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We present a detailed calculation of the one-loop 8-function in N = 1 conformal supergravity.
The conformal gravitino is found to give a negative contribution of the gravitational infinities
while the “Weyl graviton” and the ordinary matter fields are known to give positive ones.
B-functions are also obtained for the U(N)-extended conformal supergravities. As a result we
prove that the N =1, 2, 3 theories are asymptotically free in the Weyl coupling constant (just
like the Weyl theory) while the N =4 theory is (one-loop) finite and thus anomaly free. The
sequence of U(N)} B-functions (N =<4) is found to be in remarkable correspondence with the
analogous sequence for gauged O(n) Poincaré supergravities.

1. Introduction

Conformal supergravities [1-7] are presently interesting, mainly in view of the
fact that they provide the framework for a deeper and more systematic understand-
ing of the structure of ordinary Poincaré (or De Sitter) supergravity theories (see
e.g. [8]). However, one must also keep in mind the possibility that superconformal
theories may appear to be more directly related to the description of fundamental
interactions. For example, an appropriate supersymmetric extension of the (Rp*+
6(3¢)*>+a W) renormalizable gravitational lagrangian (W is the square of Weyl
tensor) may lead to a viable quantum gravity plus unified matter theory where the
problem of ghosts will be solved due to a high type of the symmetry (there is equal
number of Fermi and Bose™ghosts) and/or accounting for radiative corrections (see
e.g. [9, 10] and refs. there).

Apart from these general considerations, conformal supergravities are interesting
field theoretical models with the highest degree of symmetry presently known. The
fact that the global superconformal symmetry (known to improve quantum
behaviour, for example, in N = 4 super Yang-Mills theory, see e.g. [11]) is localized
here may provide a deeper insight, e.g., into the problem of anomalies. Therefore,
the study of the quantum properties of conformal supergravities seems to be an
important avenue for research.

Here we make the first step in this direction by calculating the one-loop -
functions. This work can be considered as an extension of our paper [9] where a
systematic approach to one-loop renormalizations in higher derivative gauge
theories was worked out. Hence the technique we use is mostly the same as in [9],
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including the correctly accounting for the contribution of averaging over gauge
operators (cf. [12-14]), the background field method (see e.g. [12,15]) and the
algorithms for the divergences of the determinants of various differential operators
[12, 16, 17, 9].

In sect. 2 we first discuss the question of counting the degrees of freedom in
N =1 conformal supergravity, clarifying and correcting earlier statements [1-5]
and stressing peculiarities of this counting in higher derivative gauge theories. Then
we justify the idea that for a calculation of the one-loop N =1 g-function it is
sufficient to consider either “electromagnetic” or “gravitational” sectors in the
infinite part of the one-loop effective action where only the axial vector field and
metrical b;ickground, respectively, are non-trivial.

In view of the fact that the value of the N =1 B-function is basic for establishing
the B-functions in N-extended conformal supergravities, we present (in sects. 3
and 4) independent calculations of it in both sectors and find agreement (which
also gives an independent check on the value of the B-function in the Weyl theory
found in [9]). The essential technical simplification is achieved here due to the
possibility of obtaining the algorithm for the infinities of log det 4; for the third-
order gravitino operator using the corresponding algorithm for the fourth-order
operators found in [9].

In sect. 5 we briefly describe the analogous calculation (in the ‘“gravitational”
sector) in N =2, 3, 4 extended conformal supergravities [6, 7]. The total one-loop
B-function is obtained here by summing the graviton (positive), N gravitinos
(negative) and the gauge and matter field contributions. The final result is that
Bo> B1> Bu> B> Biv=0, thus indicating that the N =1, 2, 3 conformal super-
gravities are asymptotically free (just like the N =0 Weyl theory [18, 9]), while
the maximally extended N =4 theory is one-loop finite (providing one more
candidate for a completely finite theory, see [11] for a review) and thus is free from
anomalies.

In sect. 6 we present a discussion of the results comparing them with the analogous
ones in O(N) supergravities. Appendix A contains our notations and some useful
formulae. In appendix B we summarize, for convenience, the known expressions
for the algorithms for one-loop infinities. Appendix C deals with quantization of
the ordinary (first derivative) gravitino lagrangian on a curved background in a
non-standard gauge 2, (¢, —.%-y,,-y ) =0 as compared to the known results in the
v« =0 gauge and the analogous quantization of the third derivative gravitino
lagrangian in conformal supergravity.

