may be put into the form:
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- Ll 1! i ' - ]
N.mm =3 [80080c — x") +5_-.A(x — x)]. (4.3)

LA

Here the symbol 8 is defined on the integration contour I =2 + ip, » <v <o, by
the following relation:

E i E 2+je

2110850 1), £ ‘m, [ woa; (4.4)

172 2 —jfeo

u; (1) is the weight function with j = (j, j»). Its explicit form for several important
cases is found in sect. 2, see egs. (2.10), (2.10a). The internal lines in eq. (4.3) cor-
respond to functions Ay and A-

As an example we sha]]l give the expression for the normalized three-point func-
tion with spinor legs 0y 5 = (! 5,%,0) ® (/; 3,0, ) and a scalar 03 = (/3, 0, 0). In
this case the functions A,(x), which satisfy eq. (4.2) are equal to (2.1) and for
C°1%2%(xx,x4) one has

Co1%2%3 e xx3) = €1 212 0 xgx5) + €113 23, (4.5)
Here Cf_l hals 45 given by egs. (2.5)—(2.7) and C'il R213_is of the form:
C'_l_‘ IzI’(Jl: 1X2%3)=
=INTG U+l +15) =D Syt - 1) ® 1205 Byt — 1,41 %13)By 1, 1,415 F23) »
where ¥ denotes the normalization factor (2.7). Using (2.6a,b) one may easily verify

that

1,1

Jax1Gy_y Gy —xDCAxixgxg) = CF T e 20

1,1 1,0, 4—1
fdx394 1,3 - x3)C,1? xyxph) = €0 300y xx3)

A

so that the function (4.5) satisfies eq. (4.2). Graphically:

g4 LQ '“"3()\ (4.2b)

It is more convenient to choose the orthogonality condition for this function in
the form (2.8), (2.9) rather than (4.3) because of the y5 invariance of the theory.
The conformal expansiorl of four-point functions is of the form:

If 2 D+ “o

Ay 4
K2
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Here the integration over coordinates and summation over spinor indices of the
wavy line corresponding to A;’l is assumed. 2 is defined by eq. (4.4) and p(0) is
the spectral function. With the regard to (4.3) the definition of this function reads

& G3 p A
Voun@RLE0d %)
. Gy & &y

The properties of the spectral function depend on the normalization of
C*1%2%3(x, x,x5). In the normalization (4.2), one has:

p(0)=(3). 4.72)

The spectrum of the numbers j; , contributing to (4.6) is determined by the quan-
tum numbers of the fields. In the case of two scalar fields (04 5 = (8} 2, 0, 0)) only
the tensor representations j; = j, =j contribute. If one of the fields is scalar and the
other one is the spinor field, the spin-tensor representations contribute to (4.6).
Finally, if the tensor fields correspond to the external lines (for example it may be
the current or the energy-momentum tensor) then the expansion (4.6) must be
modified. Several independent sets of functions C®1°2%3 may arise in this case, cor-
responding to the transverse and longitudinal parts of tensor functions. The details
may be found in sect. 8 and in ref. [13]. '

Relations (4.3), (4.7) are rigorously founded only for the value of o belonging to
the integration contour in (4.4). The functions C?19293 entering eq. (4.6) must be
interpreted as the Glebsch-Gordan kernels. They may be defined for arbotrary com-
plex / by analytic continuation from this contour provided that the analytic proper-
ties of p(o) permit such a continuation.

It will be supposed that all the spectral functions possess the needed ana]ytlc
properties.

The theory Ayrys Yo must be invariant under the v transformations: ¥ > ysy,
¥ - Yys, ¢ = —¢. The functions C?1%2°3 and consequently the expansion (4.6) do
not generally possess this property. The function (4.5) serves as an example. There-
fore it is necessary to single out the 5 invariant part of (4.6) (for more details see
ref. [13]). It is important that the relation (4.7a) will be still well-founded, notwith-

standing that the g invariant part of C?1°2%3 may not satisfy eq. (4.2). Let us illu-
strate this statement in an example qf the expansion of the vertex I'y

\@:( .z 5‘@1}5—@' (4.6a)

-

_Consider the spinor contribution 0 =(/, 3, 0) ® (7, 0, 3). The condition (4.7a) will
be invalidated, the y5 invariant functions Cf ® being used in the expansion from the
very beginning. Therefore we shall start from the expansion including the full func-
tions (4.5). The relation (4.7a) is then satisfied, but the 75 invariance is broken and
must be restored with the aid of the displacement:

