Class. Quantum Grav. 1 (1984) 131-147. Printed in Great Britain

Euclidean linear conformal gravity

E S Fradkint and M Ya Palchik}

t Department of Theoretical Physics, P N Lebedev Institute, Academy of Sciences of the
USSR, 117924 Moscow, USSR

 Institute of Automation and Electrometry, Siberian Branch of USSR Academy of
Sciences, 630090 Novosibirsk, USSR

Received 12 August 1983

Abstract. A Euclidean quantum conformal gravity in a linear approximation is considered.
It is assumed that its solution possesses an exact conformal symmetry. The main difficulty,
which is a characteristic not only of gravitation theory but of all gauge theories as well,
consists in the fact that in all previous formulations the conformal invariance can be stated
unambiguously only in the purely gauge sector. In the present new formulation this difficulty
is absent. This is obtained by means of new transformation laws for the metric tensor field
h,,, and energy-momentum tensor T,,,. Previous transformation laws corresponded to the
indecomposable representations of the conformal group and this fact was the origin of the
difficulty mentioned. Explicit expressions are obtained for the propagator of the field h,,
as well as for the three-point functions including h,, or T, and the matter fields. It is
shown that the equations of linear conformal gravity are the consequences of the conformal
invariance. They are the manifestation of a mathematical fact of equivalence of the
conformal group representations attributed in our approach to the fields h,,, T, and the
Weyl tensor.

1. Introduction

The modern version of quantum gravity (see e.g. Adler 1982 and references therein)
is based on introducing terms quadratic in the Riemann curvature into the Lagrangian
(Utiyama and DeWitt 1962). The theory arising in this case appears to be not only
renormalised (Stelle 1977, Fradkin and Tseytlin 1981, 1982a), but also asymptotically
free (Fradkin and Tseytlin 1981, 1982a). One of the promising versions of this theory
is conformal gravity (and particularly its super-symmetric extension, conformal super-
gravity (Van Nieuwenhuizen 1981 and references therein; Fradkin and Tseytlin
1982b,¢c)), where all terms in the Lagrangian which are quadratic in the Riemann
curvature enter as the combinations

0=C;:C"™
where C,,,,, is the Weyl tensor,
Cy.w'r = R;.l.nrr o %( 8;.:0Rw + gerﬂ.o‘ 3G 8p|-rRm 3 gpr.'r) +%(gpvgrrr o gpwgw)R’

and g,,,(x) is the metric tensor. A full Lagrangian including .matter field interactions
has the form

L=0+L™, (1.1)
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where L™ is a matter Lagrangian. The Lagrangian (1.1) is supposed to describe the
gravitational interaction at short distances, while the Einstein gravity acts at large
distances. It can appear, for instance, as an induced theory after dynamical symmetry
breaking. Being interested only in short distances, we can consider the conformal
invariance as an unbroken symmetry of the interaction (1.1).

Surely, the question of existence of this symmetry depends essentially on which
types of the matter field interactions enter (1.1). For a large variety of models the
conformal invariance is broken in perturbation theory by the trace anomalies. This
takes place even for those matter interactions which are conformally invariant in the
limit of flat spacetime. There are, however, two possibilities to construct the conformal
invariant gravity: (a) To select types of the matter fields and their interactions which
do not possess anomalies. Such a variant of the theory is possible, in particular, in the
framework of conformal supergravity (Fradkin and Tseytlin 1983). (b) For some
interactions in flat spacetime the conformal invariance is restored after summation of
the whole perturbation expansion. It is possible at the definite values of a coupling
constant which coincide with zeros of the Gell-Mann-Low function. An analogous
property can in principle appear in conformal gravity at the appropriate choice of the
matter fields. In this case the demand of conformal invariance fixes not only the
coupling constants of the matter fields but the (dimensionless) gravitation coupling
constant. To formulate such a theory it is suitable to use the skeleton expansion. Each
skeleton graph consists of full vertices and propagators for which the exact conformally
invariant expressions must be substituted.

In this paper we start a successive analysis of conformal gravity in the group
theoretical framework. As the first step we shall take linear gravity. The next step is
to take into account terms nonlinear in the metric. The main problem, as we shall
show, is in the choice of correct transformation laws for the metric and energy-
momentum tensors. To take the terms nonlinear in the metric into account one
demands more general transformation laws suitable for nonabelian gauge theories.
We hope to do so in forthcoming papers. Here we limit ourselves to an analysis of
the aforementioned transformation laws in linear gravitation, which appears as an
abelian gauge theory. We demand its invariance (besides the Poincaré group) under
the conformal transformations of coordinates

X, > Ax,, x,» Rx,=x,/x% (1.2)

For this theory the following results are obtained in the paper.

(1) It is shown that the usual transformation law for the conformal tensor under
the R-inversion (1.2) is wrong in the case of the metric and the energy-momentum
tensors, and a new transformation law is found.

(2) Explicit expressions for the conformally invariant propagator of the metric
tensor and for three-point Green functions including the metric tensor or the energy—
momentum tensor are found.

(3) Conformal invariance of skeleton graphs which include such Green functions
is proved.

(4) It is illustrated that the classical equations of conformal gravitation that relate
the metric tensor, the Weyl tensor and the energy-momentum tensor result from
conformal invariance and express the conditions of equivalence for corresponding
representations of the conformal group.

