Nuclear Physics B234 (1984) 509-523
@ North-Holland Publishing Company

ON THE NEW DEFINITION OF OFF-SHELL EFFECTIVE ACTION

E.S. FRADKIN and A.A. TSEYTLIN

Department of Theoretical Physics, P.N. Lebedev Physical Institute, USSR Academy of Sciences,
Leninsky Pr. 53, Moscow 117924, USSR

Received 16 May 1983

We analyze the recently proposed definition of the off-shell, gauge-invariant, gauge-indepen-
dent, effective action I', utilizing an invariant metric on the field space. It is shown how to
establish correspondence between I" and the standard effective action, calculated in some particu-
lar (Landau-type) gauge. Several examples are explicitly discussed, including Yang-Mills theory,
the effective potential in scalar QED, and one-loop quantum gravity. Generalization to the case of
super-invariant theories (e.g. super-Yang-Mills and supergravity) is also presented.

1. Introduction and general framework

Recently Vilkovisky proposed a novel definition of an effective action in gauge
theories [1]. It is reparametrization invariant, gauge invariant, and gauge indepen-
dent even off the effective “mass shell” and thus may find applications in dynamical
symmetry breaking, external field (or source) problems and especially in theories
with a non-trivial configuration space metric, including quantum (super)gravity.
Here we discuss the relation of the new effective action to the standard one and
illustrate general statements on a number of well-known field theories. We also
generalize the definition to the case of theories with fermions including supersym-
metrical ones.

Let us first review Vilkovisky’s definition in a slightly modified manner, clarifying
some important points. Let M= {@’} be a configuration (Bose field) space and
S(¢) be a scalar on M and an invariant of some global symmetry group G, i.e.

S(¢)=5(9), ¢=f(9), S(¢)=S(9), ¢=g(p).

Then the standard definition of the euclidean effective action (generator of irreduc-
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ible vertices)*

I(¢)=w(J($))-J(9)¢, %=¢, e "= [dou(g)e S+,

e--F{wh):fd(pp(@)c—slw)ﬂw‘- ¢')6r/a¢'(¢1Efdnc—swm)ﬁr’r,. (1)

does not in general provide an off-shell (I'; # 0) reparametrization-invariant and
G-invariant result. Namely, I"(¢) # I'(¢) and I'($)# I'(¢), where I(¢)
and I'’( f(¢)) are effective actions calculated according to (1) starting with S(¢) and
S’( f(¢)) respectively. Suppose now that M is endowed with some symmetrical
G-invariant connection I};. If we take o' = ¢'(0) to be the tangent vector at ¢ to the
geodesic, connecting ¢ and ¢, '+ I (¢(1))9’¢* =0, (0)=¢, p(1)=¢ (¢ is an
affine parameter), then it will be a vector under transformations of ¢ and a scalar
under transformations of ¢ and the following relations will be true

ofv0'=—d', VkEEi_"+ (),
T ¥ B CO LI CIRRE & S COLLNP N
R R i (S V| VTSP & /50 (2)
o'(p,9)=n +4I} , |02 +§ [1}'“’”3 rr:nuI}Tny inighi4 . (3)

Thus the new effective action

e-r(¢)=fd,,exp[_s(n+¢)+o*’(¢+n,¢)f'(¢),f], (4)

generating the same S-matrix as I' in (1), will be off-shell reparametrization- and
G-invariant. The next (purely technical, possible already in (1)) step is to change the
quantum variable 7 — o obtaining a manifestly “covariant” perturbation theory by
noting that S(n +¢)=S(¢)+ X (1/n) V... v, S)a’'...a/". The construction
of I' in (4) depends (off shell) on the choice of the connection. For example, in the
case of a riemannian manifold o model, S = [d“x}g, (9)d,¢'d,¢’, it is natural to
take I, to be the Christoffel connection for g; . It is in this particular case where an

* Here ¢ and n=¢ — ¢ are the “background” and “quantum” ficlds and we use the “condensed
notation” of ref. [2]. Eq. (1) is equivalent to other definitions of I" within the background field method
[3-6]. For simplicity we shall include contributions of local (log p ~ 8(0)) measures in the symbol d7.
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off-shell, invariant, effective action analogous to (4) (with the accent on the use of o'
perturbation theory) was previously discussed in the literature [7-9]*. The expres-
sion (4) in its general form first appeared in [1].