2. Counting degrees of freedom and the general recipe for the calculation of the
N =1 one-loop B-function

The lagrangian of simple N =1 conformal supergravity has the following form
in terms of the physical fields g,.., A,, ¢, [1, 3]:
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£ =W=R2,-1R?, %=-iF.,, (2.2)

L3 =4€""¢,y5YeDr by » (2.3)

La =510, F S +51(WnYo + 2010 FouS™* (2.4)
L5 = —Ru[2(n0rbu — Uuorbr) + Iy,

X (Duir — Db — Yutbr + 128) ]+ 3RO NS, (2.5)

where % includes terms like 2Ry, (dy)*, R(Iw)*, etc., which will prove to be
irrelevant for our purposes, and

Ruv =Ry.v{g) ? F;.w =anAv_avAu:

$u=57" (S +3vs8u),  Su=Duab—Du., (2.6)

Sur =€urpsS" s Fun=vsFur ~2Fps, (2.7)

(D)= 858, +30 wap, —iysAL) +Tt, . (2.8)

Note that D, =" - - +3iysA, +- - and @ and I are torsionless; for other notations
see appendix A. It is convenient to use instead of A, the following variable:

B,=%A,, B, =3.B,~3,B,. (2.9)

The action for (2.1) is invariant under the general coordinate and local Lorentz
transformations, and also under the ‘“‘ordinary” Q and “‘conformal” S supersym-
metries (with the parameters ¢ and A), the scale (A) and chiral () transformations

dey =&y Y +Aey,
8, =2D,e +y,A —3AY, +iaysy,, (2.10)
8B, =36vsd. +iAys, +id.a.
Let us first consider the quantization of (2.1) in the linear approximation where
S =3hu Oy = 2xuHouxs —120' 00" (2.11)
Buv =8 thu, @=hu,  xu=0hp,
o' =0-0"9x., Hu.=-g,0+39,0,,
Ly=—,8 ¢, ~3xox +103°Y,
0= Yudur  U=Vulbur X =0 +500.
Choosing the following gauges for the coordinate, A, £, A and a -groups respectively,
(@) duhu =&(x),  @=7),
(b) 8 =4(x),  ¥=px), (2.13)
(c) 8, A, =vy(x),

(2.12)
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and averaging over them with the help of suitable weight operators [see (A.8)] we
get the following result for the free partition function*:

ZO =777 7, =Jetds (2.14)
— A » _-___-_-___" .
A 4 Jdet (-O)a

_ det APVdet T°Vdet H,.,
Vdet (0% '

. Jdet (),
Y7 det APVdet 3Vdet &
where the ghost operators are 4% =—§,,0, Ay’ = &%, AY’ =—[0. Taking Z, to

be the contribution of one Bose degree of freedom (A.7) and noting that det H,,, =
Zo 4, we have

Z,
(2.15)

Zi=Z> Y Z25® =28, Za=2Z3, m
Q.
Z =ZE""/ZES‘H' =ZSS ,

and thus Z@ =1, i.e. the total number of degrees of freedom (6 +2 —8) is zero as
it is to be in a supersymmetric theory.

We conclude that the effective number of gravitational degrees of freedom
corresponding to the Weyl lagrangian (2.2) is 6 [9] and not 4 (“two gravitons”) as
one can naively suppose in view of the representation %, =3hP> ' [*h (P*" is the
transverse traceless spin 2 projector). In an analogous way the 3 gravitino lagrangian
(2.3) describes 8 and not 6 (‘“‘three gravitinos’) Fermi degrees of freedom (cf.
[1-5]). This peculiarity in counting degrees of freedom in higher derivative gauge
theories is due to the fact that the increase of the number of derivatives in the
action in transition, e.g., from Einstein to Weyl theory, is not followéd by a
corresponding growth (doubling) of the dimension of the invariance group.

The naive counting of degrees of freedom in N =1 conformal supergravity (2
gravitons + 1 vector field—3 gravitinos =0, see e.g. [4]) is based on the known [5]
spectrum of the supersymmetric extension of the lagrangian %'=
—(1/k*R +a2W, consisting of one (2,3) massless and one (2, 3,3, 1) massive
(m = a/k) multiplet. Taking k*-> o we apparently get the above naive counting.
However, the limit k*- o0 is not a regular one [9]. Really (let us consider for
simplicity only the gravitational part), for a finite k¥* we schematically have %' =
—(1/k*)(R0k - ¢0e) + (1/4a*) A%k (remember that ¢ drops from W) and so the
contribution of the /,,, path integral Z,Z}, is supplemented by the Z, contribution
of ¢. The resulting number of degrees of freedom is 6+1=7=2+5 corresponding

* Note that if one uses the variables [E,“,, ¢) and (p,, ¥) [see (A.9)], ¢ and ¢ drop from (2.11) and
(2.12) due to the scale invariance and S supersymmetry and so there is no need for averaging over
gauges ¢ =7, Y =p.
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to the spectrum* 2 +2,.. Hence the singularity of the limit k*- o is connected
(i) with the absence (due to conformal invariance) of the ¢-contribution in the
limiting theory and (ii) with the difference in the number of degrees of freedom
for the massive and massless spin-2 field.

Let us now consider the quantization of the theory (2.1) on the non-trivial
background of the fields & ={g, A, {}. The (one-loop) effective action is defined
as follows:

Z[B)=e "= j [dp]ef®)

ol
6_¢d5'

(2.17)
I=1[®+d]-I1[P]-

Here, as always, one must choose a gauge which breaks the ‘“‘quantum™ gauge
group but respects the background gauge invariance. This yields the formal back-
ground gauge invariance of the effective action. However, this formal invariance
may be broken by a regularization which manifests itself in the anomalies or
non-invariant terms in the finite I; = I.a— I part of the effective action. As is
well-known, the conformal, S superconformal and chiral anomalies often arise
when one uses the regularizations preserving general covariance and Q supersym-
metry (for example, ordinary dimensional regularization or its modification by
dimensional reduction, see e.g. [19]). Let us remark in passing that the recipe for
maintaining the background conformal invariance of the total effective action in
the Weyl theory by substituting the background metric by the one belonging to
the same conformal equivalence class but having zero curvature scalar [20, 9]
possibly allows a supersymmetric generalization and thus gives a way to escape the
anomalies also in conformal supergravity (and provides the possibility of the explicit
construction of the background covariant gauges).