Let us emphasise that the area of application of the results concerning the energy-
momentum tensor is not restricted to conformal gravitation. The new transformation
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law for the energy-momentum tensor under the R-inversion (1.2) is true for any
conformally invariant field theory. This result is of particular importance in the
investigation of the conformal Green functions of the matter fields (without taking
gravitation into account) beyond the scope of the perturbation theory approach started
previously by Fradkin and Palchik (1978). In particular, as has been shown by Fradkin
and Palchik (1982, 1983), the new transformation law allows one to deduce the field
dimension spectrum in the operator expansion of products of the fundamental fields.

A good deal of the paper is devoted to questions associated with a more general
problem of the formulation of the conformal invariance in gauge theories. The thing
is that for a long time it was possible to formulate the conformal invariance in a purely
gauge sector only (see e.g. Todorov et al (1978) and references therein). In recent
papers of the authors (Palchik 1981, 1983, Kozhevnikov et al 1983, Fradkin et al
1982) the solution of this difficulty was found for the case of quantum electrodynamics.
Since the present paper is a generalisation of these results, we shall illustrate the nature
of the difficulty and the general idea of our method using Euclidean QED as a more
simple example.

Let us assume that the Euclidean potential A, and current j, are transformed
under the R-inversion (1.2) as the usual conformal vectors

A, (1) —> USA, (x) = (x) " .. (x)A.(Rx), (1.3)

ju (0)—> Ukji (%) = (5?1, (x)j.(Rx), (1.4)
where

N (X)=8,, —2x,x,/x°. (1.5)

Let us consider the photon propagator D,,,(x;,) =(0|TA,(x,)A,(x,)|0). The require-
ment of the invariance of D,, with respect to (1.3) leads, as is known, to the purely
longitudinal propagator

D!, (x12) ~8,9, In x},. (1.6)

This result is a consequence of the well known fact that the transformation (1.3) leaves
invariant the subspace of longitudinal functions. Indeed, if we subject the longitudinal
function Al (x)=4,¢(x) to the transformation (1.3) we get again the longitudinal
function URAL (x) = (x*) "', (x)a5F*¢(Rx) = 8} ¢(Rx). Thus, (1.3) can be considered
as the transformation law for longitudinal functions only. It is essential that any
transverse function acquires the longitudinal part after the transformation (1.3). The
subspace of transverse functions, consequently, is not invariant under (1.3) and it is
necessary to construct another representation of the conformal group in this subspace.

As a result, we arrive at the following construction. An arbitrary function Ar(x)
is represented as a sum of the transverse and longitudinal parts A, (x) = Aj(x) + A, (x)
and each term in this sum transforms under a distinct representation. Analogous
considerations are valid in the case of transformation (1.4) as well; for the latter the
invariaint subspace consists of the transverse functions. A new realisation of the
transformation laws for A, and j, has been constructed by Palchik (1981, 1983) and
investigated in detail by Kozhevnikov ef al (1983), and by Fradkin et al (1982). The
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results looks as follows:

A, (x)—> UAA,(x) =[(I-P)UA (I-P)+ UAP]A,(x), 1.7

ju (1) —> Uk (x) =[Uk (I - P)+ PURPYj, (), (1.8)

where P=4,4,/0] is the longitudinal projection operator Pf,(x)=(d,4,/0)f,(x).

From the mathematical point of view the transformation laws (1.3), (1.4) correspond
to the indecomposable representations belonging to the exceptional integer points
(Dobrev et al 1977, Klimyk 1979); see also §§ 3, 4. The longitudinal character of the
propagator (1.6) is a mathematical consequence of the indecomposability of the
representation (1.3).

The new transformation laws (1.7), (1.8) correspond to direct sums of the irreducible
unitary representations, each of which is represented by separate terms in (1.7), (1.8).
As a result, for the propagator of the field A, obtained from (1.7), we have a non-trivial
expression which includes the transverse part (Palchik 1981, 1983, Kozhevnikov et al
1983, Fradkin et al 1982): '

D, (%) = (47%) 7' [(8,, —8,8,/0)(x*) ™' — B(8,9,/0)(x*) "] (1.9)

where B is the gauge parameter.

Let us turn back to conformal gravity. As is well known, the term  in (1.1) is
invariant under the metric transformation g, (x) - w(x)g,.(x). This fact permits one
to put the constraint det|g,,(x)|=1. Correspondingly, in a linear theory we have

8u(x)=6,,+h,.(x), where h,,,(x) =0.