=3y +v5Ty75) .
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Since
Cfdﬁ - +Cfd5

only the terms CfG' 1c, and CTG—1C_ survive in the expansion (4.6a). The terms
C" G-lC_ and C*rt G- lC are excluded. Using eq. (4.2b) and performing the dis-
placement o - 0 in the second term we obtain with the regard for (4.7a) the term
ZCir G~1¢, instead of the corresponding two terms. The extra factor 2 may be com-
pensated by means of a proper choice of the orthogonality relation for the functions
“” (the factor 3 on the right-hand side of (2.8,9) is additional in comparison to
eq (4.3)), so that the spectral function pq(0) is determined by eq. (4.7) as before
It must be noticed that the second term is absent from the orthogonality relation
(2.8) for the functions C+ , because this term is connected with the y5 non-invari-
ant part of C!48  This term will arise if one writes the orthogonality relation as

4

L& 4
*m‘fﬂ[ﬂl,!z(fl)] 1511:2 81 %) " (2.82)

We used eq. (4.2b) when passing from (2.8) to (2.8a). The orthogonality relation for
the full function (4.5) includes both mentioned terms.

In the expansion of the four-fermion vertex I‘é ) two terms may be present
CTDI_'C; and CT "Dy 1¢_, which may not be converted into each other. The second
term does not contribute to the equation

hes .-@ (4.70)

since

OO ' 4.7¢)

after the trace in the spinor line is calculated.
Consider the expansion of higher-order vertices. One has for the vertex M, :

(4.8)

(4.8a)

Similar relations hold for the vertices I',, and R,,. The expansion (4.8) is justified if
the integrals

4.9)

converge [11]. They do converge because the vertices M, (also I', and R;) do not
contain diagrams which may be divided by cutting a line in the transverse direction.
Using eq. (4.8a) one may rewrite egs. (3.12), (3.15) at m =0 as
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A@T Ak 2 :"=Am < d (4.9a)
> by S ety

where o, are the spinor field quantum numbers (see sect. 5). The similar equations
for Green functions were obtaired in ref. [11] for the Ap? theory:

‘.f} At “Gf} (4.10)

where the “conformal harmonic stands on the right-hand side. This harmonic is de-
fined in parallel to (4.8a) with the aid of the (n + 2)-point vertex

)]f ne ﬂ (4.102)

It is more convement to consider the vertices T‘{m) rather than Green functions, be-
cause in the case of these vertices it is possible to eliminate completely the addi-
tional vertices. Besides, the vertices l",(tm) (contrary to the functions entering (4.10,
10a) and the functions f{'f,’") ,RU™ and M ,Em), M{™ do not contain diagrams which
may be divided by cutting a line. They may be represented as conformal expansions
in all the arguments. In particular, at m = 0 one has

‘ ‘zﬁm JQ@‘J m @.11)

The expansmn of vertices I‘,E'" ) m being arbitrary, is considered in refs. [12,13].
The spectral function p,, (0 ... 0,,) must satisfy the homogeneous integral equations
securing the symmetry of the vertices I',, in the arguments of the meson legs (sect. 6).
In order that these expansions were justified it is necessary that the integrals of the
type (4.9) for the vertices I', with an arbitrary number of internal lines should con-
verge (there must be not less than two external meson legs). These integrals do con-
verge in the skeleton theory. It is noteworthy that the similar integrals for Green
functions are infinite because of diagrams which may be divided by cutting a line.

It is supposed in parallel to (4.6) that the spectral function p, (o, ... 0,,) may be
analytically continued to the whole complex plane in every argument. Therefore the
“Hermiticity” relation.

Py (0 . 0,) = pp(0) ... 07), (4.12)

which is easily proved for the points of the integration contour, takes place for ar-
bitrary complex dimensions/; ... [, .