Here we shall consider only the infinite part I, of the effective action which-is
invariant if the gauges are background covariant. However, it is also possible te
use background non-covariant gauges taking into account only the invariant part
I%™): of I, when calculating the B-function. Keeping this in mind we can choose
the following gauges for (2.1) [cf. (2.13)]

(a) @uhuvzfv(x)a szn{x)s
b)) D =¢x), ¢=pk), (2.18)

© 2.A,=v(x)

(covariant derivatives depend on the background fields). The part of I in (2.17)

* We remark in passing that if an R? term is added to &', we get one more (R*~ ¢(1°¢) degree of
freedom: 7+1=2+5+1 in accordance with the spectrum 25 +27 + 0.
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which is bilinear in the quantum fields (or the one-loop part) has the following
structure:

I=(hdsh+Ad,A+AMh)
+(4A3¢)+ (GMA + §Msh +h.c.), (2.19)

where the operators 4 and M are background dependent. Averaging over gauges
(2.18) we can establish the diagonality of the highest derivative terms in 4. The
ghost operator (its part essential in the one-loop approximation) does not in general
factorize on the ghost operators for (a), (b) and (c) gauges in (2.18). This fact along
with the mixings in the third bracket of (2.19) makes the direct evaluation of the
one-loop infinities a hard problem.

The essential simplification stems from the remark that in view of the formal
off-shell renormalizability of the theory (2.1), the invariant part of the divergences
is proportional to the action itself [see (B.7)]:

2

™ =gr,. 5P 1 : 2.20
Bly B 2@m)7 08 2 (2.20)

As a consequence, in order to find the B-function it is sufficient to obtain the
coefficient before any of the terms in the action which cannot contribute in the
non-invariant part of I.. It is easy to see that ¥; in (2.1) possesses the desired
property. Suppose we have made the gauges (2.18) background covariant. From
the structure of the transformation laws (2.10) it follows that this covariantization
procedure cannot give new terms in (2.18) which are independent of 4, and thus
does not lead to additional F‘i, (or aﬁ-independent) terms in I,. The conclusion is
that all F2, terms in I, belong to* I&™. The same statement is valid in the case
of 2™ in (2.1).

Let us now suppose that the background fields in (2.17)-(2.19) are chosen in
one of the following two ways:

-

E: $,=68., $.=0, A, =arbitrary, (2.21)

G: §., =arbitrary with R(§)=0, 4,=0, A,=0. (2.22)

We shall speak about (2.21) and (2.22) as “electromagnetic’ (E) and *‘gravitational”

(G) “sectors”, respectively. The condition R(g) =0 in (2.22) establishes the back-

ground conformal invariance of (2.18)) and thus of I, and is a matter of convenience
only. ..

It is obvious that the above choices are sufficient for the evaluation of 8 in (2.20)

as a coefficient of the %, or &, terms in I, resepctively. In both cases M, =M>=0

in (2.19) and the ghost operator can be factorized on the three independent parts.

* Let us recall once more that the non-invariant terms in I, arise only due to the absence of complete
background covariance of the gauges (2.18) (they lack background scale invariance and Q and §
supersymmetries).
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The resulting expressions for the B-function in the N =1 theory in the E and G
sectors are the following:
BY =Bi+Bi, BT =B%+By+BA, (2.23)

where B} is the contribution (in the E-sector) of the first bracket in (2.19) while
BY is the sum of the contributions of 4, in (2.19) in the G-sector (where M; = 0).

3. Calculation of the N =1 B-function in the “electromagnetic” sector

As was found in [9],
Bx =0, (3.1)

i.e. the interaction of higher derivative gravity with a gauge field does not give
additional £7, infinities. Let us briefly recall the derivation of this result. The terms
in the first bracket in (2.19) arise from the expansion of ¥; and %£; in (2.1) in the
E-sector (2.21) (22\/& gives hEEn and hF3A terms). From now on we shall omit
on background fields. In view of the conformal invariance of .#; and %, only &,
(A.9) contribute and we get, after averaging over gauges (a) and (c) in (2.13),
1

1w w= .1
a¥,— 5;.,9?2 =z Yah,,Ph,, + ;[A,,(—D)A,.

+h USSR + 202 Y 48 a"AP]} 5 (3.2)
b =284F%,
:; = FWFP{EE;‘B +12FWI_IEVB _%Fipg‘fg-;ﬁ ’
where a and ¢ are constants and P,ﬂ, is a traceless tensor, The contribution of (3.2)
in infinities can be easily found (e.g. by the diagram method) with the result (for
notations see appendix B)

454 = 2

(3.3)

oy Uk +iYapYis). 3.4)

Substituting (3.3) in (3.4) (and noting that the corresponding (a) and (c) ghost
operators and averaging operators are A, independent) we are left with the
non-trivial result (3.1).