Here 8, is the flat space metric, h,, are small. Thus we shall treat h,, as the traceless
symmetric tensor of zero dimension.
For the Weyl tensor we find:

Crvor =Rpvor —3(8,0R+ 8,,R\s — 8,,R,s — 8,0R 1) +£(8,58.. — 8,.8,0)R, (1.10)

where R .., =3(9,0.h,, +0,3,h,,—0,0,h,,—9,3,h,,). In the approximation linear in
h,, we obtain from (1.1): Ly, =Q,—3h,,T,,, where T,, is the matter energy-
momentum tensor. We shall consider it to be a traceless symmetrical tensor with the
scale dimension four. Varying Ly, over h,, we get

0%k, —08,8,M,0 —08,8,h,, +38,8,8,0,hor +38,,00,0. 00 =3 T (1.11)
This equation remains invariant under gauge transformations
Ry (x) > by (x) +3,h,(x)+8,h,(x) —38,,0,h, (X). (1.12)

We shall study the Euclidean formulation of conformal gravitation. Our approach can
be formulated for Minkowski space as well, but this requires some complications
associated with more complex structure of indecomposable representations of the
SO(4, 2) group. In particular, the analysis of these representations for the fields A,
and j, carried out by Palchik (1980) has shown that there are three invariant subspaces
in the space of each of the representations, while in the Euclidean case there is only
one invariant subspace (Dobrev et al 1977, Klimyk 1979). As a result, in the pseudo-
Euclidean case a more complicated construction would be needed for substantiation
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of the transformation laws (1.7), (1.8). Similar complications appear also in pseudo-
Euclidean conformal gravitation (see also Bineger et al (1982), where another approach
is considered).

Thus, we shall consider a pair of Euclidean conformal fields h,, and T,,.
Analogously to the fields A,, j, the sum of their dimensions is equal to the dunens:on
of the space. If we consider them as the usual conformal tensors (see § 2), we will
meet the same difficulty as in electrodynamics: the propagator of the field h,, has the
form of a pure gauge and can be represented as the expectation value of the ‘longi-
tudinal’ fields

h:.w(x)=aﬂhv(x)+avhp(x)_%5puakh)\- (1.13)

In § 3 we shall find the correct transformation laws of the fields h,, and T, which
make it possible to avoid the above difficulty and allow a non- trmal propagator of
the field h,,. These transformation laws appear as a consequence of indecomposability
of representations corresponding to h,, and T,,,, and have just the same form as (1.7),
(1.8), while the projection operator on the subspace of the functions of the form (1.13)
enters as the operator P (see also Fradkin and Palchik 1983).

Modified expressions for the invariant three-point Green functions including the
fields h,, or T,, and the matter fields are obtained in § 4. As is known, these Green
functions are determined up to constants by conformal invariance. New expressions
for them result from modification of the transformation laws for the fields h,,, and T,,.

In § 5 we shall show that the field equation (1.11) as well as the relatmn (1. 10}
between the Weyl tensor and the metric tensor are consequences of the transformation
laws of the fields h,, and T,,. This is a manifestation of the mathematical fact of an
equivalence of the conformal group representations associated with the Weyl, metric
and energy-momentum tensors (see also Fradkin and Palchik 1983).

2. Preliminary remarks and statement of the problem

Representations of the conformal group of Euclidean space (isomorphic to the SO(5, 1)
group) are labelled by the values of scale dimension d and of spin s. Everywhere,
except in § 5, we shall consider only the representations for which s=2. They are
realised in the space of symmetrical traceless tensors of the second rank. We are
interested in the elementary representations of the exceptional integer points, where
the dimension takes on definite integer values. The values d =0 and d = 4, correspond-
ing to the fields h,, and T},,, belong to this class. However, we begin with the description
of some general propertles of the conformal group representations.

Let f“ (x) be a symmetrical traceless tensor with an arbitrary value of d. The
transformation law under the inversion Rx, = x,,/x” looks as follows:

o (1) > (x%) 10 (%) 00 (X)f 7 (R). (2.1)

The full group of conformal transformations includes besides (1.2) also rotations and
translations. We restrict ourselves to a consideration of transformation (2.1) since
modifications of the transformation laws in the case of integer d concern only this
transformation.

For each non-exceptional value of d there is a corresponding irreducible representa-
tion. Let us denote it by Q° The representations Q¢ and Q*™“ are equivalent (see
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e.g. Fradkin and Palchik 1978, Todorov ef al 1978 and references therein)
o*~0*. (2.2)

Let G* be an intertwining operator that transforms Q*™“ into Q% The intertwining
operator kernel defines the invariant scalar product in the representation space. The
kernel has the form

Gﬁm (x!xQ) -~ (x%z)_d[nunr(xll’.)nw(xu) + npr(xl2) ﬂw(xlz) —%auvam] (23)

where 7,,(x) is the tensor (1.5). When deducing (2.3) the form of transformation
(2.1) is essential (see e.g. Fradkin and Palchik 1978, Todorov et al 1978). The invariant
scalar product on the representation space looks as follows:

(fe)= J dx; dx; 4,2 (%) Glror (1 X2) 0 or® (%2)

= J. dx, dx; fft.v (11)G1:£-r (xlxz)‘Pg-r (x2), (2.4)
where

fa, (x) = J dx; Goor (1132)f 5% (x2). (2.4a)

Here we have the relation
G 4 (xx) = (G M (x1%2). (2.5

Let ¢4,(x) be a quantum field with the dimension d. The conformally invariant
propagator for the field ¢,,(x) coincides with the invariant kernel (2.3)

(0]hus (X1) Dor (X2)|0) ~ G o (X1 X5). (2.6)

From the above it is seen that from the mathematical point of view the question
of the existence of the conformally invariant propagator is the question of the possibility
to introduce the invariant scalar product in the representation space.