5. Solution of the system
Using an expansion of the type (4.11) for vertices I‘f,m), one may diagonalize the

system of egs. (3.15), (3.20) and solve it.
Let us consider the example of eq. (3.15) at m = 0. Under substitution of (4.11)



I

/

y

332 E.S. Fradkin, M.Ya. Palchik / Quantum field theory

into (3.15) we obtain forn = 1 using the analyticity of p,, and the orthogonality
relation (4.3):

Pp(0y . 0,,)=Aa£eas Pp+1(001 ... 0), (5.1a)
Y

where o, = @,3,0) @ (d, 0, 1) are quantum numbers of the field Y (x). Using (4.12)
eq. (5.1a) may be rewritten in another form

p,(0y...0,)=A r1es p,.q(0q...0,0). (5.1b)
o zﬁw
Here the residue is taken with respect to the last argument. Besides, one has from
(3.9):
res pq(0)=gAl. (5.2)
0=0w

Egs. (5.1a, 1b) and (5.2) form an infinite system of algebraic equations which may
be easily solved. The solution contains a considerable arbitrariness (which is discussed
below), because, not only the functions p,, but also their residies enter these equa-
tions. Let us introduce the normalized function:

p1(0)=g"1Ap,(0),
and represent p,(g,0,) as:
p2(0y Uz) = 1(01)f2(0102)91(02)

where f, (0102) is arbltrary The substitution of this into eq. (5.1) at n = 1 yields
with the regard for (5.2):

fz(ﬂl%) =f2(0,p 0y) =gA~2.

The latter is the only confinement for the function f,(0; 0,) imposed by egs. (5.1).
With the introduction of a normalized function

P1(010,9) =g~ 1A2f5(0,0,),
one has finally:
p2(0105) =gA~20,(01)P2(0102)51(03) -

By means of the representation of all the p,, (¢ ... 0,,) in an analogous form and
introduction of new arbitrary functions p,, (0 ... g,,), one may obtain the general
solution of the system. It reads:

pn(a] iy an) -=gA_n L;I;‘[l E] (U;)]/ X

n-2

n-=1
x { ;'1=_[l ﬁz("i%ﬂ} {11;11 53(°:°:+1°1+2)] e Pp(0 o Op) (5.3)
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"J/EM) 1 2 f6y)” ! J?rﬁ‘:‘r)

\,E (6,615

Fig, 1.

where p; (0, ... 0;) are arbitrary functions satisfying the following conditions:
=1, k=2.
54

Besides, p (0) must decrease rapidly enough when /= and j; 5 = °° in order that
(4.11) converge, and each of the functions p(oy ... 0 ) must satisfy eq. (4.12).

Let us consider the structure of the solution in more detail. It follows from (5.3)
that the first n fucntions from the infinite set

res p1(0)=1, B0y - )y =5, =Pg(01 - Op)l

o=ay, =0y, O =0y

£1(01),P9(0103), ... , P (07 ... G,) , ... (5.5)

correspond to the vertex I',, according to the following rule: each internal line in the
expansion (4.11) corresponds to the function p (o), each internal vertex corresponds
to p,(0,0,), each pair of vertices to p3(0,0,03), etc. For example, fig. 1 above.
Such a structure of functions p,, is closely connected with the crossing-symmetry
requirement. The crossing-symmetry would be broken, if any one of the functions
Py (01 ... 03) was put equal to unity (sect. 6). Suppose that we had written down the
expansion (4.11) in the form (5.3) from the very beginning before the substitution
into the equations, and that each vertex Iy, had been put into correspondence with
a set of functions: 5{(0,), Y0102, . , BS(07 - . Then as a result of
solving the equations one would find that the functlons pk”) corresponding to dif-
ferent vertices I'},, coincide:

r T, ry Iy

@=pP0 =P =2{%0

552)(0 102) = _553)(9‘1 o) = 554)(“1 03)

7§(010503) = 557(010,03)

i.e. all the information contained in the dynamical equations is exhausted by the
equality of the functions, placed on one and the same line.
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The normalization factor of the vertex I', may be related to the residue of the
function p,, (0, ... 0,,) with respect to all the arguments at the poles o; = 0, corre-
sponding to the fundamental spinor field. One has from (5.3), (5.4):

= res res .. Ies 0y ..0,)=gA™" .
&n 0,=0y 0350y, Op=0y p"(l "} 4

The coefficients g, serve as the analogy of the mass-shell values of the vertices T, in
the conventional relativistic theory: the transition to the spectral function g, (0, ... 0,,)
is analogous to the Fourier transformation, while the value 0 = oy is the analogy of
the mass-shell condition: p2 = m2.