Now we turn to the evaluation of the gravitino contribution 8§ in (2.23). First
of all, let us write down the expressions for the relevant (¥5+.%;) part of (2.1) in
the E-sector (2.21) [cf. (2.12)]

L=~ 99" P, —RDx+30D DD W+ LY,  L=%27,  (35)
where 2,(@ ) =3, F B, [see (2.9)], x = D¢, +3D¢ and
- ‘Eu Vzgnwv L] (3‘6)
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V::» = a1BuuYaYs + A2YBuia¥s + 3YoYsBorugiia

+bl§a(u7v)+.b279§0(ngv)a +b379§mguv L] (37)
, a=1l, a=3, a=-}
2y 1 ) (3.8)
b].:i: b2=0: b3=_i!
7 2 4
a=i, a,=—3, az=—3,
£+ . . (3.9)
b1=0) b2=_§, b3=_§.

In the derivation of these expressions we used the fact that in the calculation of
the B-function one can formally put 3,B,, = 0, thus obtaining V%, = — V75, in (3.6)
[the bar is Majorana conjugation (A.1)].

In view of the Q and S invariance of the complete action* we have the possibility
to cancel the “non-diagonal” second and third terms in (3.5) using the gauges (b)
in (2.18). As a result, the gravitino contribution to the (E-sector) one-loop path
integral has the form [cf. (2.15)]

zZy'[A]= @ = ; (3.10)
det AP Vdet Vdet 9D
where
43, = 8,99 D+ Ve D,, (3.11)
AY =-39,8..9,=—~D*~30 - Bys. (3.12)

Here g.. = g.. —3¥.¥s» o+ B=0,,B,, and we used that 9 P =9*—0 - Bys. The
expression for V7, in (3.11) is given by (3.6) a4nd (3.9). Thus the ¢, contribution
to Iy is given by (B.1) where

ba=—ba(A3)+254,(AD)+2b4(4>), (3.13)
Ary=—99 " =—(@*)Y -0 Bys. (3.14)

With the help of the 4 algorithm (B.5) we easily obtain that
Bud)=-3B*, h(A®)=+3B>, B =B..B,., (3.15)

and so the main problem is the calculation of the b4 for 45 (3.11). One can avoid
a tedious diagram evaluation of this coefficient by noting that the multiplication of
As and the first-order operator A, gives a fourth-order operator of the (B.4) type:

ﬁ-t,w = ﬁsmﬁiuv ) ﬁup = —SA.,-GE)+ ’ (3.16)
Bap, =8, (DN +VEPDIDE +U,,, (3.17)

* Observe that the E-sector one-loop truncated action (£3+ %) is invariant only under 8¢, = v,.A
transformations.



E.S. Fradkin, A.A. Tseytlin [ Conformal supergravities 165

VP =2¢,.8%%0 - Bys— Viay®,

(3.18)
Uul- = g,.,(cr * B) -2 Vf:v')’ Baﬂ'YS )
with the &, coefficient, calculable according to (B.6),
ba(ds) =5 +tr {~3V*y.0 * Bys
+2V Y B“p'}’s‘*‘zgvpﬂ'yﬂvta "
+3:Vay V..Py%), Vi=v5.g" (3.19)
(6 = 8b4(4,) is the value for V2, =0). Using the relations
ba(As) = ba(As)—ba(d)),
(3.20)

ba(d1) =4 3ba(dy),
and substituting (3.7) in (3.19) we finally obtain the following expression for b, in
(3.13):
ba=[%—4(by—bs—4b3)+3b3+3b3+8b3—2b1by+4bsbs
—4b,b3+2a%—a a3+ a a2 —3a2a;— a3 —3a3]B?, (3.21)
or, in view of (3.9),
bs=%Bl.. (3.22)

Taking into account that in terms of B, the lagrangian %, is +3BL,, we conclude
that the N =1 g-function (2.23) is given by

Br=Bu=% (3.23)
[we supposed that in (B.7) %, stands for &; (2.1)].

4. N =1 B-function in the gravitational sector: check and summary of
the results

Taking into consideration that the g-function in the Weyl theory [#,; in (2.2)]
obtained in [9] coincides with 8% in (2.23) while B8 can be extracted from (B.9),

By =1, Bi=%, (4.1)

we are again left with the problem of establishing the gravitino contribution in the
G-sector B-function. The calculation of ﬁﬁ is step by step analogous to that of
By. The relevant part of the lagrangian (2.1) is (¥5+.%5), simplified by taking
account of (2.22) (throughout this section

(@u): = 6: (CH +%a'ab"’nbu) + ka.u
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plays the role of @, and @,, of sect. 3). It is straightforward to establish the validity
in the G-sector of expressions like (3.5), (3.6), (3.10)-(3.18), where now

V:" o alRP[Mevlﬂﬂﬂysyﬁ i azRﬂaeﬂﬂw'ny6 + blRuv'Yn

+b2Rn(n7v)+b3'prpaguv +b4'YpR9(ilgv]u 3 (42)