This is impossible to do in the case of the exceptional integer point representations.
The reason is that these representations are indecomposable, and statements expressed
by equations (2.2) and (2.4)-(2.6) are not true for them. In the space of each
indecomposable representation there is an invariant subspace; and any complement
to it is not invariant. The bilinear form with invariant kernel (2.3) is degenerate on
the invariant subspace. As a result, the invariant propagator determined according to
(2.6) is also degenerate. This is the cause of the difficulty in conformal gauge theories '
mentioned in the introduction. In the case of the electromagnetic potential A, and
the metric tensor h,, the propagator is degenerate on invariant subspaces of the
transverse functions (see § 3 for details) and for this reason it reduces to a pure gauge.
In particular, for the potential we have the longitudinal expression (1.6), and for the
propagator of the metric tensor we find, assuming that d =0 in (2.3),

D:.m (X12)= (217)_2[1',-“,(.\:12) Nor(X12) + "?m(xlz)ﬂw(xu) "%S“ﬁm] 2.7)
= ay.D v,oT (xl 2) * avDu,u"r (x‘lZ) —"%a’gvaADA.m (112),
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where
D, o7 () =X, M,ur (%) + X7 (X)]. (2.8)

This propagator has the form (1.13) and is a pure gauge.

The way out of this difficulty follows directly from the above analysis: each
indecomposable representation should be replaced with the direct sum of a pair of
irreducible unitary representations induced by the indecomposable representation.
Next we should assume that the fields with integer values of the scale dimension such
as A, j, or h,,, T,, are transformed according to direct sums of the unitary representa-
tions. This leads to modification of the transformation law (see (1.7), (1.8)). The
invariant propagator that corresponds to the new law is non-degenerate (see (1.9)),
and defines the invariant scalar product on the space of the direct sum of the representa-
tions. An explicit realisation of this program for QED is given in Palchik (1981, 1983),
Fradkin et al (1982) and Kozhevnikov et al (1983). In § 3 a similar construction for
conformal gravitation is discussed.

3. Transformation laws for the metric tensor and the energy-momentum tensor
under conformal inversion

An explicit realisation for the pair of irreducible unitary representations induced by
each indecomposable representation should be constructed. One of these two unitary
representations acts in the invariant subspace of the indecomposable representation
space, and the other in the quotient space (see e.g. Barut and Raczka 1977).

Let us consider the representations that correspond to the fields h,, and T,,.
Setting d =0 and d =4 in (3.1) we have

B (X) ——> U b (6) = 10 (%) 70 (3) o (R, (3.1)

T, (1) —— UL T, (%) = (53) 7o () 7 (%) Torr (RX). (3.2)

Let us consider representation (3.1). Let M, be its representation space. The invariant
subspace M ! = M, in this case consists of the tensors of the form

h:.w(x) =a_uhv(x)+avh#(x)_%5pvaah‘\(x)' (3-3)

Really, it can be easily verified that every tensor of the form (3.3) preserves its form
under transformation (2.2). We have

Ukhl, (x)=0,h,(x)+3,h,(x)—18,,8,h (x)

where h (x) = x*7,.(x)h, (Rx) and U%, is defined by (2.2). The unitary representation
that acts in M}, is irreducible (Dobrev et al 1977, Klimyk 1979). Let us denote it by
Q). Another irreducible unitary representation (denoted by Qj) acts in the quotient
space M}, ~M,/M }. As a result, instead of the initial indecomposable representation
that corresponds to transformation (3.1) we may consider the reducible unitary rep-
resentation

0,= Qi@ Q;, (3.9)
which acts on the direct sum of the spaces
M, =M} ®&M), (3.5)
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A similar situation takes place for representation (3.2). Let us denote by My the
space of this representation. The invariant subspace M'T = Mr consists now of trans-
verse tensors. Indeed, taking into account the fact that for any symmetrical traceless
tensor T, (x)1,,(x),[(x?) " h,.(x)]=0 and the relation 3,[(x*) >7,,(x)]=0 we find

3,T,,(x)=0-49,T,.(x)=0

where T}, (x)=UgkT,.(x). As before, let us consider two irreducible unitary rep-
resentations Qf and Q%. Here QF acts in the invariant subspace M, and Q% on
the quotient space M’ ~ M/ M. The direct sum of these representations

Or=0Q4® Q% (3.6)
acts on the space
Mr =M% @MY, (3.7)

Let us find an explicit realisation of representations (3.4) and (3.6). As mentioned
above, the transformation laws for the functions transforming according to these
representations differ from (3.1) and (3.2). These laws cannot be determined unam-
biguously. They depend on a special choice of representatives in the equivalence
classes belonging to the quotient spaces M5 and M. The most suitable choice is the
following. In each equivalence class from M% we choose the function represented
similar to (3.3)

T:w (x) =auTv(x)+aan(x)-—%suva;\Ta\(x) (3'8)

where T, (x) is some vector. Then the space M% is realised as the space of functions
of the form (3.8), and the space (3.7) as the space of pairs of tensors { T'x, (x), T}, (x)}.
The next step is to consider instead of pairs of tensors their sums

T (x) =T (x)+ T, (%) (3.9)

and to construct a realisation of the representation (3.6) in this space. For this it is
sufficient to choose a law of transformation of the tensors T,.(x) such that separate
terms in (3.9) do not mix under all conformal transformations. This requirement
determines unambiguously the transformation law, see (3.11). The final result which
will be obtained consists in finding the explicit realisation of the direct sum of representa-
tions (3.6) in the space of all tensor functions T,,.

