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We prove that higher derivative quantum gravity is asymptotically free in all essential
coupling constants by the calculation of one-loop counterterms (correcting the previous result of
Julve and Tonin) and the solution of the corresponding renormalization group (RG) equations.
Strong arguments are presented in favour of the possibility that renormalizable asymptotically free
gravity establishes asymptotic freedom for the effective mass parameters and non-gauge couplings
in grand unified gauge theories. We also analyse the RG equations in the Einstein theory with A
term and in the higher derivative conformal invariant theories. Among other topics discussed are
the algorithm for the divergences of the determinant of the fourth-order differential operator, the
consistent renormalization of the boundary terms in the action, the one-loop S-function in the
fourth derivative vector gauge theory and the RG equations in the “g¢* +nR¢?” theory.

1. Introduction

In recent years there has been a revival of interest in gravitational theory with the
lagrangian containing quadratic as well as linear terms in the curvature (see [1-11]
and references therein). This theory is renormalizable [4] but possesses a ghost pole
in the tree propagator. However, it is important to realize that the question of
unitarity (or about the asymptotic states) is a dynamical one and should be discussed
accounting for radiative corrections and probably non-perturbatively (cf. [6—12]).
We consider this theory as a possible alternative to the attempts to construct a
unified ultraviolet (UV) finite model on the basis of extended supergravity, leading
after the inclusion of the matter described by a grand unified theory (GUT), to a
complete renormalizable theory of all interactions in nature.

The'GUTs based on a vector gauge theory have solved the problem of gauge
couplings by indicating their dynamical origin (the meaning of asymptotic freedom
(AF) is that bare couplings are zero in the local limit) but have given no self-con-
sistent answer to the question of the bare values of masses and non-gauge (¢°,
Yukawa) coupling constants. One may conjecture that gravity provides the AF
behaviour for all interactions, but in the Einstein theory this is principally possible
only in a non-perturbative approach. We shall see that renormalizable higher
derivative gravity treated in the context of perturbation theory is not only AF in all
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its essential coupling constants but is also likely to solve the problems of bare masses
and couplings by establishing AF behaviour for them.

To prove asymptotic freedom in renormalizable quantum gravity* we consider in
this paper the calculation of the one-loop counter-terms (correcting the previous
result of ref. [7]) and solve the corresponding renormalization group (RG) equations.

In sect. 2 we quantize the theory using the background field method (see e.g.
[17,18]) and stressing the role of the operator H involved in “averaging over gauges”
(see also [19] about the analogous operator in the supergravity case). The corre-
sponding factor (det H)'/? gives additional counter-terms missed in [7]. Finally, we
obtain the one-loop effective action, involving the determinants of the 4th order
differential operators A,. In sect. 3 we work out the corresponding counter-terms
using a convenient “A, algorithm” (established in appendix B). We also stress the
necessity of the independent calculation of counter-terms in the higher derivative
conformal invariant theories and thus correct the expression for the Weyl theory
B-function proposed in [10] by naively taking the limiting case of the (independently
erroneous) result of ref. [7].

Sect. 4 is devoted to the RG analysis of the theory. We first discuss the RG
equations for essential couplings in the Einstein theory with A term stressing the
different roles of the “volume” ky and boundary kg gravitational constants and
taking into account the contribution of the boundary C, coefficient in the heat
kernel expansion. Then we prove that the RG equations in higher derivative gravity
predict the asymptotically free behaviour for all essential couplings in this theory.
Among the consequences of the asymptotic freedom we mention the possible
application of the Lee-Wick-type mechanism for restoration of unitarity (though, of
course, the question of unitarity cannot be settled only by the ultraviolet analysis
which is the topic of the present paper).

In sect. 5 we discuss the one-loop RG equations for a system of higher derivative
gravity plus self-interacting matter fields. We study the general structure of the set of
RG equations (illustrating the analysis by the example of the “g¢* + nR¢*” scalar
field) and show that the property of the asymptotic freedom of gravity itself leads to
the asymptotically free solutions for matter coupling constants and effective masses.

QOur notations are summarized in appendix A. In appendix B we establish the
algorithm for divergences of the determinant of the covariant 4th-order operator A,
using only the well-known A, algorithm [17,20-22]. The principal advantage of our
method over the diagram one [7] is the possibility of obtaining the “topological” and
boundary terms in the divergences (for example, we present the expression for the
boundary part of the logarithmic counterterm or the C, coefficient for the A, case as
well as for A,). In appendix C we discuss the problem of establishing limits on
counter-terms through the example of the higher (fourth) derivative vector gauge
theory. We compute the corresponding one-loop 8-function and show that limits in

* For various earlier proposals about AF in quantum gravity see [13-16] and especially [9, 10].
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the counter-terms are regular by taking into account suitable finite terms in the
effective action.

