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Wemamadmmﬁﬁehmfmqumm string dynamics. It 1sbasecl on
. the effective action I' for fields corresponding to diffeyent string modes. A formalism is developed
for the calculation of F in the a’->0 limit. It is ‘shown that in the case of closed Bose strings I’
contains the standard kinetic terms for the scalar, external metric and the antisymmetric tensor.
Our approach makes possible a consistent formulation and solution of a ground state problem
(u;nludm; the problem of space-time compe:iﬁeam) in the string theory. We suggest a solution
to the old “tachyon problem” based on the generation of non-trivial vacuum values for the scalar
field, metric and antisymmetric tensor. It is shown that a preferred compactification in the closed
Bose string theory is to three (anti-de Sitter) space-~time dimensions.

~_ L. Introduction

String models were originally developed for the needs of the strong interaction
theory. Then it was realized that a string theory when properly interpreted may play
~ a more fundamental role, providing us with a consistent theory of all interactions
including quantized gravitational ones [1, 2]. A free (closed) string can be described
in terms of an infinite number of its “oscillation modes™ (scalar, symmetric 2-tensor,
antisymmetric 2-tensor, . . .). It was observed that the zero string *‘size” limit (a' - 0)
of scattering amplitudes of different string modes coincides with on-shell scattering -
amplitudes in a theory of fields associated with the elementary string modes [3]. It
was shown [3] that the corresponding covariant action contains the Einstein gravita-
tional term for the symmetric 2-tensor considered as a perturbation of the flat metric.
In a more realistic case of supersymmetric strings in ten dimensions such an action
contains an N =2, D= 10 supergravity action or N =1, D= 10 supergravity plus-
N =1, D=10 super-Yang-Mills action in the closed and open string theory cases
correspondingly [2]. Given that (closed) superstring theory is likely to be finite to
all orders [2] it can be considered as an interesting candidate for a fundamental
theory. : .

There is, however, a number of conceptual as well as technical problems in a
(super) string theory as formulated today. The above connection between string and
corresponding field theories was previously established in a non-covariant “‘on-shell”
way (one had first to find an a’- 0.on-shell scattering amplitude and then to guess
a covariant action from which it could be derived). Also, expansions near a.flat
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2 E.S. Fradkin, A.A. Tseytlin / Quantum string theory

space-time were used in this procedure. All this made it difficult to understand how
a curved space-time could be built of the “graviton” string modes and thus how a
spontaneous compactification from D =26 or 10 to four space-time dimensions
could take place. A lacking formalism is an analog of a background field method
known for ordinary field theories, i.e. a covariant “off-shell” effective action I” for
the infinite number of fields corresponding to string “excitations”. Had we such an
effective action accumulating a string theory dynamics we could consistently formu-
late the ground state problem in this theory. If the solution for a ground state metric
appeared to be non-trivial this would be a manifestation of a dynamical “condensa-
tion” of free string ‘“‘graviton modes”. If the corresponding ground state D-
dimensional space-time was a product of a four-dimensional one and a compact
internal space this would be a solution to the compactification problem. If this
ground state was stable so that no ghosts and tachyons were present in the expansion
of the effective action I' near the vacuum values of fields this would be a solution
to the unitarity problem (“tachyon problem’ of the old Bose string theory).

Our aim here is to present such a “background field method” formulation of a
quantum string theory starting with a covariant definition of the effective field theory
action I' in terms of a path integral over “internal” string variables (sect. 2). In this
paper we mainly consider only the case of closed Bose strings. Generalization to
superstrings remains an important problem for the future. We follow the covariant
approach to the string theory path integral [4] (see.also [5-8]), so that I' is given
by functional integrals over string coordinates and two-dimensional metrics. The
action in the exponent which is averaged contains the free string term [9] as well
as the infinite number of “‘source terms” depending on the “‘external” fields (the
arguments of I') which “probe” different string *“‘excitations”. o

A low-energy approximation for I’ is obtained by expanding in a’—> 0. In sect/ 3
we discuss integration over string coordinates and obtain an “intermediate” effective
action W which depends on the external fields and an arbitrary two-dimensional
mettic.