One should proceed in a similar manner in the case of the space (3.5). Let us
choose a transverse representative hj;, in each equivalence class from M},. The space
M} will be realised then as the space of transverse tensors h},, and the direct sum
of the spaces (3.5) as a set of pairs {h};, (x), hL., (x)}. Then we can pass to the sums

B (X) = hiS, (x) + by, () - (310

and choose the law of transformation of tensors h,,(x) so that the two terms in the
RHS of (3.10) do not mix under conformal transformations.

The desired transformation laws can easily be determined. Let g be an arbitrary
conformal transformation and U} be operators of the indecomposable representation
Q. The operators of the unitary representation (3.4) acting on the space of tensors
(3.10) can be represented as

Ut =(I-PHYUL(I-P)+ U"P' (3.11)

where P' is the projection operator on the invariant subspace M/, consisting of tensors
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of the form (3.3) and I is unity,
P'M,=P'M}, =M}, (3.12)

(I—P") = P" is the projection operator on the subspace M}, consisting of the transverse
tensors
(I-P")M, =(I-P" )M} = M} (3.13)

The explicit expression and properties of the projector P' are given below.

Expression (3.11) has the following structure. The first term corresponds to the
irreducible representation Qf, realised in the space of transverse tensors: at first
the transverse representative of the equivalence class is selected by the action of the
projection operator (I—P'); then this representative is subjected to the action
of the operator U}, which transforms it into an arbitrary representative of another
equivalence class; then the transverse representative is again selected. As a result, the
operator (I —P")U,(I — P") gives the action of the reprcscntatlon on the subspace of
the transverse tensors. The second term in (3.11), U,P", corresponds to the irreducible
representation Qj, acting in the invariant subspace of tensors of the type (1.13) that
is projected by the operator P'. It is important that each term in (3.10) is transformed
independently under the action of the operawr U

It can easily be seen that the operators Us, deﬁned according to (3.11), satisfy the

group law, if the operators U} of the indecomposable representation have this property.
We find

Ut Ot =(1-PYU: (1-PYULU-P)+U:P'ULP
+(I-PHU: (1-P)ULP'+ UL P'(I-P)U;, (I-P").

Taking into account the invariance of the subspace M}, under U% we have
P'UP' = U,P', (I-PYULP'=0.

As a result we find
Ok Ot =(1-PYUL UL (I-PY+ UL UL P' =04,

In this equality we have allowed for the relation U2 U}, = U3 ...

Let us consider representations associated with the energ}'—momentum tensor. Let

UT be operators of the indecomposable representation Q. Then the operators U,
of thc unitary representation (3.6) acting in the space of tensors (3.9) have the form

U =UT(-P)+P'UIP. (3.14)

In order to show this expression to be valid, one may repeat with obvious changes all
the considerations concerning expression (3.11).
Now let us give an explicit expression for the projection operator P’

P'=P,,, =38,P, .. +3,P,0:—%8,,0,P)or (3.15)
where
P, .. =8—28,8,9./0%+3(8,,8,/0 +8,,0,/0)—8,,4,./0].
.Being a projection operator, it has the following properties:

u:pAPpAw P:n.w-rs Pilm o Pir'ruv = Pimo—ra P:.uurl = 0-
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For any symmetrical traceless tensor f,, we have
P!funE P:wwfa'r =auf:v+a»fu _%ap-va)f)\ (3-16)

where f, = P,L,,,fm.
Then we introduce the traceless operator

I=1,0r = 48,58, +8,,8,0—18,,85:). (3.17)
The following identities hold:
Hfur =L ysoefor = furs (I=P)fom Py m P o= i (3.18)

where d,f,. =
The last equation is the consequence of the relation

3P e =3,(1vre = Phisoe) =0

that could easily be verified by direct calculation using (3.15), (3.17).

It can readily be seen that this complex structure of transformations (3.11) and
(3.14) takes place only for transformations including the conformal inversion (1.2).
Only special conformal transformations that are expressed through space translations
and the conformal inversion (1.2) belong to this class of transformations. If we restrict
ourselves to the Weyl subgroup that includes rotations, translations and dilatations,
then for such transformations P'U, = U,P' and the operators U coincide with U,.
So, the new transformation laws of the fields h,, and T,, are needed only for the
conformal inversion R for which P'Ug # UgP'

Hn(X)—— (I - PYU S (I- P+ UgrP'Th,.(x), (3.19)

T, (x)——[UL (I- P+ P'ULP'IT,.(x), (3.20)

where the action of the operators U h and U} is defined according to (3.1) and (3.2).

Finally, let us consider the invariant propagator of the field h,, determined by the
new transformation law (3.19). Unlike the case of the indecomposable representations
Q,, Qn, the new representations O;. and OT are unitary and equivalent to each other
(for more details see § 5). General statements (2.2), (2.4)-(2.6) are valid for these
representations as well. The propagator D,,.,, of the metric tensor h,,(x) can be
identified with the intertwining operator kernel. We have for it

D,,..(x)=DY,. . (x)+aD.,,.(x) (3.21)

where the second term is given by expression (2.7), a is the gauge parameter, and the
first term is equal to (see § 5 for detail)

D} (%) = (L ooy = Phavor )0 728(x) = =167 %I 1y0r — Plisor) InX? (3.22)

where the operator P,,,,, is given by (3.15). Detailed calculations that lead to (3.22)
are presented in § 5.
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The scalar product on the direct sum of spaces M7 ®M 2 consisting of tensors
(3.9) is given by the expression

(’I; T) = J dxl dxz T#P(II)D'LW‘!' (x12) Tﬂ'r(xZ) (3'23)
= I dx, dx, T}, (1) Do (%12) T, (x2)

+J dxy dx, Thy () Do (X12) Thr (X2). (3.24)

Here the first term in (3.24) is a scalar product on the space HY and the second term
is one on H'.