2. Background field method of quantization of higher derivative gravity

-The theory under consideration has the followmg. bare euclidean action (for

notations see appendix A): ok
#
I=[ eyfg dix+ [ egfy dx, (2.1)
M oM
1
Ry= —E(R—zA)+aW+}bR2+avR*R*+xDZR, (2.2)
1
Ls=— §2K+ agfs. (2.3)

s

Here the A term and boundary terms in the Einstein action K [23,24] and in the
Euler number {Jg [25] are included for renormalizability of the theory under the
natural asymptotically flat boundary conditions. Under these conditions we may
disregard the R*R* and DR terms in (2.2) and also some other boundary terms (see
also [26,27] for comments about higher derivative gravity action). The K term in
(2.3) is also important for correspondence with Einstein theory on the level of tree
S-matrix [12,28,29]. We assume that for renormalized constants

ky(p)=ks(p)=k,  k*=167G. (2.4)

Thus we may use a single constant k (= ky + O(A)) in all perturbative expressions
and also, e.g., in the trace of the classical field equations

R—4A = —-2k?D?R. - (29)

The classical action is positive if >0, b>0, A >3 /8bk?2, but the second condition
seems to be unphysical. Really, if A =0 (cf. [4]),

Ly=h{}a(—0)[m*+(—0)] P> +6(—O)[m?+ (—O)] P }A,
=(ak?)”™', m?=(—2bk%)"", (2.6)
where P2" and P°" are the transverse spin projectors and thus b>0 leads to the

presence of the 0% tachyon (and so to oscillations of the static potential and
instabilities of solutions [5]). Hence the condition for correspondence with general
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relativity apparently implies 5<0 and, as a consequence, the same problem of
indefiniteness of the euclidean action in the 0™ sector [30] (cf., however, ref. [31]).

To quantize the theory using the background field method one first chooses some
background covariant gauge X,[8, £1= §,(x), £, =8,, +H,, (see eg. [17,18]) and
then “averages over gauges” with the help of a suitable covariant positive operator
H,,[g]. The resulting effective action is

Z[g]=e = (det H)“”zfdhdcdae-"l*'w-a,' (2.7)
I=I[g+h]— 5z h +1x”H"’x + c"AG“,c A (2.8)
u»
X. = A _
Gur — Hu.\AG ¥ AG;w i shA gv(h Dp)(g) E) (2-9)
p

where Ag[g, 2] and Ag[g, £] are the ghost and “modified” ghost operators. The
part of (2.2) quadratic in 4, has the form (7]

&, =4a(D%,, )+ b(D%) + -

=1a{}(D%,,)' - 18(D%9)' ~16,.5* — vB})

+terms with less derivatives, (2.10)

where
by =h,— 48,9, @=ht, (2.11)
B=3Ts: 1731+e), e=-2, @)
4,=D,P,—D,P,, P,=D\h)}, (2.13)
B(£),£,,¢,) =D\P*— BD*—£,R  h* — &,m* — £, Ry, (2.14)
B,=B(1,0,%), m*=(ak?)"". (2.15)

The gauge-breaking term should provide the “diagonality” of the highest derivative
term in the operator of the second functional derivative of the action (cf. [7]):

£

ob. = a2 +1vB?). (2.16)
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The corresponding ghost term was obtained in [7] from the condition of BRST
invariance of the analog of (2.8). It should be stressed that this condition is
insensitive to the presence of the (det H)™!/2 factor in (2.7) and that is why this
essential factor was missed in [7]. To justify the use of (2.16) one must reveal its
“xHx” structure and check the locality of (2.8). This is possible in the following
way:

Lev. = 10X, H"X,» x,=P+D,D’B, (2.17)
L_T17L pr 4o -2

Pr=TILP’, T:=g,—D,D D, (2.18)

H,=—g,D*+D,D,—YD,D,. (2.19)

Note that x, (and Aj) is local only when all gauge parameters £; in (2.14) are zeros:
X, =D,k — BD,¢ (2.20)

(B =3 corresponds to the usual background harmonic gauge). Using (2.9) and
(2.17)-(2.19) we get the local operator

spr 6B

Bow=2 (_g”"DZ’LD"D")m_w“m 8o Dp)- (2.21)
The “one-loop” term in (2.8) has the form
I, = Ya[ 4R0PR— L BotPp + haED| + e g, (2.22)

where A(z*_") =Q"D,D,+ %D, +Q, and ﬁ‘f’, AP and A have the following general
structure (cf. [7])

A,=D*+V*D,D,+2N*D,+ U, (2.23)

where D,,V,,=V,,, N, and U act on a certain vector bundle over space-time.

Defining the combined operator A on (k@) and changing the variables

— 2 - 2
hF,—r\/;hm,, qp—»wf—m ?, (2.24)

we get the one-loop approximation for (2.7):

ZO[g] = (detp™*A) ™ *(detp~Bg)(detp2H) "%, - (2.29)
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where we adopted [in (2.24)] the prescription of ref. [30] for the definition of the
functional integral over ¢ (8>0 for b <0).

3. One-loop counter-terms

3.1. GENERAL LAGRANGIAN CASE

Here we present the expressions for the one-loop counter-terms in the theory
(2.1)-(2.3) (with a # 0, b+ 0) generalizing (by the R*R* and boundary terms) and
correcting the previous result of ref. [7]. We find agreement up to the contribution of
H,, in (2.25) missed in [7]. Calculations are based on the convenient “A, algorithm”
(B.14).