. Integration over two-dimensional metrics is studied in sect. 4. We consider the
simplest case of the spherical two-dimensional topology (*‘tree approximation”).
The resulting effective action for the “lower-lying™ fields (scalar, D-dimensional
metric and antisymmetric tensor) is then extremized for finding the ground state
configurations. We first investigate the ) =26 case using a simplified approach in .
order to illustrate some general points. Then more rigorous treatment of the general
D =26 case is given and it is shown that there is no ground states with a flat
D-dimensional space-time. The theory prefers compactification to a three-
dimensional anti-de Sitter space-time so that the ground state metric is always
curved. It seems likely that more realisti¢ four-dimensional compactification patterns
may exist in the (closed) superstring case.

In concluding sect. 5 we discuss some points connected with an mterpretatlon
and-extension of our approach. In particular, we present a generalization ‘of the
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effective action to the case of extended objects of arbitrary dimensions (strings,
membranes, etc.).

2. Effective action

QOur starting point is the covariant (closed) Bose string action [9]
1 5 in i
'I°=Ea; .[ d’*x Vgig" a0 . . (1)

Here [a']=cm? x* (u=1,2) are coordinates of a 2-dimensional compact space
M? g,..(x) is a metric on M?, ¢’ (i=1,..., D) are coordinates of an external
space-time M” where strings propagate (external space metric G;(¢) is assumed
to be flat in (1)). We shall use euclidean notation in this paper. The quantum string
theory is defined by the path integral [4] '

G ')I=I [dg..] I [de']e(V/Mhlesl, | ()

For example, the tree amplitudes for the scattering of the “ground state” (tachyon)
scalar string modes are given by [4] (see also [6, 10]; cf. [11]) °

Gn(dyy ..oy dN) = < ﬁl J. d*xv g(xkjato)(¢k = 'P(-’ﬁ:))) . (3)

Here ¢} are the coordinates of N points in M” and M? is assumed to be a closed
simply connected manifold. As was found in [4, 6, 10] Gy reproduce the Virasoro-
Shapiro amplitudes in the case of D = 26. Introducing a scalar “source” field d(p)/
it is easy to write down the expression for the generating functional correspondiné
to Gy:

rore] ='<exp [—I d’x ~/§¢(w(x))]> 5 (4)
: &g
GN(¢I:----,¢'N)""8¢’(¢I)'_'8¢(¢'N) q’zo- (5)

The crucial point is to observe that I"”[&] is just a “tree” effective action for the
scalar field @ which corresponds to the “‘ground state” mode of the (closed) Bose
string. Eq. (5) gives the amplitudes (more correctly, irreducible Green functions)
on a “naive” vacuum @, ...=0, G; = §;. The true vacuum value of & (and all other
fields to be introduced shortly) is to be determined by minimizing the full effective
action, thus, hopefully, solving the “tachyon problem™ (see sect. 4). '

Now it is obvious how to generalizé (4) to include fields corresponding to other
closed string -excitations: we are simply to add all other possible “source” térms
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which preserve the reparametrization invariance

Liource = sz [ gP(e(x))+3Vgg" 3,.0'0.0'Hy(o(x))

+3ie" 9,0 ‘9 soJA.;(w(x))*'—\f_ RC(¢(x))
+v88"8"8,0'0,07 020 0,0 Byl @(x)) +- - ] : (6)

The symmetric tensor Hj; is a *“‘source” for the “‘graviton” modes [12], the antisym-
metric tensor A; is a “source” for the antisymmetric 2-tensor modes [13], while
higher tensor fields like By, correspond to “spin>2" massive modes*. C is a

“source” for the “dilaton” - a massless scalar of the closed string spectrum (R is
the curvature scalar of g,,)*.