4. Invariant three-point Green functions

Let us consider the Green functions, that include the fields h,, and T,,. As is known,
the three-point Green functions are determined by the requirement of invariance up
to arbitrary factors. In this section we discuss what changes arise in explicit expressions
for these Green functions resulting from the new transformation laws of the fields h,,
and T, Let

G oo (x1%2%3) = (0|¢13 (21) 2 (x2) B, (5)[0) (4.1)

be a Green function containing two arbitrary tensor or spinor fields ¢, and ¢, with
the scale dimension é and d. Here and below tensor and spinor indices on these fields
are omitted. The invariance conditions of the function (4.1) are expressed by some
functional equations resulting from the field transformation laws and invariance of the
vacuum. Let us consider the invariance condition under the new transformation law
(3.19). We find for the function (4.1)

Gh, (x1%2%3) = (. . )[P}irap (8/3%3) Mo (X3) M. (X3) Pospa (3/ IR X3)
+ Mo (X3) My (X3) Pirrpr (3/ 9RX3)1G jr (Rx, Rx, Rx3) (4.2)
where (...) is a set of factors associated with the transformation laws of the fields ¢,

and ¢, (see e.g. Fradkin and Palchik 1978, Todorov et al 1978). Analogously §or the
Green function '

GL (% X2x3) ‘_'(0"1’? (%)‘f’g (x2) Tpv(xfi)lo) (4.3)
we find from (3.20)

GI» (xyx5%3) = (.. .)[(x%)“‘n,w(xg) T (X3) Pgrpr (3/ 3R X3)

+P:.|mﬁ (a/ax3)(x%]—4nav(x3)nﬂ7(x3)PLﬂu\ (a/GRxa)]G:;\ (R11R12R-’~'(3)- )
4.4

Equations (4.2) and (4.4) are complicated integral equations because the projectors
P and P' include terms of )" and 0 ~? type. However, these equations can be solved
using the known solutions of more simple functional equations corresponding to the
old transformation laws (3.1) and (3.2). Such equations look as follows (see Fradkin
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and Palchik 1978 or Todorov et al 1978 and references therein):

Cuv(x1x2x3) = (' . ') n;.w'(xil)nw(IS)Cm(Rleszxl)! (4.20)
éuv(xlx2x3) - (' . -)(xg)_“'hw(xs) nw(xS) éu'f(RleIZRxﬂ)'! (4'2b)

where C,, and 6’”, are Green functions of types (4.1) and (4.3) but which are invariant
relative to the old transformation laws (3.1) and (3.2). At the end of this section simple
expressions will be obtained for the functions G;, and G, which appear as a result
of solving of equations (4.2) and (4.4) in terms of the known functions C,, and C,,,
see (4.11) and (4.12).

We start with the discussion of some general properties of these functions. Let us
consider the Green function C,.. In the general case this Green function may contain
a few independent conformally invariant structures (see e.g. Fradkin and Palchik 1978,
Todorov et al 1978 and references therein). The complete set of such independent
structures can be divided into two groups. Let us denote the structures from the first
group as CEM (x,x,x3;), where i is the structure number, and from the second as
Cy .o (x1x2x3). Let us refer all the structures that can be represented as

l-.[-l-v(xlxsz) =8,2C, (%, X5%3) +033C, (X1 X,%3) — 38,03 Cia (X1 X2X3) (4.5)

to the first group. Existence of these structures is connected to the invariance of the
function subspace (3.3) relative to transformation (3.1). In particular, in the case of
two scalar fields ¢, = > = ¢ there is only the structure

Con(x12:%3) = [lf(xlz)dﬂ](xwxza){)t ) (%1x2)A 02 (x,x,) — trace]

where
A2 (xx)= (xxa)p/-tfa = (xzs)u/xgs, (4.6)

represented in the form (4.5) with the function C,(x;x,x;) equal to
C:c (xX1x2%3) = “%[xfsxgsf(xfz )dﬂ] lﬂ(-"fa/x%a )AL (x1x,).