Relations (4.11) and (4.3,4) determine the general conformaly-invariant solution
of the renormalized Schwinger-Dyson equations. The greatest arbotrariness admitted
by these equations ¢onsists in the possibility of defining arbitrarily an infinite set of
functions (5.5) limited by conditions (5.4). This arbitrariness originates from the
fact that we solved the system of connected equations, which is arranged in such a
way that each vertex contains the full information about the lower vertices. In order
to obtain a unique solution it is necessary to indicate a way to close the system up.
It is natural to think that the closing takes place when the initial term is properly
taken into consideration. This is clear in an example of the self-energy equations (in
the course of their derivation the equationzyy =I' — I'G ~-1p-1R was used, and the
uncertainty 0 X oo arose at z; — 0) and the Ward identities, see sect. 7. In both cases
we obtain the non-trivial limitations for the spectral function. Although the current
and the energy-momentum tensor play a special role in the theory, because they are
the concerved quantities, one may expect that consideration of other tensor fields
(non-conserved) will bring an additional information about the initial term. Such
tensor or spin-tensor fields, for example

n é #
W@y 0, SO 5.6
oAt Lk (5.6)

where 0,, are the quantum numbers of the field O,, are connected with the poles
[10-13,15] of the fdnctions p,, in the variables /y, ..., I,,. It is necessary therefore
to investigate their connection with the fundamental fields, which is a difficult task
and will be considered elsewhere.

Some confinements for the dimensions I, of the fields O, follow from axiomatic
requirements. The axioms of spectrality and positivity impose the following limita-
tions upon /:

L,22+/9+5, o L>14/®, i =0,
as shown in refs. [16,21]. These limitations arise in the course of analysis of expan-
sions like (4.6), (4.6a) in Minkowski space [16]. '

Note that the constants A, may be obtained from the equations for the self-
energy similarly to (3.18), (3.20). One makes sure (see also [11]) that
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8oy = —2u(0,), .7

where p(0) is the weight function entering into eq. (4.6), (4.6a) and g, is the coupling

constant of the field O, and the fundamental fields. This constant is determined in
parallel to (2.4) by the relation:

a,,@f':: ey (5.8)

At n =1 one has from (5.6):
res 51(0) = Ag/Ag
O=Ua

or with the regard for (3.18) and (5.7):

2
il uoy) g,
Te S —,
=0, 1 u(o,) g2
Therefore the problem of obtaining the function p; (), i.e. its poles and the corre-
sponding residies, may be reduced to that of obtaining the dimensions and coupling
constants of the fields 0. Crossing symmetry is the strongest axiomatic require-
ment. In some case it gives the possibility to obtain the constants g, if the dimen-
sions of O, are known, and vice versa.

6. Crossing symmetry

The vertices I',, are symmetrical in the coordinates of meson legs and antisym-
metrical in the coordinates of nucleon legs. This leads to the homogeneous integral
equations [15,11] for the spectral functions. Consider the vertex I’y . Its expansion
may be written down in the three different ways

T é /s . < 6,
\Qj\‘i—‘ 20 \C}«Q 2 ¥ - 350

where Z_ includes only even spins, because odd spins in the last term would lead to
antisymmetry in meson legs. The first two expansions yield the integral equation for
p1(0)

26 (Y - 550
kY s

(6.1)

d

#

(6.2)

while the function p'l (o) remains arbitrary. Therefore the general solution of eq.
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(6.2) may be written down as
IO YHGE: ‘ (6.22)
~ &' e

where p (') is an arbitrary function.
Let us show that the crossing-symmetry does not contradict the general solution
(5.34). For example let us consider the vertex I'y:

b Xy L ' x;
. dl 1 6‘ #
o fots =3 ptew) (6.2b)
Ing Ny T 1 ks
The symmetry with respect to the replacement x, 2 x5 gives
% ?f is
5 s, o
S 46%) . E
616"" i X
M % Yy, s (6.2¢)
2
=2 A {ﬁs.d S
LU %a
Using the arthogonality relation we obtain
(6.3)

Substitution of the expression (5.3) for p,(0,0,) and cancellation of the factor
p1(0,) yield the equation for the product p, (0;)p,(c10,) where the function
pl (0, ) satisfies eq. (6.2) expressing the crossing symmetry of I'; . If we put 05 =0,
in eq. (6.3) after the cancellation of § (0;), then eq. (6.2) will be ‘reestablished,
provided that eq. (5.4): p5(0; 0, )?maken into consideration. Thus the crossing
symmetry agrees with the general expression (5.3), (5.4).