1 — -3
a =3, a;=0, b=3,

%3 =%s: 1 4.3)
ba=-3, bs3=1 by=-1,

»
= o - =
al_'_-]-s az=-—2, bl_l’

L2 (4.4)
b,=0, bs=—%, bs=1,
AP =-49,8.9,=-9*-5R, 4.5)
A,=-9% =-D*+}R,
A3y = ~(D) s+ Vo D)o (4.6)

b1y ==D),
A-Q_p.v = _(@2 yriy = _@ip +%Rguv —-—gre RH" N

o R, =cuRE, 4.7)
Vi =20 Rug™ - Viy®,
U.=0c'R,0"'R,, —%meyﬁ(Rpmg +i0 - R.a8.) - (4.8)

Making use of the algorithms (B.5) and (B.6) we obtain [notice that R =0 according
to (2.22)]

bu(Ay) =3bu(d) = oW,
bu(49) = ba(d2) =W,
ba=b —[4(a1—az)—3(ba+4bs+bs)+ai—2a1a,+3a3+3(12b3
—3b5—4b3—Jb% +6b1by+6b1bs+5brbs—2b2b3—2b3bs)|W,  (4.10)
b = —3b4(4,) +4by(d) = 2w, (4.11)

4.9)

or after the substitution of (4.4),
ba=-%5W, By =-%. (4.12)

Summing (4.1) and (4.12) according to (2.23), we conclude agreement with the
previous result (3.23), i.e.

BY =BT =6r.

Let us briefly comment on the N =1 results obtained in sects. 3 and 4. First of
all the coincidence of 87 and BT is a useful check of the consistency of the whole
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scheme of calculation (e.g. the counterterms appear in a supersymmetric combina-
tion, etc.). Second, B; > 0 implies that N = 1 conformal supergravity is asymptotically
free [see (B.8)] like the Weyl theory [18,9]. Third, the remarkable fact is the
negative sign of the “conformal gravitino’ contribution (4.12) in the gravitational
(W) infinities, while the “‘conformal graviton” and other matter fields [see (4.1),
(B.9)] give positive contributions. Hence one may suppose that By functions will
decrease with the growth of the number of “gravitinos”. We shall prove in the
next section that this is really the case.

5. Generalization of the case of extended conformal supergravities

Here we shall consider the g-function in N =2, 3, 4 U(N)-extended conformal
supergravities [6, 7], giving mainly the results (some non-trivial details and proofs
will be discussed elsewhere). The basic fact is that in order to calculate the one-loop
infinities in the gravitational sector one must simply sum the contributions of the
“kinetic”’ terms for all the fields present in the theory. The G-sector one-loop
relevant part of the lagrangian can be written in the form

L=1 04505, (5.1)

where ¢, are the fields in the theory (including the Weyl graviton A,,,, N gravitinos,
etc.) and 4, are the corresponding background metric dependent differential
operators of the appropriate order. To establish the form of A; one simply observes
that they (i.e. @Ayps) must be background conformal invariant (note that in the
graviton, gravitino and the gauge fields cases this is valid before gauge fixing). As
a result, practically the only information we need is the spectrum (i.e. the representa-
tion and linearized action) of the N-extended theory and not a complete lagrangian
known only in the N =2 theory [7] (see, however, the discussion of the N =4 case
below).

Let us begin with the N =2 theory where the following fields are present [6, 7]:
1 graviton h,.; 2 gravitinos ¢, ; 1 axial vector A,; 3 SU(2) gauge fields V;u; 2
spinors x'; 1 antisymmetric tensor field 7%, = T}/) . Note that for the SU(N) case
i,j=1,..., N and in our euclidean notations Tfi,, is real while all spinors are chiral
(or Majorana). The main problem is to establish the contribution of 7,, to the
infinities. As one can readily show (and this is confirmed by the comparison with
the N =2 lagrangian in [7]) the following operator on T, is conformal invariant
unider g5, =X g Thw =AT

&r=—-42, T, 9,T;, +2R,,T.Th,,

(5.2)
e S
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If g.. = 8,., (5.2) can be written in the form
P ==200,Tu)+30,T,m)
=—(0,TL. )V +36,T..), (5.3)

and thus describes six degrees of freedom (three physical and three ghost). As a
consequence, we have the correct counting of degrees of freedom in the N = 2 theory

Nuy=6—-2x8+2+3%x2-2x2+6=0. (5.4)
By the change of variables (T > ¢, n)
Tuv = @y.gv _@vfp * Euy.lpga\np ’ (55)

one can rewrite (5.2) in fourth derivative form: {,44,.{7, (i = £, +in,, and hence
use the A, algorithm (B.6) to obtain the contribution of 7)., to the infinities [one
should also take into account the measure arising due to the change (5.5) and fix
the gauges for £, and £, ]. The final result appears (somewhat surprisingly) to be
equal to that for six scalar fields [cf. (B.9)]

Br=15. (5.6)

Using (5.6), (B.9) along with the values for the graviton (4.1) and one gravitino
(4.12) contributions we are able to write down the following expression for the
N =2 one-loop g-function