We refer all the structures C,,,, that cannot be represented in the form (4.5) to
the second group. These structures exist in cases where the fields ¢, and i, are spinors
or tensors. Note that the functions C,,, are not transverse as well They can be
considered as representatives of the equivalence classes from M,/ M| h

Similarly, the Green function C,‘, that includes the energy-momentum tensor can
also contain a few invariant structures forming two groups. We attribute all transverse
functions C¥. o (X1 X5X3)

Bizé:;,, (xlxzx:;) - 0 (47)

to the first group and all the other structures C kv (X1X2X3) that do not possess this
property to the second group. Existence of the transverse functions is connected to
the existence of the subspace % which is invariant under the transformation (3.2).
The structures C,, (x,x,x;) are representatives of the equivalence classes from
Mr /MY,

An example of such invariant structures is presented below. Let y{ =P, . (x)
be a tensor field of rank s, symmetric and traceless in all indices, and wi= qod(x,_) be
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a scalar field. Then there are three independent invariant structures (see Fradkin and
Palchik 1975):

1 1 1
C v, (X1X2%3) = 1y2.)(¢-d-s+D-2)/2 (2, )(d—aﬂ-m—z;;z (GxZ,)EFra——D¥/2

X[A'\;‘ L(X3x2)A 3 (x1x2)+B_'"" E A (X3X2)

X13 k=1
2

2
X ["i_um (x13) AT (X1 20) + M0, (X13)A 2 (X1.%0) +— (xzx:i)]

D#vz

T2 2 Z Am P g,(xsxz)[ﬂpw (x13) M40 (X13) )
( 13) kr=1

1
_Bsﬁvsuw:]}' W)

where A, B and C are arbitrary constants, D is the space dimension, A X o, (X2x3) =
Al (x2%3). .. A (xpx3) —traces and A% (x,x5) is given by expression (4.6). Taking the
dlvergencc of this expression we obtain

aucuv.pll. T (xl x2x3)

_ Xz ( 1 1 1 )
=3 2 G—d—s+D-2)/2 (1.2 (d8++D2212(5+d D+2)/2
X13Xa3 (2x13)( g o (3x23) y " (3x12) = 4

X(AIA:.[]...;L,(x3x2)A‘:3 (x, x2)+31 Z A e, (X3X2)m,,0 (X43)

13 k=1
—lraces) : (4.9)
where
A,=D7'[(D—-1)(6—-d)+5s]A-s[(D-2)/DD—-8+d+s)B, 4.10)
B,=+D“‘A+(6—d-25/D)B+(s—1)(8—d*s—D+2)C. ’
Assuming A, =B, =0 and calculating A, B and C from here, ‘we obtain from (4.8)

two mdependent transverse structures C and one structure C

Let us present now the general expressions of the Green functic_ms (4.1) and (4.3)
which are invariant under the new transformations laws (3.19), (3.20). According to
§ 3 we need to pass to the transverse representatives in the equivalence classes from
M, /M, and to the representatives of the type (3.8) in the equivalence classes from
M7/MY%. For this we use the projection operators P' and P" introduced in § 3. As
a result we have

G, (X, %,x5) = P (8/0%3) Cor (X1 X2x3) + Cyy (X, X2%5), (4.11)
GI, (X1 x2%3) = é‘;, (xy22%3) + P:mn (3/0%3)C,» (x1x2%3), (4.12)

where summation over all the structures of each group is meant and the projection
operators P and P' are given by formulae (3.18) and (3.15). The invariance of these
expressions can also be demonstrated by direct calculation from (4.2) and (4.4) as was
done by Palchik (1983) for QED.
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It is obvious that the skeleton graphs constructed from these Green functions are
invariant under the transformations (3.19), (3.20). Indeed, skeleton graphs which
contain the field h,, on an internal line have the form of the invariant scalar product
(3.23) in the space of the representation

J dx; dxy G,Iu (xlxzxz)D,um(x3x4)GZr(x4xsxs)

and thus they are invariant.

5. Equivalence of representations and field equations

As noted in § 2, the usual equivalence of the representations Q¢ and Q*“ does not
take place at the exceptional integer points. In this case, however, the partial
equivalence (Dobrev et al 1977, Klimyk 1979)

Q% ~ Qi Q% ~Qj, (5.1)

is fulfilled which can be expressed by the following relations:

a " hy, (%) =J dy D, (z—)TE () (5.2)
where a is an arbitrary factor,

T (x)=J dy I},o.(x— y)hZ.(y). (5.3)

Here h.,(x)e M}, Tk, € MY. The representatives of the equivalence classes from
the quotient spaces enter the right-hand side: T%, is any representative of the
equivalence class from My/MY, h¥, is any representative of the class from M,/Mj,
D,,... and II}.,, are the kernels of the invariant intertwining operators. The kernel
D,,... is given by equation (2.7). The transverse kernel II};,,,, also can be found from
(2.3) by taking the limit d =4.

This limit can conveniently be implemented in the following way. Let us put
d=4+¢ in (2.3). Keeping the terms dominant in £ we have

[ M0 (%) 1 (%) + 1 (X) M (X) — 38,485, 1(x7) 7
=5HY,,. (8/3x)(x?) > +0(e) (5.4)
where H},,,. is the transverse differential operator
HY\or =30,8,0,0,—3(8,50,0,+8,,0,0,+ 8,,0,0,
+6,,8,0,)0 +3(8,,8,9, + 8,,4,4,)0

+3(8,08,, + 88,0 = 38,,8,,) 0% (5.5)
It has the following properties:
B“H::m =0a H:wr=H:7uv=Ht;—pm! H:.:p.a'r =0-

It can be represented as
HE,,, =P% .02 = (I syor = PloreryJOI? (5.6)
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where P and P' are the projection operators introduced in § 3. The right-hand side
of (5.4) is singular in the limit £=0. Let us multiply this expression by ¢ =(d—4)
and take the limit e =0. Allowing for the relation e/(x%)***|,.o=—7?8(x) we obtain
the expression