Stronger limitations arise for the vertices containing only neutral fields. In this
case one has instead of (6.1):

\\\ l,/ " 5 ,,» ] ’/ I
@ -2 00 B =§PH% A 2}: (6.4)
f” “\ : \\
/.' \‘ /'

The solution of the integral equations for p(¢) which arises here, may be found using
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the known representation of the vertices in the form of the Mellin integrals with the
symmetric kernel f(afy), see ref. [9].

Fl(xlx2x3x4) = (x%zx%4)_5 fd{!dﬁf(ﬂ:, ﬁ’ = ﬁ - 8)

X (x2yx3) 0P yx33)(xd3x 54 )8 (6.5)

where the integration contour in « and § passes along the imaginary axis. Crossing
symmetry gives:

f(eBy) = flayB) = f(Bary) - (6.6)

A function p(0) satisfying eq. (6.4) may be represented as an integral of an arbitrary
function (6.6). Let us consider the simplest example when the usage of this represen-
tation makes it possible to find the vertex exactly Let us require that only the scalar
representations should enter the expansion (6.4): 7(l,5) = 0, when s # 0, p(/, 0) is
arbitrary. The expansion (6.4) in this case takes the form:

Ty-olryxp¥3%) = f AT ()8 (xge)2 - H-s (6.7)
_l.
fdz {0ey = 2)2(xp — 2)2} ¥ {(x3 — 2)2(x4 — 2)}~¥-2

All the normalization factors depending on [ are included into 'E'(I). The calculation
of the integral over z with the aid of the standard technique [18] gives:

(6.7~ (x3x3y)
8 a2 [ar5'n PG et ATQ — 3l +a+p)
X [dadB{r2(-a)r2(-p) [aIB'() r2¢nri2 - i)

2 \—a—
X (x50~ 2Be3axTa) (xdaxda)?
This expression is of the form (6.5), where f(«, 8, —a —  — &) consnsts of the terms
in the curly brackets. If one requires eq. (6.6) now, this will fix o'(1) so that:

o DPll+y -2 -L1+y-38
fd: 50 Glty -2 —31+7-9)
r2¢nri2 -3
where A is an arbitrary constant. As to the function f(afy) we obtain:

f(apy) = AT (—a)T2(—B)I2(—y) .

=AT*(-7),

7. Ward identity

In the framework of the unrenormalized theory the Ward identities are the con-
sequences of dynamical equations provided that the fields satisfy the canonical com-
mutation relations. On the other hand the canonical commutation relations may be



338 E.S. Fradkin, M. Ya. Palchik | Quantum field theory

considered as consistency conditions [22] provided the validity of Lagrange and
Hamilton equations is required independently. In this case the commutation rela-
tions as they are do not contain any additional limitations for the Green functions.
Both approaches are equivalent before the renormalization.

The situation is quite different in the conformally invariant theory. The con-
formal symmetry originates as a result of infinite renormalization, completely de-
stroying the bare term. As a consequence of the renormalizations some information
contained'in canonical commutation rules is lost and consequently, the solution of
the postulated egeneralized Ward identity [23] gives additional information.

The vertices with the current and the energy-momentum tensor are determined
by equations of the type (5.6), if j . o1 T,,,, are taken as the field O,. In the case of
equations for vertices with T,,,, it is necessary to take into account the contributions
of nucleon and boson fields. The corresponding spectral functions possess the poles
with the quantum numbers of the current or the energy-momentum tensor. No other
limitations for spectral functions arise. Using the equations defining the vertices with
j, and T, and eqgs. (3.15) we find:

(7.1)

and similarly for the energy-momentum tensor. Another system of equations of the
same type is to be obtained from eq. (3.19).