Bu=B5 +2BG +B1+3B1+2B1,+Br=5. (5.7

The spectrum of the N = 3 theory consists of: 1 4,,;3 ¢L; 1 A,;8 Vi, ;1 (3°)-spinor
A; 3 complex scalars E;; 9 spinors x”; 3 T:{.,. The corresponding conformal invariant
terms in (5.1) are 293)(, etc., while the operator on A must be constructed as the
conformal invariant (under g;,, = Azg,“., A'=2"24) generalization of 3°. Direct
computation leads to

Ly =A[D*+ (R —68R) 7. 2.7, (5.8)

whose contribution to the infinities can be calculated in direct analogy with the
case of the 43 gravitino operator (4.6) [one multiplies on % and uses (B.6)]. This
yields [cf. (B.9)]

Ba=—36. (5.9)

Thus the number of states and the 8-function in the N =3 theory are given by
Nip=6-3xX8+2+8x2-3X2+3x2-9x2+3x6=0, (5.10)
Bui=B5 +3B85 +B1+8B1+B4a+3%X2Bo+9B12+3Br=1.  (5.11)

In the N =4 theory (1 A,,; 4 ¢ ; 15 Vi, ; 1 complex ((J%)-scalar C; 4 (5%)-spinors
A'; 10 complex scalars Eg;; 20 spinors x”i; 6 T4,) the only new moment is
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connected with the appearance of the conformal invariant extension of the (I
operator, which does not, of course, coincide with (—=D*+&R)? due to the fact that
the dimensionless field C is invariant under the Weyl transformations, One can
show that the most general form of such an operator is

Lo =D*C*D*C -2(R,, —38,,R)D,.C*D,C +37(Crn)’C*C,  (5.12)

where C,,,, is the Weyl tensor (A.3) and vy is an arbitrary constant, which is to be
fixed by the condition that (5.12) is the part of the complete superinvariant N =4
lagrangian or by some considerations additional to conformal invariance. At present
we are only able to make a hypothesis that the true value of y is

y==1, (5.13)

which seems to be the most natural non-zero value in view of the fact that it implies
the presence of the W(1—|C[?) term in the N =4 lagrangian which is reminiscent
of the version of N =4 conformal supergravity with a manifest rigid SU(1, 1) and
an extra local chiral U(1) invariance [7].

The choice (5.13) is also a posteriori justified by the fact that it leads to a zero
B-function in the N =4 theory, the result which one could expect [due to the
tendency of By functions to decrease, cf. (4.1), (4.12), (5.7), (5.11)] from the fact
that the N = 4 superconformal theory is a maximally extended one (cf. the discussion
of other probably finite theories in [11]). The zero value for Byv is also strongly
prompt by the correspondence with the O(N) supergravity theories obvious in the
N =1, 2, 3 cases (see sect. 6). Collecting all needed results (4.1), (4.12), (B.9),
(5.6), (5.9) and the contribution of the field C (5.12) [easily established by the use
of the 4, algorithm (B.6)]

(=

Bc=-1s—2y=1is, (5.14)

-
L

we finally have

Niy=6-4x8+15x2+2%x2—-4x3%x2+2X10-20%x2+6%X6=0,
(5.15)

Biv=B% +4B3 +1581+ Bc+4B,+20B0+2081/2+6Br=0.  (5.16)

6. Discussion

From the results of the previous sections we conclude that g-functions in U(N)
extended conformal supergravities are decreasing with N growing from 0 to 4:

2P!SUS1B5150, (6.1)

It is instructive to compare this sequence with the analogous one for gauged O(N)
Poincaré supergravities [22, 23]. But let us first make an important clarification.
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Conformal supergravities are theories with “explicit” (described by terms in the
lagrangian with “wrong” signs) as well as “‘implicit” (contained in the higher
derivative, i.e. Weyl, gravitino, A, C terms and in the T, field lagrangian (5.3))
ghosts. The classification on ‘‘ghosts’ and ‘“physical particles” thus depends on the
overall sign of the superinvariant lagrangian, which should be chosen in accordance
with an interpretation of the theory. Throughout this paper we used euclidean
notations and assumed that the Weyl invariant (2.2) contributes to the total
lagrangian with positive sign (cf. [6, 7])

D = a"[w—%vf“i, — (Vi )+ ] . (6.2)
As a consequence, the axial field A, (note that it is real in (2.1) as follows from
the reality of the action) and the SU(N) gauge field V', are ghost-like. The above
choice can be justified as follows. One should not worry about the ghost nature of
A, and V, because a physically meaningful theory should be constructed by coupling
(6.2) with the extended Einstein super (conformal) gravity, which contains its own
physical gauge fields. The essence of the matter is that @ in (6.2) must be taken
to be positive in order to establish the absence of tachyons (and hence instability)
in the theory (see e.g. [9]). Really, the spectrum of the total theory contains [5],
e.g. for N =1, one massless (2, 3) and one massive (2,3,3,1) multiplet which is
ghost-like for a*>0 and tachyonic for <0 (one easily convinces oneself of the
correctness of this statement by noting that the auxiliary field A, contributes as
-Ai in the N =1 Einstein supergravity lagrangian)*, It is interesting to note that
apart from superinvariance considerations the difference in signs of the W and F2,
terms in (6.2) can be readily deduced either from the remarkable fact that the
number of Bose ghosts should be equal to that of the Fermi ghosts (i.e. in Einstein
plus Weyl supergravity ghosts fill a supermultiplet, cf. [5]) or from the fact that
matter fields contribute with different signs in W and F2, infinities.