Now let G contain local gauge transformations (g.t.), ¢’ = R’ (¢)e* = R'(p).
Thenif I ;#0, § = S —o'T, in (1) is not invariant under quantum g.t. (8¢ = R(p),
8¢ = 0) and thus no gauge fixing is formally needed off shell. However, the resulting
perturbation theory for I' will be singular in the limit I' ,— 0. That is why, the
standard attitude is to give sense to (1) by choosing some gauge x thus making the
limit regular. The price which is paid is an off-shell gauge dependence of I, clear
from the fact that one is averaging a non-gauge-invariant functional ¢” ... This
observation prompts another suggestion to regulate the limit: one is to substitute
7T, by o'(p,¢)T; invariant under quantum g.t. thus restoring quantum gauge
invariance of 8 in (1) off shell and as a result providing independence for the subsequent
-gauge fixing. Also, we are to preserve the invariance under background g.t. (6 =0,
8¢ = R(¢)) spoiled by #'T"; if the generators R are non-linear. A hint of how to
construct o' is contained in the observation that a change of gauge is simply a
change of parametrization of the space of group orbits M =M/G [2,12-14].
Integrating over 9N we are to preserve reparametrization invariance and thus, in
view of the previous discussion, need a connection on 9. It can be readily
constructed using the natural metric on 9 [12,13,1]. If g, ; 1s some G-invariant
metric on M, i.e.

i k
@3ij,+®ij“=0, R, =g, Ri, P, = ai+{1}.}, (5)
then
& a ] j o, il
8i;=8ij~ RiN BR;‘B’ Nog=R,8;; R}, N = (Na,s) , (6)

measures the distance between two orbits G, and G, 4,**. Thus we define
(8™ =g"g™8))

I_:::k=%gjm(gmj.k+gmk.j_gjk.m) +R;Kﬁ(,

* It was also proposed in ref. [10] to use analogous methods in the case of gravity considered as a
non-linear realization of affine and conformal groups [11]. This approach, while stressing the “chiral”
aspect of gravity, neglects the “gauge” one and thus is different from that of ref. [1] (see below).

**If 9 is coordinatized by embedding M — M’ € M with the help of lhc gauge condition x (@, ¢} =0,
then (6) can be extended on the whole M [1): &; =&+ Xa.iXa, J,C (Cap is some group metric). The
M -restriction (Z)og: = PgP, P} =8/ — g% x0 k87 "PXp ;» Aap=Xa,iXp, ;8" is the metric of ref.
[13]. Note that

det g = (det (;}c,f,)2 X (det Cog) ™" X (det Nyg) ™" = det(#) o X det Aop X (detCog) ™"

Thus integrating over 91U’ with the invariant measure (d@)ogn/det Fop- X (det Ng)* L/2 we obtain
the result of the standard covariant quantization,



512 E.S. Fradkin, A.A. Tseytlin / Off-shell effective action

where
—2BED;, R, + RgﬁDpR"ﬂB(‘}Bf). (7)

For simplicity we avoid explicit parametrization of 9 and formally assume :,-"k to be
defined on the whole M (for a rigorous argument see [1]). Defining ¢* as in (2) one
can prove that (i) terms ~ R in I} drop from the product o’ I, if I' is background
invariant, i.e. R'(¢)I" ;=0 and thus (7) can be taken as the final form of the
connection on M [1]; (ii) transformation rules under background and quantum g.t.
are (recall that o' is a vector under 8¢ and a scalar under d¢)

80'|5g=r(e)= [R;(‘i‘).j“’i + R (¢)Z (o, ¢)] e,

aoi]&w-é[v]:R;(‘p)Q;(q)'} ¢)Ea1 (8)

providing both quantum and background invariances of o', if R'(¢)I",=0. It is
worth stressing that (8) is valid only if the gauge algebra is c!osed ie. Efzp=0in