We shall use the following notations for coefficients in the infinite part of the
effective action for various background metric dependent operators [cf. (B.4)]:

bG:Ntols b2=P|R+pZ! ‘_'2:2KPIS’ (31)
by=PB,R*R* + B,W+ 18, R*+ B,R+ Bs+ B D?R, (3.2)
€= PBisQs+ 7, RMK,, + 2K(n,R+v) + -+ . (3.3)

Always in the following

Y, =P — 365 Not» V3 =5P;. (3-4}

For example, one can find [using (B.5)-(B.10)] that, in the one-loop approximation
for Einstein gravity [a =0, 5 =0 in (2.2)] and for matter fields in an external metric,

ﬁlzﬁNZ_TI%NI(O)_T%NI+_36%NI/Z+T91§NG* (3.5)
ﬁzzi?ﬁNz"'%Nlm)"'%Nl+‘1]|3N1/2+E‘5N0s (3-6)
Bs=3N;+ 4N, + 2 No(1— 12m)°, (3.7)
Bs= —F AN, +imiN, _%mf/INI/Z —smgNo(1— 121), (3.8)

Bs=20A’N, +3m{N, —2m} ,N, , +im§N,, (3.9)

36:_"I%Nz_Tlﬁle)_!]_le+;_0N1/2+(ﬁ_%")N°’ (3.10)
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p,I—%ZN;!—%N,(O)—%NI+—§N]/2+%(1—121])N0, (3.11)
py=20AN,— 3m?N, +4m? ,N, ,, — m3N,, (3.12)
Pls:%Nms Mu::2N2+2N1{0}+3N| —~4N|/2+N0, (3.13)

where N, is the number of fields with spin s and mass m,, N© is the number of
massless gauge fields and the nR¢? term is assumed to be present for all scalars. The
harmonic gauge gravity contribution in b, is the “off-shell” extension of the result of
[32] and agrees with the results of refs. [20, 33] when A = 0. The N, part of (3.11) was
first obtained in [12, 13] (and differs from that of [16]). For the matter contribution
in b, see e.g. [34, 35,22].

The infinite part of the effective action in (2.25) is expressed by (B.4) with

A =4,(8)+4,(H)-24,(8;). (3.14)

The expressions for b,(A) and b,(A) are calculated straightforwardly using (2.23)
and (B.14) [the dependence on £, in (2.14) is cancelled in the combination (3.14)]. To
obtain the contribution of H,, = — ngz +R,,—(y—1)D,D,, (2.19), it is sufficient

(it 4
to note that it coincides with the covariant spin-one operator in a general gauge and

thus b,(H) is independent of y* and can be calculated, e.g., for y =1 using (B.5),
(B.7): ;

b(H): Bi=—%. B=%, B=h. B=B=0, B=—3.
(3.15)

Let us note in passing that it is possible to obtain the b, coefficient for the following
generalization of H,, (see [36]):

M) =—g D*+ X + ;D,,b,, (3.16)
by(AD) = — (g R*R* + (255> — 35 )W+ (ds* — 45 — & )3R®
+(He2—ds+ H) X3 +(—Hs* +is+d)
XX, R* + & (s+ 1)’ X2+ (— %s*— $)RX,
s=(¢-1)7", x=xp (3.17)

*In other words, one may use decomposition u,.Zu;:‘-I-u,'l', Dﬂu:‘=0 and prove that det H=
det, . H(y=0)-det D*-yN, N=h(D?).



476 E.S. Fradkin, A. A. Tseytlin / Quantum gravity

If X,,=—R,,, {=2(B—1%), A® coincides with the ghost operator in (2.9) in the
general covariant gauge (2.20) (note that the case of { =1 can be treated as that of
the massive vector field operator, cf. [35]). Thus we can find the result for the general
gauge ghost contribution in the divergences without computing any diagram (cf.
[37]) but simply using the fact that multiplication of two special second-order
operators H and A, with the non-diagonal highest derivative terms gives the
fourth-order operator A, diagonal in highest derivatives and hence with a simply
computable b, coefficient.
Finally we get according to (3.14) and (3.2)

bt Bi=%#, B=%8, B=%+50—1%, (3.18)
1 2 1
=10 1 =356 = =54 -
B,=%w 30 ¢ H=3+35. B 2+802’
Be=m"B,, Bs=mB=FA+F, A=alAk}. (3.19)

Using the results of appendix B we also obtain the expressions for b5, ¢ and ¢ in
(3.1), (3.3), 3.4),

p=—%o-5, p;=—m2(5+$), Ny, =8. (3.20)

It is important to realize that one cannot put a =0 or 5=0 in (3.18) because these
limits (in contrast with the k3> — 0 and A — 0 limits) change the order (from fourth
to second) of the operators involved (e.g. 8, and B, have a “step-function” of b).
That is why one cannot establish the result for 8,, for example, in the Weyl theory
[6=0, A=0, ky*=0 in (2.2)] simply by taking the value of B, in (3.18) as was
incorrectly proposed in [10] (on the basis of the result of [7]).

3.2, CONFORMAL INVARIANT THEORIES
Let us consider the following two theories (see e.g. [38—40] and references therein):
£,=aW+ ayR*R*, (3.21)
R,=—6¢(—D*+LR)o+2A¢* + aW + ayR*R*. (3.22)

The Weyl theory (3.21) is useful in the context of the induced gravity approach
[41,11,10] and for conformal supergravity [42], while (3.22) is a generalization of
conformal off-mass-shell extension of the Einstein theory [39]. Both actions are
invariant (up to boundary terms) under g/, = 0’g,,, ¢’ =0 '¢. Let us begin with the
background field method quantization of (3.22) with the action

Ilg. ¢]1=1Ll2]l, &.,=8g.9%%, A=Ak}, (3.23)
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where I, corresponds to (2.1), (2.2) with b=0. Introducing the classical and
quantum fields g,, =g,, +hA,,, $=4¢ +¢ and choosing the background conformal
and coordinate gauges

peo

¥v=0, x,[28]=5(x), (3.24)

we preserve the background conformal invariance and get for the effective action
(integrating over ¥, changing the variable #—h and omitting all L* divergent
factors)