In order to facilitate the comparison with O(N) supergravities (where gauge
fields are physical) it is useful to consider the formal case of a®>=—g” <0 (gauge
fields are now physical) and to introduce the gauge coupling 8-function B(g)=
—B(a). It was the Weyl coupling (a> > 0)8 () function which we called “8-function”
throughout this paper and hence our results (6.1) indicate the lack of asymptotic
freedom if g>>0in N =1, 2, 3 theories.

Now we are in position to compare the behaviour of the 8(g) functions with N
in the U(N) Weyl and gauged O(N) Einstein supergravities (gauge fields are thus
assumed to be physical in both theories). We conclude a remarkable and rather
unexpected (in view of the fact that the 8 -functions for O(N) theories are defined

* Observe that the transition from the Minkowski formulation (with §,, = + + + +) of refs. [1, 5-7]
to the euclidean one we use is obtained by changing the sign of the lagrangian and taking the
time-like components of the fields to be real. Hence, in the above references vector gauge fields
were assumed to be physical while the Weyl invariant was taken with the “wrong” sign.
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only on-shell) correspondence. Collecting the results of ref. [22] and the present
paper we find the following contributions of fields of different spin (spin 2 field
stands for the Einstein or the Weyl graviton, etc.) in the 8(g) function in the
gravitational sector (remember that our normalization is £ = +g %(V}., )24+ )

2 . i1 0o T. a4 C

87 1 1 £
on): -% +& -3 -3 =86 — - — 6.3)
UN: B R b ok -6 b e B

In the “electromagnetic” or gauge sector we analogously have (see [23] for the
O(N) case)

2 3 1 3 0 T., A &
O(N): 0 -2 oM -3 -5 — o - (6.4)
U(N): 0 -2 02 -3 -5 >0 <0 <0

(all the numbers here should be multiplied by appropriate group invariants). Finally,
let us write down the sequences for the 8(g) functions for N =0, ..., 4 (the values
for N=0, 1 in the O(N) and N =0 in the U(N) cases are meaningful only in the
gravitational sector)

0 1 | 2 3 4 5
. _& o m 13 5
on, B e 7 o

The correspondence here is shifted (AN = 1) probably due to the fact that U, =80,,
SU,=80,, SU3280,, SU;280s;. Using (6.3) and (6.4) we get a transparent
understanding of the growth of 8(g) with N: it is due to the positive contribution
of gravitino (and A) in the gravitational sector, while in the gauge sector it is caused
by positive contributions of the gauge and T, fields*.

Next we want to point out that the results of ref. [9] and the present paper
provide the possibility to establish the B-functions for a (as well as for k”) in the
superconformal extensions of the theory

Lew=— %,(R¢2+6au¢au¢)+a‘zw. (6.6)

For example, considering the N =1 superconformal extension of the Einstein
lagrangian [24], one easily finds that the part contributing to the F2, and W
infinities is given by

¥ =—6D,¢*D,p—3%Dx (6.7)
where D, =9, —%.-IA“, D=9, +:,1-1'Au and ¢ and x are the complex scalar and
Majorana spinor fields of the N =1 scalar multiplet. The resulting contribution to

¥ Remarkably enough T, supports asymptotic freedom in contrast with the gravitino and matter fields.
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the infinities is obtained with the help of (B.5) and (B.9):
Ab,=AB(W-3FL,), AB=1 (6.8)

(note that the R¢p¢™* term contribution to the divergences is suppressed due to the
presence of W in (6.6), cf. [9]). As a consequence, the total B8(a) function is
obtained by summing the pure N =1 part (3.23) and (6.8) (ﬁ; =B +A48) and
therefore is increasing. Thus one cannot obtain a zero one-loop B-function in any
N =<4 superconformal extension of (6.6) (cf. [10]). However, there remains an
interesting possibility that the 8 -function will be zero in a desired but yet unknown
N >4 superconformal extension of (6.3) which will probably have negative B(a)
in the absence of the Einstein part [cf. (6.1)].

Let us now consider the renormalization of the O(N) Poincaré supergravity
SO(N) gauge field coupling constant ¢ in the case of a hybrid theory like (6.6):

L=Zow& . B;A, C; ¢, x; V,At,...)
+$U(~}(g!¢! ‘/’A;A‘)CT;---;@!---}’ {6-9}

where B., A" and C are the SO(N) gauge, spinor and scalar fields of O(N)
supergravity, ¢ and y belong to a compensating scalar multiplet [cf. (6.7)], V¥
and A, are the auxiliary fields of the Poincaré supergravity and at the same time
the U(N) gauge fields of the U(N) conformal supergravity, @ (for N >1) is the
auxiliary field for the U(N) theory [7], while for the auxiliary field ¢!, of Poincaré

supergravity one has (neglecting, for simplicity, the ¢ -dependence, see [7, 8])

=T +427 01 (B). (6.10)