*'B‘J,-RQ—R‘ RH—R‘CY +8S ; (9)
To illustrate this point we note that according to (3) and (7)
8013y = [ Rl jo/ = Ru(9) = ViRl + -+ [,
80'|5, = [Ri(¢)+ v Rigk+ -],
where

v,R,= —Rl,Rb, BF = YW RiCH+ S (EL) B (10)

Thus we come to the following definition of a reparametrization-invariant, gauge-
invariant, and gauge-independent off-shell effective action due to Vilkovisky [1]*

o T(#) = f[dﬂ]xexp[ ~S(¢p+n)+o'(o+m,6) ()], (11)

8xa

[dnly=dnd(x(¢,n))detQ(d,m), Q= —"Ri(o+m),  (12)

* Here o' is constructed according to (2), (3), (7) and thus r depends on the choice of the G-invariant
metric g,, on M. If G does not include local supersymmetry (see below), then g;; is assumed to be
local, i.e. independent of the derivatives of @, so that transformation (3) is local in the limit RY, — 0.
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where x, is an arbitrary (not necessarily background covariant) gauge. Eq. (11) is to
be contrasted to the standard definition (cf. [3-6])

o= x(ﬂ:f[dq]xexp[—S(¢+T])+7r'Fx.r}= (13)

which gives an off-shell gauge-invariant (but x-dependent) effective action only if (i)
the generators RY, are linear (which is not true, e.g. in supergravity) and (ii) the gauge
X 1s covariant under simultaneous 6¢ = R(¢), 6¢ = R(¢) transformations (and
x(@=9)=0).

2. Gauge fixing and the relation to the standard effective action.
In view of the gauge independence of I' we are free to choose a particularly

distinguished one, namely the “orthogonal” gauge

R,(¢)g,(¢)o’(9,9)=0. (14)

Introducing the notation o, ,=II, ,(¢)o, II,, =R,B", II',=g"g,,, o=

R ($)p"($, @), we conclude (cf. (8)) that under quantum g.t. §o, =0, §p* = 25¢”,
i.e. o, is physical, while p* is a spurious variable, which drops out from the exponent
in (11). Thus p =0 or (14) is really a natural gauge. Noting that according to (7)
T (¢)o/ o% =0, we can put (assuming (14)) 7}, = 0 in (2) and thus in (3). Changing
the variable 1 — o we get

e @ = [dod(R,(¢)0')det O (4, 0)e 52, (15)
S=8(¢)+ X (GDj]...GEj"S)afl...af"—aff“-,
n=1

0.5 =Ria(9)Ri(d+n(0,6)) = Ry Ry + R j07 + D, (RY ;) Xoko/+ -+ ),

det Q X |detdq/do| =det Q.

For example, at one loop

i 1] det Nog A, =1II,AIl
(¢)_S(¢)_2 Ogdclﬂ_‘_,—j— 3 i Bama 1 1

k
A,=99,5= s_U.—[ IJ.}s‘,c. (16)

To establish correspondence with the standard definition (13), another (Landau-



514 E.S. Fradkin, A.A. Tseytlin / Off-shell effective action

De Witt or LD) gauge appears to be useful
R, (¢)n=0, ie.n,=0. (17)

Then from (3) and (7) we get

. . I +
0‘=n'l+%{jk}nin‘i

1 i i m s i pa ,m, Amiznds + ...
h({hjz},jﬁ{mj;}{hh} 39, Re m{hh})mmm+ . (18)

Comparing (11) and (13) one can prove the following statement: if there exists a
parametrization in which g;; is field independent, i.e. ﬁm} =0 (and thus o' =, if
7, = 0) then in this parametrization I'(¢)=I'\(¢). Therefore in order to obtain I’
e.g. for a “Yang-Mills plus linear matter multiplets” theory one need only to
calculate the standard effective action (13) in the LD gauge (17). If, however, g;; is
non-trivial (as it is in the case of gravity) then I'# I, already at one loop:

fluctuation operators A differ by the local “correction term” {ﬁ}S « (cf. (16)).

Starting with two loops there are also differential corrections to the vertices (18). The
resulting expressions for I' in the gauges (14) and (17) are of course the same. Let us
now illustrate a calculation of I' in several characteristic examples.