We shall confine ourselves to the considetation of two vertices with the current:
IV and l";. The higher-order vertices with the current may be considered in an ana-
logous way, see ref. [13]. One has [7,9]:

T Ge1xo 1x) = AL B + 1)S32061 — X)7, 830 x9)Bg_ 3261 — %)

1

e
2

+ (B- l}Sd— l(xl —xZ)El(xl — x)zl (x2 —x)?\f‘(xlx?_) ’ (7.2)

where S; and Za are defined in (2.6), and B is an arbitrary constant
(xl - x),,g (x2 = x)p

Xy xg) = PR r—t (7.22)
The constant A is determined by the Ward identity

ail‘,,-id(xllex) = —ie[8(x) — x) — 8(xy — x)] G4 (xq — x,)
and is equal to:

A=(4n)e M@+s) (7.3)

P@-HrG-d)

The vertex l‘{ must be written in the form:
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g . il
A7 ¥ \O’d (7.4a)
[;(;,mJIF S 2y, {3)/ )
Tt e "./‘\/' I;lf £

where o; are the current quantum numbers d, and d are the dimensions of the
spinor fields y; and ¥. (d & denotes the amputation in the corresponding argu-
ment, see (2. llj (2.12) and (4.2)). The vertex I'| satisfies the generalized Ward
identity [23]

. axPIH" (X]xszIx) —ie [5 (xl - x)—B(xz —x)] [ﬁlag‘(xlxzx3) (75)

and the dynamical equation:

i@; - A (7.1a)

which follows from (7.1) atm=1,n= D Let us substitute (7.4) into ('? 5). Using
the orthogonality relation (4.3) and taking (2.4) and (2.12) into consideration we
find:

pi(0) af‘cﬁ“"f(x 1X9X) = —ieg f dy c°4® (xlxy)Cfﬂi(xxzy) . (7.6)

The second term on the right-hand side of (7.5) does not contribute to (7.6) because
the function p;(0) is defined for real / by the analytic continuation from the integra-
tion contour in (4.4), where the mentioned term is equal to zero by virtue of the
orthogonality relation. Eq. (7.6) completely determines the spectral function p; (o)
provided that the derivative on the left-hand side is not zero. The latter is not always
so. Let us consider for example the spinor contribution to (7.4)

o=(3,009 (1,0,3). (7.7a)
The unnormalized Clebsch-Gordon kefnels in this case may be represented as
Cidoi(x1x2x)=!\r}(l,d){%[ﬁ'(f,d) + 11832 41 0-a)*1 — x)7#S3,"2-'5(I-d)(x__ X3)
Rigea—nx —x) +2[1 = GU- 2] (+d - 37 F(,d) - 1]
Sicteay 101 — X8 g ayFy — DB] _y_ayxz — XX %)}
(7.7)

where N} is the normalization coefficient and F(/, d) is an arbitrary function. One
has from (7.7)

ldo;
0,Cy 2 (x1x9X)

= Y- DN;Ud)Syg1a)- 212082 40- a1 - x)By _1q_ayx2 — %) -
(7.8)
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The function F(I, d) does not contribute to (7.8) and consequently to the Ward
identity (7.5) and (7.6). Thus the Ward identity determines the vertex I‘{ up to the
arbitrary function F(I, d) in (7.7). This arbitrariness may be represented in another
form: one may put F(/, d) =0 in (7.7) and simultaneously add the term

(7.9)

and p}(e‘, jy) ~ F(l, d), to the right-hand side of (7.4). In this case two independent
sets of Clebsch-Gordan kernels and consequently two spectral functions p;(¢) and
Py +(0) arise in the expansion. The Ward identity determined only the function p;(0).

Let us find this function for the spinor contribution (7.7a). Substituting (7. 8)
into (7.6) and evaluating the integral on the right-hand side with the aid of egs.
(2.6a, b) we find

N, )0y, 7,)

=2 _aeN(d (d8)T(4—1(d; +d +8)D(2 — é(d +d; —8))
(4myt
X TG —i(d; - d+8)C(d - d; +8) +,) —— N(idd)

r'(z(sz1 +8) —2)PG(dy —1+8)+ DTG (d; +1-8)PE — 41 - dy +8))

r@-4(-dff@+3(- PG -3 +d) o m’)

where N(/d8) is given by eq. (2.7) and j,, = G,0) @ (0,%).
Let us consider the dynamical equation (7.1a). Substitution of (7.4) into (7.1a)
gives:

. 6
" . (£
1.@(‘ - Ald) 4 {pteh) =-Cﬁ; 12 (7.11)
Using (7.2) and (7.7) we obtain:
A@) = NV, ) p; U,y )} = A@) , (7.12a)

F(d,d)=B . (7.12b)

Relation (7.12a) was obtained from (7.11) by taking a derivative aﬁ (as a result the
terms with F(I, d) and B disappear). Then eq. (7.1a) becomes equivalent to (7.124).
Substituting eqs. (3.18), (7.10) and (7.8) into eq. (7.12a) we find that the latter is
satisfied identically at any value of the fundamental field dimensions.