Iglg, ¢]=1q,[2]. (3.25)

As a consequence, one must first calculate the effective action (or, e.g., its infinite
part) for 1, and then make the substitution g,, — g,, as in (3.23). When b =01in (2.2),
the operator on ¢ in (2.10) is of second order and therefore one must analyse the
infinities in the @ and & sectors independently. This is possible in the gauge (2.14),
(2.16) with £, =0 and £, = —$ (where the mixed @D, D,h"” terms are absent). Then
the AP’ contribution is computed with the help of (B.6)-(B.10) and we finally get
instead of (3.18) and (3.20)

Elm: Bl=l4%1! Bz=%zr ﬁjz_%,

=¥, m=mi(R-5),  Nu=T. (3:26)

The counter-terms for (3.22) are obtained by the substitution g,, - g,,¢°k> in
(3.2)—(3.4), (3.26). In view of B8, 0 the theory is renormalizable only on-mass-shell,
R(g)=4A (R*(8)/Z is a possible conformal invariant counter-term)*.

The main question in quantization of (3.21) is how to establish the background
conformal invariance of the x, gauge and hence of the effective action (working in
the one-loop approximation we disregard the problem of conformal anomalies, i.e.
the breaking of the above invariance by a regularization, cf., however, [39]). This
problem is solved (cf. [39]) by using the following gauges [compare with (3.24)]:

=0, x[%81=8(x), £&,=8.2%8), (3.27)

where R(§)=0, ie. ®(g)=1—(—D*+{R) 4R if g, is asymptotically flat.
Integrating over ¢ we get for (3.21): I y[g] = Ly [&], where I corresponds to the

*This is due to a “miraculous” cancellation of contributions of two different diagrams (see [36]) and
thus is in no way a trivial result as it is in the Einstein theory where the absence of the F2 terms
follows simply from dimensional considerations [45).
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theory (3.21) quantized in the gauge x,[g, g+ h]= §,, with an arbitrary background
metric. As a result, the Weyl theory is one-loop renormalizable (R? terms disappear
after g — §). Putting b, A, k3> =0, we see that ¢ drops from (2.10) and so in the
¢-independent gauge [(2.14), (2.16) with £, = §, = 0] we get

b“t‘m: ﬁ[z"'s}ﬁz, ﬁzz_lf?, 83:_%5 By=Bs=0,

p=—%, p=0, N, =6, : (3:28)
or after the change g — g in (3.27)
bit=YRR*R*+ W, bP=0. (3.29)

This value of 8, in the Weyl theory was checked through the independent calculation
of the one-loop B-function in N = 1 conformal supergravity [42]. Note also a simple
relation of the B, values for the theories (2.2), (3.22) and (3.21) in (3.18), (3.26) and
(3.28), respectively: B,(2.2) — 2 - g5 = B,(3.22) — 45 = B,(3.21), where g; is simply the
contribution of one scalar (@) degree of freedom [cf. (3.6)].

4. Renormalization group equations and asymptotic freedom

4.1. EINSTEIN THEORY WITH A #0

It seems useful first to make several remarks about the one-loop RG equations for
the theory (2.2) witha=56=0.

Consider an arbitrary renormalizable euclidean theory with the action I = X;q,1;
and the infinite part of the one-loop effective action I, = — }log(L?/p*)Z, B8V, [cf.
(B.4)] (we assume that L* divergences are cancelled by the measure, while L? ones
are simply subtracted and here we neglect boundary terms). Here 4, are coupling
constants and I, are invariants constructed from fields. Then the RG equations are
(see e.g. [43])

da, . 1 un?
a=—"=8Na,), = log—-. (4.1
dt " 204n)" W )

It is useful to introduce the concept of essential coupling constants (cf. [43]), i.e.
some combinations of a, which are invariant under renormalization, possess the
gauge-independent RG equations and which actually contribute in the S-matrix (or
in the effective action, calculated from the solution of the field equations). The RG
equations for essential couplings can be obtained either by combining (4.1) or by the
use of field equations in [ and 7, [36]. The second procedure is valid also for only
on-shell (one-loop) renormalizable theories like the Einstein theory. The essential
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couplings here are dimensionless, A = Ak, ay, ag and kg [we assume the condition
(2.4)] satisfying the following RG equations [see (3.1)-(3.13)]*:

ay =B, as = Bis, (k';z):"sxkgzv (4.2)

A(0)

A= —1oN, M) = —T2—
20 o MO= 10y

(4.3)

where
o= —4v,— A~ l’g 2 0:%32_‘]5&&“41&_]34_‘“_235:%&

(on the field equations b, = 8, R*R* — ¢A? in agreement with the result of [32]). As a
consequence,

K3(r) = k?(ﬂ)["(’) 2% 03, (4.4)

A(0)

and we conclude that we have asymprotic freedom (AF) for A>0 and kZ (and also
for ay'>0, ag' > 0). The AF for A can be treated as a manifestation of a negligible
value of the effective A term at very small distances, implying that space-time is not
becoming “ foamier” with the decreasing of the scale (contrary to the proposals in
[24,44,32]). For correspondence with observations one must have A(¢) <A,~ 107'%
on all the scales less than the size of the Universe. Then the apparent “infrared” pole
in (4.3) will occur at inconceivably large distances and therefore is unphysical. As a
result, one can, in principle, match the asymptotic freedom at microscopic distances
with the needed small value of A at large distances and thus justify the flat-space
expansion in quantum gravity.