I}, (x) = H},0r (8/3x)8(x). (5.7)

Let us consider the partial equivalence of (5.2) and (5.3) as applied to the realisation
of representations QY and Q% described in § 3. For this we substitute the longitudinal
representative T%, =T}, of the equivalence class from Hy/H% into (5.2) and the
transverse representative h¥* (x)=hJ, (x) of the equivalence class from H,/H}, into
(5.3):

a_'hf.y(x)=_[ dy D, sor (x=y) Thr (¥), (5.8

Tﬁv(x)=f dy I}, (x— y)ho. (y), (5.9)

where T., is the tensor function of the form (3.8). The transverse operator IT" is
non-degenerate if considered only on the transverse tensor space. Hence, relation
(5.9) can be inverted

hﬂ»(x)=jdyDﬁm(I—Y)T:f(Y] (5.10)
where D"(x)=(I1")""(x). From (5.7) and (5.6) we find

DY (%) = (I s — Pl )O728(x)

from which equation (3.22) follows.
Consider the sums of tensors (3.9) and (3.10). Adding (5.8) and (5.10) and allowing
for the relation | D.,,,,, T, =( D%, T., =0 we find

h’uv(x)=jdyD#wr(x_y)Tw(y)- (5.11)

This relation contains the same information as the relations (5.8) and (5.10) and
expresses the equivalence of the direct sums of representations (3.4) and (3.6). The
intertwining operator kernel D,,,... is given by expression (3.21).

Let us show that equation (5.11) is coincident with the dynamical equation for the
metric tensor in the linear approximation. We introduce the classical fields A<, (x)
and T3, (x). These can be defined as the convolutions of the Green functions including
the quantum fields h,,(x) and T7,,,(x) with the test functions in all arguments but x.
Note that the ‘classical’ energy-momentum tensor defined in this way is not transverse:
3, T5l, (x) # 0 due to the Ward identities for the corresponding Green functions. The
sets of classical fields hj,, and T, defined in this way form the spaces of equivalent
representations (3.4) and (3.6) realised as the spaces of functions (3.9) and (3.10)
and, thus, satisfy equation (5.11). Taking the inverse of this equation we obtain

(I psor = Proe)O*hE, (x) + @', (3/3%) A, (x) ~ T, (x) (5.12)
where

0}, =8,01,,.(8/8x) +8,11,,,,(8/3x) — 8,,0,11 ,,..(8/ 5x) (5.12a)
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is defined by the equation
11,,0.(3/3%) g (%) = Py, 0 (3/ %) 8(x).
We find from here
I, =258228,0,9, — §(8,,0,0 + 8,,9,00) - 8,4, 0]. (5.12b)

Note that the first term in the left-hand side of (5.12) coincides up to a factor with
the left-hand side of the linear conformal gravitation equation (1.11). The second
term is a gauge term. It corresponds to adding the gauge termt

Lgauge = (1/2a) by, ()1 },,0,(3/8) Borr (%) (5.13)

to the Lagrangian where II},,,, is determined in (5.12a4, b).

Therefore, the conformal gravitation equations for classical fields are the con-
sequence of the condition of equivalence of the representations associated with the
metric and energy-momentum tensor.

Equations for quantum fields cannot be obtained from group theoretical consider-
ations alone. The quantum equations would mean that these equations take place for
any Green functions. Using the formulae for § 4 it can be easily verified that these
equations really hold (up to a factor) for the three-point Green functions

{U e = Pl (8/82) 03+ &7 T, (8/ 02) KOl o () (31) 1 (2) 0)
=X0| T,..(x) ¥ (x1) (x2)|0).

However, the equations for the higher Green functions are fulfilled only under the
condition of equality of the kernels of partial wave expansions of the Green functions
containing h,, and T,,. For conformal QED such an investigation was carried out by
Fradkin et al (1982). All these results can be generalised to the case of conformal
gravitation without any alterations.

Note, in conclusion, that the mathematical problems concerning the Weyl tensor
have not been discussed. The analysis of the corresponding representations is given
by Dobrev et al (1977) and Klimyk (1979). It can be shown that in this case the
equivalence conditions of representations also coincide with the conformal gravitation
equations in the linear approximation, see (1.10) and (1.11). Equation (1.11) can be
written in the form

3,0:C pvor = —8T 510

which expresses the equivalence condition for the Weyl and energy-momentum tensors.
The gauge term is omitted in this equation.

We have shown, therefore, that the linear conformal gravitation equations for
classical fields and the three-point Green functions result from the equivalence condi-
tions of the conformal group representations Qnrresponding to the metric, Weyl and
energy-momentum tensors. Note that these equations contain no non-trivial dynamical
information until an explicit expression for the matter field energy-momentum tensor

1 Note that the longitudinal part of the metric field propagator does not vanish at infinity since the scale
dimension of this field is zero. Hence the gauge term (5.13) determines the propagator up to an arbitrary
factor which also has a zero dimension. To make an unambiguous determination of the longitudinal part
it is necessary to take conformal invariance into account which leads to the longitudinal part (2.7).
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is given. The above group theoretical derivation of equations only shows that the
metric, Weyl and energy-momentum tensors in the linear theory appear as a single
object to which any of three equivalent representations can be put into correspondence.
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