Egs. (7.1) for higher-order vertices may be considered in an analogous manner.
The Ward identities give the possibility to express the longitudinal part of the vertex
with the current in terms of the corresponding vertex without the current as it was
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in the case n = 1, while the dynamical equations (7.1) are satisfied at any values of
the fields dimensions.

Let us consider the vertices including the energy-momentum tensor. We shall con-
fine ourselves to the case of scalar fields. Let g, (x1), ¢4, (X2), ¥s (x3) be scalar
fields in the D-dimensional Euclidian space. One has

4 » q o
o é
H -3 5l M (7.13)
¢ ; A
f 1

Here Fl is the one-particle irreducible vertex; o = (I, s),,where s denotes the spin;
or =(D, 2) are the quantum numbers of the energy-momentum tensor. The Ward
identity for the vertex I‘l amputated in arguments x;, x, and x, reads [71:

T,,.d;d,6
_aﬁr‘ll‘" P2 (x1x9x3x)

= [5(x —x,)3), +8(x — x) 3,2 +8(x —x3)a’j3]r31d=“(x1x2x3)

di-D dy-D
t—5 0,8(x—xy) + D 0,8(x —xp)
5 D d.d
»0(x —x3)IT 19,8 (x1x2x3) (7.14)
Let us substltute (7.13) into (7.14). We obtain: )
d. 6 1
i -—pT(O‘)a# sw 9 T(xlxzx) = f dy ¢’ (Jn:lxy)aﬁcH 1 d’(xyxz) \vfﬂ L/
¢

- LSt

T+ fdy Codla(xlyx)aﬁcalad’(yxxz)

d—D
+1

% fdyC % (xx»)C a4 2(xyx 2)
+ 6—52 % fdy Cad"s(xlyx) Caladz(yxxz) " (7.15)

where C°%® and C%1%92 are Clebsch-Gordan kernels normalized by conditions
(4.2), (4.3):

- TG(dy—dy+1+))TG(dy—dy+1+s
" 3y = TR +dyt1+5) — ) A1~ 2 L+ = dy +125)

PGy —-dy+l —))(G(dy —dy +1-3) -

NiAy G, +dy - 1451 = %28y 4, —d, +1-5)(X1 — %) A, L (dy—dy +H-5)(X2 = X)

{Rﬁl(xlxz) )\i;(x]xz) — traces} , (7.16) {//
s
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1

where h = 3D

3

(4 )” ( )

Rﬁ(xlxz) is given by the formula (7.2a). The normalization of functions (7.16) has
been evaluated in ref, [17], see also [1 1,13]:

0 N(ddoly F0G () +dy+1+5) TG +dy— 1+)TG(dy - dy+1+5))
>
¥ F(%(d2-~dl+f+s))F(D—%(dl +dy+1-5)P(h—L(dy +dy—1—5))

X D(h—1d, —dy+1-s))D(h - 2(dy—d; +1-5)} V2. (7.17)
Let us consider the scalar contribution to (7.13). In this case o = (, 0) and the quan-
tity C"d“T{xxlxz} is determined by eq. (7.16) with [ = D, s = 2. Contrary to (7.7)
this quantity is determined uniquely and, consequently, the scalar contribution to
(6.13) does not contain the terms of the type (7.9). The same also refers to the

vector contribution o = (I, 1), see the considerations below. Evaluation of integrals
in (7.15) gives:

8D g No(l,d8)Ny(dd,5)
pT(f,S=0)= =y ld D
1
p
(I-dy®D

X D +i(—dp)+ DI -1 -d)+ 1)} {TGU+d,+8)—h)

“i=dy MeU+d)+ HIE- Li+dy)+1)

X DG (dy+8 = DIN(h— 3(dy — dy +)I(D — 3(dy +d; +8))}

X (36 -d)(f; - O -dy —8)—3(fi+fID-1)