42, HIGHER DERIVATIVE GRAVITY

The essential couplings for the theory (2.1)-(2.3) are again A = AkZ, kg, ay, ag
and also a, b and k. The RG equations can be derived using (4.1), (3.1)-(3.4):

a=PB,, b=pB;, A=2B,kA\+1Bk*, (4.5)

or in terms of w = —b/a and A = a [see (3.19) for notations]
dw
=a()92 = —g0-4p,,

= (2B, + B+ 1F, )X+ 1F,. (4.6)

* Let us stress that it is the knowledge of the ¢4 coefficient (B.10) that gives the possibility to obtain the
RG equations for kg and ag and also that the logarithmic renormalization of kg is necessary even if
only matter is quantized, (k5 2) = —», [cf. (3.3), (3.11)-(3.13)].
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To establish the renormalizability of the boundary terms (2.3) one must use the field
equations and their trace (2.5) in (3.3) and neglect (due to the boundary conditions)
the KRR and KD?R terms. This yields the following result [cf. (4.2)]:

(ks?)=a""dks?, d=—4n,A—m %»,. (4.7)

As follows from (4.5) and (3.18) one has the asymprotically free solution for
a '=f?>0in the theory (2.2):

a(t)=a(0) +Byt,  fA(O)=LO)1+8*0)] " (4.8)
From (4.6) and (3.18) we get
W =Aw’+Bo+C, A=-Y%, B=-1, C=%, (49
with the following regular solution

0 Q1) —w, a(f)

w(t)= 00 =T ° (1) = (4.10)
where
"’l,z=_21A[Bib(5]s W= w,, D=B?>—44C>0,
p=\/l_)/ﬁz>0, a,= const,
ie.
©,~0.0046, w,~—54946, p=1.36. (4.11)

Assuming « > 0 [i.e. b <0, corresponding to the absence of the 0* tachyon in (2.6)]
we have w(r) decreasing to the stable fixed pomt @, = w(o0) with t— co, thus
implying, due to (4.8), AF behaviour for 5~!<0. The equation for A in (4.6)
X’ = §,(1)A + S,(¢) has the following general solution:

X:Q[c+]'a—'szq>dz'], @(:)=exp(f‘sla—‘dz'), (4.12)
where ¢ = const and S,, S, are defined from (4.6) and (3.18). When 7 - co we get
At)=A_+cla(2)]?, A=A-a,

s __S(o) _ _ Sie) _ _
Ay, = S,(m)_lﬁﬁ’ === =-11, (4.13)
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and so A(ec0) =X >0, leading in view of (4.8) to AF for A >0. Note that there is
also the stable “fixed point” solution w(?)=w,, A(t)= Xm. Observe also that
“off-mass-shell” A|,_ o ~ 1", k¥ ;.00 ~ ¢ """, where in the gauge we used »~2.9. In
the UV limit one can solve (4.7) as follows (d(o0) =~ 670):

40 =kO[Q]. - L, @.14)

4

a(t) B

and conclude AF behaviour for the dimensional gravitational constant [cf. (4.4)]. As

a result the theory (2.1)—(2.3) is asymptotically free in all essential coupling constants.

According to (3.26) and (3.28) the conformal invariant theories (3.21) and (3.22)

are also asymptotically free in a~'. Using (3.26) it is possible to obtain the
“on-shell” RG equation for A in (3.22):

N=3B,N+ (28, + B)A+ 1B = — N + 1N+ 5. (4.15)

This equation is analogous to (4.9) and has a regular solution like (4.10) with
A, =54.87, X, ~ —0.023, p ~ 1.98 and so A(c0) =A, implies the AF regime for A > 0.
T]:us result should be compared with the well-known “zero-charge” behaviour
(A=2A?) in flat space-time with the conclusion that interaction with gravity drasti-
cally changes the behaviour of the ¢* coupling constant in the model (3.22)
(essentially due to the AF in a™!).

4.3. CONSEQUENCES OF ASYMPTOTIC FREEDOM

Let us consider first the ulttaviolef (UV) (or “weak coupling”) limit. The flat-space
expansion of (2.2),

gpr=8psv+fh;w’ a—l:fz’

£y —;li(fzmj“ -+ )+ (hO%+0(f)) — (kO +0(f)), (4.16)

implies that the main terms in the action are the kinetic parts of W and R” and that
the AF in f (4.8) leads to the validity of the perturbation theory in f. A possible
mechanism restoring unitarity [cf. (2.6)] is a summation of radiative corrections
which may shift the ghost poles off the real axis [12, 15, 8- 10]. The inverse euclidean
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propagator in the UV limit can be written as

1 kB r’
2+ — 1+ —2p%og + -+ ],
4k2p( a2t
1 kB, ?’
0+ - -——p?1- —"p20g= +.-- |, 4.17
2k2p( lﬁvrzp g‘uz ( )

and thus our results (8, >0, B;(w(c0)) <0) do indicate the absence of real poles.