3. Yang-Mills theory

In the ordinary parametrization we have: 845 = ¢’

GD:" = 4‘5"”6‘;l +f""’"A‘, Yup ™ fovalvcas

and thus

i_)(xl"ai’ Iu‘f)’ a— (xa!ad)9 gi’j_)spijYﬂ‘aja(xJ_xj)i

i i a,d
{jk}=0' Ra—b"Dpr' «8(x,—x,),

Ny~ —(D2) " 8(xa=x5),  Niz'=(=9D2);,
i.e. (7) takes the form

;k = ag,-pjfa,aijbzi(xj = xk)@;:*s(xf e xj)

+ %@:bfgichc;l(x,- - xk)éDpi"*Nf;'l(x,- =24) GD:‘! +(jeok). (19)
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In the LD gauge (17), i.e. GD“(B)Ap= 0, we have
I'(B)=Tp(B)= - log{fdA 8(%,(B)A,)det[D,(B)D, (A4 + B)|

8T
><exp[—S(A+B)+A§ }

This gauge is the a — 0 limit of [?,g = (1/2&)(6'})“(3)14”)2 and thus can be used for
explicit calculations (cf. [15]). At one loop

det(—D?)

F(B)=Fa=ﬂ=S(B)_1ilog detAlJ_ 3

(20)

where 4A,,,= =8, 90>~ 2F,, and IT,,, =8, — 99 24, Only if J,=9F,=0
does (20) coincide with the standard expression in the « = 1 gauge, because det A, =
det A, , det(—D?) X det(8,,, + D, *fyca JALAPDF™) (for the a = 0 gauge result (20)
see also [16])*. I in (20) can be calculated, e.g. for a constant non-abelian B} with
"Dﬂﬁw # 0 and thus applied to the problem of a vacuum as a minimum of f’_ Here it
may be useful to clarify the meaning of the reparametrization invariance of I' (11): if

we start with some unconventional variables, A’} = f(A4);, then g;; is no longer
trivial, {;k} # 0, and we are to use the general expression (11), e.g. in the gauge (17),
giving some I”(B’). Then the reparametrization invariance implies I"(B’)=

I(f~\(B).

4. Scalar electrodynamics

The aim of our next example (one-loop effective potential in scalar QED) is to
illustrate the cancellation of gauge dependence in I" (and also to show that the
calculation of I in any gauge other then the LD one (17) is very cumbersome). Let
us take the following class of gauges

A
e=1F2+3(e) + g (9),

1
Eg = E( apAp * ﬁgeab¢bna )2’ Tu'a = q:,a = ¢a’ (21)

*Note that if one starts calculating I' without fixing any gauge but separating 4,=A ,, + 9, (B)p,
then at one loop 825 =A , A;4, +A4 , K,p + pK,p. Adding the correction term ~ AATDF, with Tk
given by (19), it is easy to check that it cancels the p-dependent terms restoring quantum gauge
invariance. Separating [ dp, e.g. by the gauge p = 0 we again get (20).
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where ), ¢” = 3,9 + ge?’p’4, and assume that the background fields are B, =0,

¢° = const. At one loop (11) gives

I'(¢)=5(¢)— tlogdet A + logdet A

A"';":(S-i-sg),fj_r}?s.k’ Aghaﬁ"__Xcr.i(‘p)RfB(‘p)f

The construction of the connection is straightforward: 84, = —d,e,

(22)

o9 =ge’p%e, g, {28}, Ri={ =0, 8009 ) 8(xi—xa),

Npg = (=0 +g%)8(x, — x5)
and thus
LR .= —3Ag%*9, N, 29,
etc. where £ , = {A¢%*. Asaresult 4, = k%3, + ---,
A,,=ige$yCk,, C=1-B/a+ IA"k*N "2,