+(112D)(fld1+f26)(f—dz)(D—!-- dz)} y (7.18)
where
fi=TGU+dy —=8ND(h - 3(I - dy +8)TG(dy—d| +8)T(h - 3(d) — & +d3)),

and f, may be obtained from f] by the replacement d; 2 &. In accrodance with (4.7a)
one has:

p'l'(L 0) & pT(D = I!I: 0) *

It is not difficult to verify that the spectral function (7.18) satisfied the dynamical
equation. In the ?\gpdltpdz @ theory in the D dimensional space we have:
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Tine 6‘,; % T
ﬁ@ VAL f@ﬁ (7.19)
_ £d, d
I& * 9_

where . TR
fa; I
fro- 2@, o=t g s

(the additional factor % in (3.10a) appears because of the trace over the spinor
indices). The Green function on the left-hand side equals:

;%
_.QT = {;‘f s,ff/x-wfzz-ﬁfﬂ-%;(j (7.19a)
dy

Evaluation of resj=g, p7(/, 0) from (7.18) shows that eq. (7.19) is satisfied identically
for any value of dimensions d;, d5, 8.

Consider eq. (7.15), s being arbitrary. The three-point function, including the
traceless symmetrical tensor 0y = (ds) of rank s, the scalar 0, = (d3, 0) and the
traceless symmetrical tensor of the second rank o3 = (d3, 0) is equal to

It ‘ﬁ

0'1020'
M- M uv4{x1x2x3)

~

= Siid+d3-dy-s— z)(x13)A (ds+ds—d +s— 2)(x23)A'(d1+d;—d3+2—s}(x12)
X [A {li:(x2x3) JGLIS (xyx3) — traces]
h 3 X712
(xlxz) (x1x2) ngluz—f
13"23

[Z)a L(ex3) . Ay - ;(x2x3)(gnkvl(xu)?\':;(xle)
13

x 2 x .
+g#k,,2(x1 3) huf(xlxz) ~péy, ugg,ukv(xl 3) h,ﬁ(xlxz)) — traces in p]

1
+
2
(":13)2

1
X (g#kyl(xw)ngz(xn) — &, vzg-“k-“i’) - traces]} 4 (7.20)

X X
C[’(E ?\#i(XZX:;) ?\ﬁk kﬁf )\%:!5().'2)?3,)

where 4, B and C are arbitrary coefficients, x;; =x; — xk,gw(x) ot Ay 2xp_xv/x2,
the symbol i, denotes the missing corresponding index. Putting o3 = oy, i.e. d;=D,
in (7.20) and taking the derivative 6,3513 we find that the left-hand side of (7.15)
equals:

y
Ly

24
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2
Xa 00,0 X712 ~
a"fcl"li--‘z”sg;l"z(xlxzxﬂ Ty g Ah—%(dz-—d1+!+2)(x13)
X13%23
X Ap_3(dy—da—s+20*23)B1(a, +dy—s+2)-n(X12)
X
X lAlly;(xlxz) [)\ii(xeS) l;;(x2x3) — traces]
] -
+;a— Bl[%c)gukuz(xu)?\i:(xzxg...hnk...?\i;(xzx3)—tracesl.n.u]} s
13 (.21)
where
D-1 ) D-2
Al:[_D_ (dZ*dI)FB]A tu=5=(h-3d—dy—~9))B,

Bl=£—1)A + [dz—cn +';‘5] B+2(s - 1)(h -3 ~dy—s+2)C.

At s = 2 the quantity (7.21) may be turned into zero by appropriate choice of the
coefficients A, B and C. This means that the terms of the type (7.9) enter eq. (7.13)
ats = 2.

In order to obtain p(/, 5) at s > 1 it is necessary to calculate integrals on the
right-hand side of (6.12). This may be conveniently done with the aid of the relation
[13]:

fdx 361("1 - x)Eaz(xZ = x)zas(x3 - X) {?\ii(xx_g) ?\ii(xx:;) — traces}

I'(h — 85 +5)I'(6y) ~ - ot
= (0" T 59T, ) -5, &2 B E19 B (612)

= x
X {N,1Ggx3) . XM (xpx3) — traces} ,

where 8, + 8, + 83 = D. We shall not write down the final calculations because they
lead to rather cumbersome expressions.

On of the authors (M.P.) expresses his gratitude to V.I. Belinicher and V.B.
Telitsyn for numerous discussions.
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