For a complete analysis of the unitarity problem one needs some additional
information about the infrared (IR) and intermediate regions. [The IR-limit RG
equations are different from that of the UV ones because of the presence of the
Einstein (“mass”) term in (2.2)*.] Such an analysis lies beyond the scope of the
present paper. However, one can believe that the above UV solutions for a, b and A
have some sense in the intermediate region and qualitatively reproduce the “tenden-
cies” in the behaviour of these couplings. For example, the AF for f suggests the IR
growth of f (and thus of the 2" ghost and the 0™ particle “masses”, cf. [6,7]) and
that the Einstein term in (2.2) prevails at large distances. The apparent IR growth of
A can probably be cured by the choice of ¢ in (4.13) [and also of the position of the
IR pole in (4.8)] and (or) by the study of the IR properties of the theory.

5. Renormalization group equations in the presence of matter

In this section we discuss the one-loop counterterms and RG equations for a
system of matter fields with a symbolic lagrangian

f oo
n= 7,3 (B2)" + 4D,9D4+ mis + hgo'

+nR$* + iy DY + x P, (5.1)

interacting with higher derivative gravity (2.1)—(2.3). The total theory is renormaliz-
able** (contrary to the Einstein theory with matter [45]) and may serve as a model
of a unified renormalizable theory. The analysis of the corresponding system of RG
equations is interesting because gravity essentially changes the behaviour of all
running coupling constants and because in the presence of gravity masses become
true coupling constants with separate RG equations. A natural question is whether it
is possible to obtain the asymptotically free solutions for all matter couplings
(e, g, m, x) and masses as well as for gravitational couplings in (2.2).

* This statement can be illustrated using the example discussed in appendix C: taking L= o0 and L=0
in (C.5) we get different results. Thus the IR B-function for ™' can be obtained by assuming L — 0
in (C.7).
** It is important to stress the necessity of the R¢? term for renormalizability (cf. [46]).
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Using the background field method it is possible to work out the general structure
of the one-loop system of RG equations. The “gravitational” part of this system is
again (4.5) [or (4.6) and (4.7)] where B, must be substituted by A, = B, + B(™ with the
matter contributions B{™ given by (3.5)-(3.13). Thus the total B, coefficient is
always positive and we conclude that matter fields support the asymptotic freedom in
a~! (see also [9]). Moreover, it is easy to prove [36] that interaction of the gauge
fields with higher-derivative gravity does not lead to additional F,’ counter-terms™.
That is why the gauge field B-function has its flat space value (e.g. implying AF in
e). Equations for g, x and 7 can be written in the form

gy =A\Zi+ A3+ A8+ §,[ 4,8, + AsE, + B+ o™ (B,+ By + B? )]
+9°[ Bs+ 0¥ By + Byn + Bgn? )| + g (By + @ 'Byg), (5.2)
B=D\Z+ D88+ & E + E;m+ o '(E;+ Em)], (5.3)
= ’?[Cl +Gou+ "’_'(C3 +Cn+ Csﬂz) +Gg +Ci8, + ngs]
+Co81 + Cuuz+ Cias, (5.4)

where g, =ae? g,=ax? g;=ag and B, E;, C;=const, while 4,, D, have their
flat-space values. There are also equations for masses of the type M’ = d, M + d, M*
+ -+, M = Ma, where the essential dimensionless coupling constant M = mok plays
the role of the “effective mass”. From the structure of (5.2)—(5.4) it follows that %, g,
and g,, g, have (in principle) UV fixed points and therefore g and x have asymptoti-
cally free (~a~") behaviour. There are also fixed points for A and M and thus,
again, the universal “a~'” regime for A and M. The only open question is whether
all asymptotic (¢ — oo) values are consistent with the existence of fixed points and
have proper signs. One may conjecture that in a realistic model these values will be
the correct ones.

Now let us explicitly study the case when only scalar field terms are present in
(5.1). Then it is possible to obtain the following system of RG equations (N, is the
number of scalars)

a=13.3+%N,,
W = —Ru? = (18.3+ FNy)o + & — FHN(1 - 129)°, (55)
2 =2(Ny+8)Z2 +2,[(183+ &Ny) + 0™ '(4 — 169+ 7277

+1;2[w+ lo™2(1—129)7], (5.6)

* This is due to a “miraculous” cancellation of contributions of two different diagrams (see [36]) and
thus is in no way a trivial result as it is in the Einstein theory where the absence of the Ff, terms
follows simply from dimensional considerations [45].
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=q[—Lo+o7'(4 — T+ 1202)] = §(N, +2)(1 — 129)3;, (5.7)
M =M[(18.3+ &Ny + $w) + 0 '(4 — 89+ 1297)]
+2(N,+2)Mg, — N1 — 129)M* — 4[10 + $0~ (1 - 129)], (5.8)
N=(183+FN+ Po—do A+ + o2
— N, (1= 120)M A+ {N, M2, (5.9)

Though this system does not possess “fixed point” solutions with physical signs*
(@ >0, g>>0) there are t-dependent solutions with w(?)|, . = 0 and g5(¢)|,. 00 = oo
>0, M(1)|,-. = M, <0, implying asymptotically free behaviour for g and M (note
that m} <0 in the case of a spontaneous symmetry breaking).