Aoy = (K> + IA¢*)IT;, + BIIG,,
BZgI
B=k*+ (%?\ e )¢2 —$Ag?* (2 —g%?N )N 1,

. 1 ¢a¢b
Nl — o " ;
k2 + g2¢2 ab ¢2

Integrating over n°, we get

A_;.w = A;.w - Apad;gabv = ("ll{2 + gzq-’z)H:v +EI

prs

k k 2,272
H:v= ;29’ I E=a_1k2+82¢2+%Agz‘f"‘N_zkz__—'_—g %k
and finally
" A . d*k
= 4 ol L =
r_fd x[4!¢ + V1(¢}], dk = o

7, = —%fdk[log(k2+ Ing?) + 3log(k2 + g%¢*) +log B + log E

—210g(a“/2(k2 + Bgchz))]

% 2 2\ Y 4 24 ...
_%gfdklog(k +M?) 64W2¢1og¢+ .

C2

(23)

(24)

(25)
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The coefficient y has the following gauge-dependent value if calculated according to
the standard recipe (13) (i.e. omitting N ~! terms in B, C, E in (25)) (cf. [17] for
B=0)

y=3g%+ &N + (28— a)Ag’. (26)

To calculate y for the “corrected” expression (25) one is to observe that y ~ £, M?
and thus integrating [dklog(k*™ + A,k>™ "%+ A,k*™ %+ ---) we only need to
know A7 — 2A,. As a result, all a- and B-dependent terms cancel and we find

7=13g%+ 4N + g, (27)

One could avoid the above involved calculations by working in the LD gauge (17),
ie. d,A,+ ge,bum, =0, where I'= I 1, thus obtaining (27) as the a =0, 8 =1 case
of (26). It is interesting to note that it is possible to calculate ¥, according to (1)
without fixing any gauge: we get (24) with E — tAg?¢?/(k? + tA¢?) and thus

Vi=—1 [ dk{log(k?+ $A¢?) + 3log(k* + g%?)

+[log(k? + $A¢?) + log[(3Ag%*) /(K2 + 3A¢?)] ]},

coincides with the result in the unitary gauge (y =3g*+ A*) after cancelling the
infinite (~ L*log ¢*) term by the local measure. Repeating the calculation with the
“correction” term I]’k S i (22), we see that it annihilates the longitudinal part of a -
restoring quantum gauge invariance and thus making it necessary to fix some gauge,
eg 9,4,=0; then V= —1fdk(log(k®+ $A¢*)+3log(k? + g’¢*) + logB, —
log k?}, B,= B(B =0). The result for y is again (27). Thus the result of the new
“corrected” recipe is similar to the R gauge one and is different from that of the U
gauge (or gauge non-fixing) prescription.

5. Quantum gravity

In the standard parametrization

Sg,w = Ekaj\gpv + g_u.\ayeh + gﬂé‘#e", Ruvp = ZSD(ﬂD')a(xF i x—") ’ D" o a"‘ e {ﬁp}'

The invariant (5) local (no d, g,,) field-space metric is unique up to a real parameter
[2,14) (A# —1/4)

ds?= fd“x G"*Pdg,,dg.e, G =g (g"gh” +Ag"g*f). (28)
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Its Christoffel connection is

4 AIC 4 K K ¥y v T Ax ¥
(7 o M= —t{aeapaogmeap— g -0,

1 A :
ke o g pAge)y o ny AK
T2 an) %o BT T T an) B8 8|
(29)
The operator N, in (6) and the LD gauge (17) have the form
Nop=2[ ~8agD?— Rop—(1+27) D, Ds| /8 8(x, — x5) s (30)
R,3,G®h,=0, ie.D,(h5+A88h)=0. (31)

The expression for I" is then given by (11), or at one loop by (16), where now

AuvaB _ Juvaf _ {#W ﬂﬁ} 8 45
Po agpﬂ' ’ 6g2

If § = — [d*x(R ~ 2A,)y/g, then hAh = }hA,h — [ D,(hE — }8kh)]%, where
Ay=— G01)2 + Xo, Xl);ufaﬂ = ch(aﬂ)v + &R (gp(ﬂgﬁ)y = ‘llgprgn{ﬁ) - ZAoanmﬂ»
(32)

(here C,,,p is the Weyl tensor and G, = G(A = — })). Using (29) to establish the
correction term and employing the condition (31) we get