Thus we shall consider 7,, and B, as independent variables. Dots in Fon stand
for other auxiliary fields (like S, P, . . .). Though the complete non-linear expression
for (6.9) can be written only for N =1, 2 (while the linear version of %y, is also
known for N = 3, 4 [7]), one may believe that there exists an appropriate generaliz-
ation of (6.9) for 4 <N <8 with higher spin fields [also denoted by dots in (6.9)]
being auxiliary (propagating) in the Poincaré (conformal) supergravity lagrangians
(cf. ref. [5b]). One probably should not worry about troubles with propagating
higher spin fields because being present in £y, they are part of the ghost multiplet
and thus unphysical. Hence the reasoning and conclusion presented below for N <4
may possibly be extended also to the N >4 case. In order to find the coefficient
of the Fﬁ, (B) term in the one-loop infinities for (6.9) it is sufficient to consider
the situation when only B, has a non-trivial background (cf. the method of sect.
3 and ref. [23]). Choosing the same gauge as for pure conformal supergravity (and
gauging out the background part of the compensating scalar multiplet in Lo))
we can write down the relevant one-loop part of (6.9) (e.g. for N =4) in the
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following symbolic form:
£=kJD(B)Y +yF(B)y +e *Fr,(B)égVe
+(T,, +V2e7'F,,(B))88VE+ AD(B)A + C*D*(B)C +- - -}
+a HhPhyy + 9,88, + A3°A + C*TPC
+8uT 8T+ 3, (6.11)

where @ (B)=ad+B, g=g+h, B =B+ Bguan- TWo remarkable facts are worth
noting here: (i) B, is absent in the conformal supergravity lagrangian, where all
derivatives are ordinary ones and (ii) for every kinetic term in Lo (i.e. for ¢,
h,.. and also for the matter fields A and C*) there is a corresponding higher derivative
term in Ly [7], while for B, we have a non-trivial mixing with T,,. As a
consequence, all possible contributions of ¢,, A and C to the Fi, (B) infinities are
suppressed (e.g. log det (8 +3+ B+ F(B)), is finite). In order to see that there are
no B, dependent infinities coming from Bgyan, Hu., T, mixings, let us use (5.5)
(T ~4a¢) and write (6.11) in the symbolic form :

FL=k"2¢0¢+e 'F(BYhoL +e 2F2,(B)ggve+- )
‘o hPh+ P+ ). (6.12)

It is obvious that the A4 term leads to convergent diagrams. As a final step one
must use the remarkable fact that higher derivative gravity does not produce new
Fi,(B) infinities (see (3.1)-(3.4) and ref. [9]). The conclusion is that the B(e)
function is completely determined by B, self-interactions and thus is simply equal
to the flat space one-loop SO(N) gauge field B-function.

This result should be compared with the corresponding one for the pure O(N)
supergravity case [22, 23]. Instead of negative values of g for N =2, 3, 4 [see (6.5)]
we get the zero (N =2) and two positive (leading to asymptotic freedom) ones.
The explanation of this change is quite obvious: all negative gravitino and matter
contributions in B(e) (dominating for N =2, 3, 4 in the O(N) case [23]) are now
suppressed by the conformal supergravity term in (6.9), which at the same time
does not alter the flat space gauge field 8-function. It is worth noting that in our
case the B-function is defined off-shell, while the analysis of ref. [23] (see also
[22]) was based on the assumption that infinities due to non-minimal interactions
(like ¢Fy) mutually cancel on-shell.

In order to have a complete picture of the one-loop renormalization of the theory
(6.6) or (6.9) one must also calculate the renormalization of the gravitational
constant (or the “norm” of the scalar field ¢») and also of the cosmological A-term
[or A¢* in (6.6)]. The general recipe of this calculation is clear: for example, one

* The numbers of A and C in the cases N =2, 3, 4 are (0, 0), (1, 0) and (4, 1).



174 E.S. Fradkin, A.A. Tseytlin /| Conformal supergravities

takes the same gauge as in the case of pure conformal supergravity [cf. (2.18)],
assumes that only g,, and ¢ have non-trivial backgrounds and calculates the
infinities of R¢> and ¢* type*. It should be taken into consideration that (as was
pointed out in [9]) the N =0 theory (6.6) is renormalizable only on-shell because
of the presence of the conformal invariant counterterm [R 2\@] (g»gd?)=
[R —6¢D°¢/¢ *Vg, which is proportional to ¢* on-shell. The same situation .
takes place in the N =1 case because the N = 1 supersymmetric extension of R>
is known to exist [5]. However, there is a possibility that the N =2 extensions of
R? do not exist if the O(N) symmetry is gauged (and thus there are no corresponding
infinities in a superfield calculation with a manifest background supersymmetry).
Some support for this proposal comes from the remark that if an (R>+- - +) infinity
is present, it gives (on-shell) only an additional A-term (but not Fi, (B)) renormaliz-
ation which contradicts the well-known relation [27] Ak*=—6e>, following from
supersymmetry when O(N) is gauged.

If corresponding R? extensions exist for N >1 one is to consider the off-shell
renormalizable theory obtained by a supersymmetric extension of (R +A+R*+
a 2W) lagrangian. The presence of the R* te