One may observe that the above results can be applied to the following renormal-
izable globally scale invariant theory (cf. [38])

R=nR¢*+ 10,49, + g4 +aW + 1bR?. (5.11)

The corresponding RG equations are identical with (5.5)-(5.7). The idea is to
generate the dynamical symmetry breaking a la Coleman-Weinberg (such that
n(¢$?)= —1/k?) due to higher derivative gravitational terms in (5.11) (just like
proposed in [47] in the case of Einstein theory). The one-loop effective potential has
the general form V= }g¢*+ v¢*[log(¢?/p*) — %] (remember that the theory is
renormalizable) making this idea rather natural (cf. [S3))*™*.

In conclusion we again want to point out that renormalizable asymptotically free
quantum gravity may solve the problem of bare masses and non-gauge coupl.mgs by
establishing their asymptotically free behaviour.

One of the authors (A.T.) is very grateful to Prof. R.E. Kallosh for the suggestion
to check the results of ref. [10].

Note added in proof

As was pointed out in the text, the AF for a~' supports the idea of restoration of
unitarity at the quantum level. The resulting acausality in the propagation of wave
packets is reminiscent of that of the Lee-Wick model. However, in their case
acausalities were expected to show up at 10™'* cm scales (contradicting experiment),
while in our case they occur at Planck lengths where the question of causality is a
subtle one.

* This fact should not be considered as raising doubt about the above conjecture because it is the
existence of the fixed point for the total system (5.2)—(5.4) that is important for apphcauons.

** The value of y is [cf. (56)]1 (1/12852){183 +2r2+ (L — 160+ T291)0%1g + [10/ + J0%(1 —
129)*]9%), where f2=a"!,0?= b\, Ng=1.
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Next let us remark that the possibility that IR free matter couplings (i.e. Yukawa
and quartic) become UV free in the presence of renormalizable gravity does not
affect the low energy behaviour in theories with scalars. These couplings presumably
remain IR free at distances larger than Planck length where gravitational effects
become irrelevant.

Appendix A
NOTATIONS
We use the following notations:
R\, =8 —-, R,=R\,, signg,=+4, (A.1)
W=R2,—iR?, R*R*=1e"¢,, ;RIRY}. (A2)

In the four-dimensional case one has for the square of the Weyl tensor
CrrsC Auvo — R*R* +2W. (A.3)

If n, is an outward directed unit normal to the boundary M of M* and v,, = g,, —
n,n, is the induced metric on 9M, then the second fundamental form of M and its
trace are given by

Kpu: (DA"p)T:'Yf' K= Kprglw' (A4)

The Euler number of M* has the following representation [25]:

( f R*R*gd*x+ [ Qgfy d3x),
M

— -+ —
Ay K 322 aM

Q5= iR,,,, K*"n*n +16detVK,,,,

det®K,, = %e“”"’e"ﬁ"anlnﬂx,.ﬂlf K, y=det®y,,. (A.5)

py tp8?

Appendix B

DIVERGENCES OF THE DETERMINANT OF THE FOURTH-ORDER DIFFERENTIAL
OPERATOR

Let us first give the known results for (logdetA,),, where A, is an elliptic
differential operator defined on some vector bundle over a riemannian manifold M".
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Then the standard formulae are valid (see e.g. [17,21, 48]):

s o]
(re™8), o= 3 (b7%)" 74, B,=p7,, (B.1)
p=0
4,=B, +C = ij,,\/g d"x+ fd Givd Ty, (B.2)
logdet A, = —fm%trexp(—sﬁz), e— +0, (B.3)

and thus for the infinite part of the Bose field effective action we have (for n=4)
I, =3(logdetA,) = —3(340L*+34,L7 + 4, 1> + 24,L+ AJog(L?/p?)),
L/p=e"", Azpr1= Coptr- (B.4)

In the important special case
A,=—D*+X (B.5)

(D, is the g,, covariant derivative on the base indices and the A, covariant derivative
on the internal ones, [D,, D,] = F,,) the following results are known [17, 20-22]:

b,=(47)""?b,, by=trl, by=tr(1-iR—X), (B.6)
by=te(LE, F*” +1-E+3X*—LRX—{D?X), (B.7)
E=pR*R* + W+ %R+ 1, D*R. (B.8)

For bg see [21]. For the boundary coefficients ¢, = @)=/ ZEP (for the Dirichlet
problem case) one has [49, 29, 50]

&=0, ¢&=-4mtrl, &=12Kul. (B.9)
For the result for c, in the case of X=nR see [50]. However, it is the c, coefficient
that is essential for “logarithmic” renormalization of surface terms in the action.
Using the method of “doubling” of M" (cf. [49]) we obtained (cf., however, [51])

&= tr{1( Qs + KRVK,, + HRK+ -+ ) — XK+ - -- )

=i X-K+---, (B.10)
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where K,, = K,, —4g,,K (see appendix A) and dots stand for analogs of the D’R
and D2X terms in (B.7). The main idea is to use (B.7) on the doubled manifold
extracting the boundary corrections on M” with the help of the equalities like
R,(8®©8)=R,(8)®PR,(8)DPAK,, — K,,,)8(0M) and the fact that the R*R*
term in (B.8) is supplemented up to x in (A.5).