A=34(-GD*+X), G=G(\),
x= _’]I _2(A+ %)2’ EpyEva_ ‘ligj.sz
1+4A J\7@B

. A+ 3
Kb = Xtz + 2E080) — 3P Ep — 3gup EP — R( ’ )(a*‘a' 3g.5).-

(33)

For simplicity we shall take A = — 4 (this value of A in (28) was obtained in [1] by
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adding the condition G = G). Then G = G, and the one-loop result for I is

F(g)=S(g)—%logdel(_(g’“pz)_ R“’), (34)

AW

where 4 | is 4 subjected to (31). Let us now compare the divergences of I" with those
of the standard effective action in the gauges £, = (1/2a)[D,(h} + A8Fh)]? known
for A, =0[18] and for A+ 0 [19]. Introducing the notation:

I, = —4(4L°B, + L’B, + Bjlog(L*/p*)), L— o,
1 4
B,= 2fd X\/Ebp! bp=2, by=pR+pA,,
(4m)
by= #R*R* + B,E], + 1B, R* + By RA + BsAG, (53)

we have for A= — 1 and a =1 (De Donder gauge) and « = 0 (31) the cases

B, Bs Bs Bs P 1]

a=l: & B -% 20 -% 2
«=0: % % -8 12 -%¥ 1 (36)

Observing that the only coefficient which changes after adding the correction term is
B, we conclude that the infinite part of I is given by (35) with B, Bs, Bs, py, p, being
as in (36) for a« = 0. The value of B8, can be found by direct diagram computation or
by using the algorithm for non-diagonal operators developed in [20]. Moreover, if
the background geometry is of the Einstein type, R, = Ag,, (ie. E,, =0) then the
correction term vanishes and I' coincides with the standard onein thea =0, A= — 1
gauge.

It should be understood that G***# in (28) is not related to a particular structure
of gravitational action (it can be used for the construction of I" for any covariant
action, e.g. of the R+ R? type). Thus G**# does not actually govern the full
dynamics of Einstein quantum gravity. At the same time, it is important to take into
account the non-trivial geometry of g,, configuration space dictated by G**°Ain the
quantization of this theory.

6. Supersymmetrical theories

Let us first formally generalize the definition of I" (11) to the case when fields and
gauge parameters can be either Bose or Fermi. We shall take all derivatives to be
right ones and use two kinds of invariant contractions: £*7, and &7%, & = (—)*¢,
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(cf. [21,22]). Then ds®> =dg'g,;do™, dS=S ;d¢r, 8¢' = R;e% S RE =0, and we
get the analog of (7) in the form

i |1 i T ki
Fkrﬁ—{ ﬁrﬁ}"'Tms a=(—) "Tia

( _ )al(l +m+k)+m

i in " o km .
{ ﬁ£}=%8 [gnr?:,k_}'gnk‘r?r(_) ~ &mi. A

T'ai= —Rig, 4B %(—)"" - Rig ;B (=)™
+ 4R ;R"3BP 4B (=)™ + }Rig, 1R B4 BR (=)™, (37)
where
B8 =81, Neg=Rig.aR"(-)",
Bo=ga RN (= YR, g (Y

Constructing ¢’ =0 + 9™ I"_m* (=)™ + - - as in (2), (3), we finally get (11) with
I-". jo*. The LD gauge (17) now is R"'ﬁg,,ﬁn’“(—)"“ =0 (for example, in the spinor
QED: 8,4, + ieay guan¥ back + h.c. = 0, [a] = cm).