Now consider the elliptic covariant fourth-order differential operator A, defined
on the same vector bundle as A,. Then for I = i(logdet A,),, one has the same
expression as (B.4), 4, being some invariants of A 4+~ Suppose that for some A,

A,=A,4,, detA,=detA,det A}. (B.11)
Comparing expressions like (B.4) we get
A4,(A,)=4,(8,)+4,(83), p=0,...4, (B.12)

and thus one can in principle gain some information about 4,(A,) from A4,(4,).
This information fortunately turns out to be complete in the case of A, in (2.23) we
are interested in. Here on dimensional and invariance grounds we have

by=tr(a,F2+1- E+aV2+a?+a V"R, +aV - R+aU
+a,D,D,V* + azD*V + ayD,N*),
V: K.,”) E”zﬁ(gpr)' (B'l3)

If A, and A’ in (B.11) are of the form (B.5), ¥,,= —g, (X + X"), and we get using
(B.12) and (B.7), (B.8):

E=2E, a=t,
a,+4das=a,+4ag=1¢, ag=—a,=—1, 4(a,+4a;)=1%.

Another special case of (B.11) we need is A;=D*A4,)D*(A_), AL, =A,*0Q,,
where Q, - SQ,S™" under the change of a basis in the fiber. Again using (B.12),
(B.7), (B.8) we finally get

by=tr(3E2+2-1-E+4V2+4V?
—LV¥R,, +&VR— U+1D,DV"* +%DW). (B.14)
Here we assumed that A, is a self-adjoint variant of (2.23) (= D*+ D,V*’D,+ D,N*

* Note that the Secley’s coefficients [48] for A4 are defined by (tre "34),_,0 =32 ()" m/44,
and hence A, = A, only for p=n.
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+ N*D, + U). The only difference is in total derivative terms proportional to D’R in
our case. We disregarded DR counter-terms in this paper (though they may be
important in the problem of conformal anomalies for gravity itself [33), they are
inessential under natural boundary conditions and their consideration is consistent
only taking account of the corresponding boundary terms like »*D,R in c,).
Following the method discussed above we also found that for A, [cf. (B.6), (B.9),
(B.10)]

by=2tr1, b,=tr(1-iR+1iV), &=12Ktrl, (B.15)
& =280+t — VK, + HVK+---). (B.16)
Appendix C

ONE-LOOP S-FUNCTION IN HIGHER DERIVATIVE VECTOR GAUGE THEORY AND THE
QUESTION OF LIMITS IN COUNTER-TERMS

Consider the following SO(N) gauge theory in flat euclidean space-time (y =
const):

o= (B + oz [ (BFs) +urEs EAES)]. (1)
The one-loop approximation for (C.l) has some similarity with that for the gravity
lagrangian (2.2). The superrenormalizable theory (C.1) (cf. [52]) is in fact analogous
not to (2.2) but to the superrenormalizable R% + (DR)? theory [the lagrangian (2.2)
cannot be considered as a regularization of the Einstein theory — we cannot switch
off the R* terms without breaking renormalizability). If 4¢ and ¢{ are the back-
ground and the quantum fields, the relevant one-loop part of (C.1) is

$Ap —

2M2
x*=Dg¢l, H=-D>+eM?, A=A+M%eA,, (C2)

where A, and A, have the structure (B.5) and (2.23). Averaging over gauges
x%={%x) we get

Z=(det M2H)'"*(detp~R) " *(detp~2Ag), Ag=-D%, (C3)
and finally, with the help of (B.7) and (B.14),
b= —1p(Es) —4(M?%?)'N,

B=(3y*+30y—%)C, G, = G,(SO(N)),

e (L)=e?(n)+

B . I¢
Do logF- (C.4)
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The theory (C.1) is asymptotically free in e? when B>0 (in the Yang-Mills case
M=o and B=B,= %4C,), i.e. when y< —10.2 or y>0.2.

Taking the limit M — oo in the full effective action in (C.3) we regularly get the
Yang-Mills case result (this is obvious from the representation:

=(detp~Ag) *(detp=A)""?,  A=A,, A,=H-Ag,

where in (C.2) £, = (1/2M?*)¢A¢). Using the analogous representation for Z in the
case of (2.2) (e.g. in the gauge D“i?”’ =0) we obtain regularity of the limits a— 0,
b — 0 in the full gravitational effective action.

A non-trivial question is how to establish correspondence between the limiting
(e.g. for Einstein theory) and initial (for renormalizable theory (2.2)) expressions for
the counter-terms. The general answer is that limits in counter-terms can be made
regular by taking into account terms of the same structure in the initially finite part
of the effective action. Let us consider A, = A, + M~?A , [with notations as in (B.5)
and (2.23)] and evaluate those diagrams which are finite or infinite only for M # co
[cf. (B.4)]:

2 2 2 2o
P = J_leogL 1+L_) +;'(X+—1—U) log—LL
M? M? 1+L%/M?

1 I?
+[%V’+£5V2—M2(X+ FU)]log(l + 1}5) + } (C5)

This expression provides interpolation between divergences of logdet A, in the case
of M+ oo [cf. (B.7)], (B.14) and M= oo (B.7) (M~ o is taken before L — ).
Using (C.5) in the case of (C.2) we get instead of (C.4) the expression, valid for any
M,

-2 —i _El; ﬂ BO ( z_L_z)
e }(L)=e (F)+32wllog.u2 E — log|1+e ok (C.6)

In the gravitational case M is substituted by m and m’ [cf. (2.6)] and, e.g., in the limit
a—0 we get from (3.18) the counter-terms in Einstein theory in the gauge (2.20)
with the analog of (C.6) being

a(L)=a(p)+ g 2log . + 3232:*02 log(1+a(L)k2L?). ({asrd

Note that here taking the limit implies a(L) — 0 on both sides of (C.7) (there is no
bare W term in the Einstein theory).
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