Consider now a theory which is supersymmetry invariant (or “Q-invariant”). To
preserve off-shell supersymmetry we need a Q-invariant metric on the field space.
The construction of such metric in terms of component fields appears to be
non-trivial (Q-algebra mixes ¢ and dg). For example, in the Wess-Zumino model
(¢ = ¢, ¥, F) no local metric can be obtained starting with [d*x(dgpde* + adydy
+ ---), while the correct Q-invariant metricis ds2, = fd*x(dpd F — $ d¢dy + h.c)
(for notation see [23]). Its field independence implies the equivalence of (1) and (4)
and thus the Q-invariance of I'(g, ¥, F). At the same time, no analog of ds;, exists
for a component gauge multiplet (4, A, °D). Thus we are confronted with a problem
of construction of the gauge-invariant super-invariant component effective action,
e.g., for a super-Yang-Mills theory. A natural solution is provided by superspace
generalization of the definitions (11), (37) of I': one simply substitutes space by
superspace, fields by superfields (e.g. chiral or real), and gauge transformations by
supergauge ones. Hence in order to get a supergauge-invariant, supergauge-indepen-
dent (and superfield reparametrization-invariant) off-shell effective action I, we only
need to find the super-gauge-invariant (and super Poincaré-invariant) metric on the
space of the superfields. Given I, in terms of background superfields we can choose
a physical (WZ) background supergauge solving the above problem. More explicitly,
e.g. in the WZ model, ds2,=[dz(d®d®8(f)+hc), dz=d*xd?0d*d, (z)=
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@ + V2 0y + 06F, etc. while in the N =1 super-Yang-Mills case
dsdng = [dztr(de’de ") = [dzg,,(V)dreap?, (38)

where V=V, V=V (1 are generators of the gauge group G), W,=
—1D% VD,". This metric (and S = fdz(W*W,8(f)+h.c.)) is invariant under
supergauge transformations

e =e " Me%,  or §V=iLV/z[(A+A+}+coth(LV/2)(A—A*)],

L,..=[A4,...], ie 8V°=R%(V)A’+h.c.

Given a group G, one first finds g,,(¥") (being the metric on the homogeneous space
G/Gyg) and R%,(V), then one calculates the connection (37) and finally establishes
the form of the effective action I (being gauge independent, it can be evaluated
either in the WZ or in manifestly supersymmetric quantum supergauges). It should
be stressed that the use of the non-trivial metric (38) is essential for the construction
of the gauge invariant I in view of the non-linearity of R“,. At this point one
observes the analogy between this recipe and the special “background-quantum”
splitting used in [24,25] for particular super YM and supergravity models (cf. the
relation of refs. [7,8]). The advantage of the new approach is in its generality,
quantum-gauge independence, and its reparametrization invariance.

Finally, let us discuss the case of N =1 supergravity. Working in superspace, a
natural candidate for a super invariant metric is [dz(E,/NEg™ + -+ )dE,*dE,”.
However, the supervielbein E, is a constrained variable and therefore d E implies a
shift of H and dH, H™ being the unconstrained (dynamical) superfield of
Ogievetsky-Sokatchev or Siegel-Gates. The desired superinvariant metric on the
(H, ¢) space (¢ is an auxiliary chiral superfield) can be taken in the form

dsiy = [dz EAHY g,y (H, 0H, ) dHY + E'dd8(8) +he], (39)

where
g =E'npEP(=) T, E=sdetEyt,
and E, is built from H, dH and d’H according to the rules of ref. [26]:
E,=EMD,, E,=e "Dgel, H=H"D,,etc.

A peculiar feature of supergravity is that the metric necessarily depends on deriva-
tives of fields. All the following construction of the invariant action I}, can be done
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as above. Note that (39) is not an extension of a simplest general-coordinate-
invariant metric for component fields

ds? =fd"x\/§ [ [efer —L(1+1)ele; + :g“"gab] de;’def + ald%dz{z, g"

+a2(deS+deP—dAadAa)}, (z = parameter),

which is sufficient, if we do not demand supersymmetry of I (e.g. computing it in
the gravitational sector). The corresponding LD gauges (17) are: D, (h% — je;h)=0,
efahy, =0, Dy, =0. Even in this case ¢’ depends on all powers of the quantum
auxiliary fields and thus one cannot integrate them out from the very beginning.

In conclusion we remark that the new effective action may be useful in non-
polynomial theories describing coupling of matter with (super) gravity. The non-triv-
ial configuration-space metric of the “pure” theory is then “extended” to the matter
fields sector.

We are grateful to Dr. G.A. Vilkovisky for informing us about his work prior to
publication and for useful discussions.

Note added in proof:

The standard definition of effective action within the background field method
was recently discussed also in ref. [27].
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