Eq. (4) is true in a “first quantized™ string theory**. To account for processes
with a “cubic” interaction of virtual strings (one string splitting into two and two
strings recombining into one) we are to sum over all closed oriented manifolds with
arbitrary number of handles n. n is thus a number of “loops” in the full “*second
quantized™ string theory (note that n is the only topological characteristic of such
2-dimensional manifolds). As a result, we are led to the following expression for
the effective field theory action corresponding to the “second quantized™ string
theory:

o0

I'[®, Gy Ay, ...]= L ™ L: [dg..] J [de'] e VM1, (7)

n=({

I=I+ I urce

=jdzx «/Ecb(qo)+$j‘d2x JZRC(9)

1 v
+21ra Idlx[z g8""0,0'0,¢’ l..‘("\*"‘)"'zwJu 3,.0'0.0'A(0)]

+J d’x Vg 8" 83,0 '0.0°0,0" 3,0 Bu(e)+- -+, (A;j=>2ma’Ay). (8)

Here x =2—2n is the Euler number of M3 and G, = §,+2wa’Hj is an a priori
arbitrary metric of the external space-time M”. A dimensionless constant o plays

* To have correspondence with the standard dilaton emission vertex [14, 15] (~a¢ ‘09’ e¥"®) we are
also to redefine Hj; or the metric G; in eq. (8): G;;—» G}; exp (4C/ (D ~2)), where G, has a flat-space
limit. We shall not discuss the dilaton contribution in the effective action in the main body of this
paper, assuming C = C, = const in the vacuum and absorbing C, in ¢ in eq. (7) (see, howevet, the
end of sect. 4).

** A closed simply connected surface M? can be considered as a world sheet of a virtual string wl'nch
appears at some point, propagates and then disappears at another point.
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the role of a coupling constant in the theory*. The choice ¢”* for the weight with
which different topologies are summed seems to be unique and is distinguished by
the fact that oy can be represented as a local addition to the action (8). In fact,

x=ﬁj.dzx SR, )

Here R=R",,,g"" and R*,,,=8,I"},—- - - is the curvature of M3.

It is important to stress that the structure of (6) or (8) is quite simple: we have
written down all possible local “source” terms that respect covariance in two
dimensions. The only “external” gauge invariances of (8) (and hence of I') are the
general covariance in D dimensions (which follows from 2-dimensional covariance)
and the abelian gauge symmetry for the antisymmetric tensor, 8A;=3aA;—3;A;,
3,=9/8¢". Hence the only fields which can be “massless” in I' are the metric G,
and the antisymmetric tensor A, “Higher-spin” tensor fields By, . . . must be massive
because of the absence of corresponding gauge symmetries necessary to provide
their masslessness in I'. In this way we deduce the structure of the free closed string
spectrum without use of any a priori knowledge about it.

To determine I" as defined by (7) we are thus to compute the partition function
~ for quantized strings propagating on an arbitrarily curved space-time M? and

" interacting (in addition to gravity G;) with the infinite number of local fields: @,
Ay, By, . . . . The important property of (7) is that it can be represented as an integral
over the space-time M. The reason is that the free string theory is insensitive to
a position of a string “centre”, i.e. the action (1) is invariant under ¢'(x) > ¢'(x) + a’,
a' = const. Hence a free string partition function contains the corresponding zero-
mode contribution (the volume of R”) as a factor. This translational invariance is
broken by the “‘external” fields in (8) so that a D-dimensional zero mode integral
is no longer a trivial one. It is useful to extract this integral over a “string centre”
collective coordinate from the very beginning by splitting ¢’ into constant and
nonconstant parts:

e'(x)=¢'+7'(x), ¢ =const,
j do Fle]= I d®¢ j [dn'1F(¢+n],

[dn]l=dn 8”(P'[, n])QL4, 7],

3P [n+a]

da’

| Q=det (10)

a=0

Here P'=0 is a “gauge condition” breaking the invariance under 7 - 7 + const to
avoid overcounting and Q is the corresponding “ghost” determinant. Using (10)

* As we will see in sect. 4 o is not subject to a renormalization, i.e. it has a fixed value (note that o
should be positive for convergence of the sum in (7)). .
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we get
Fm= J d°¢ VG($)L(P(d), DiP(&), DD,P (D), ... ;

Gij(‘f-'), Qkijm(¢)s--- §Ejk(¢),--- Sissls (11)

where £ depends on all powers of derivatives of fields (multiplied by powers of
a’). The gauge invariances imply that the derivatives of G; and A; combine into
the curvature tensors R*;,, = 9, + I'i; ', — (j <> m) and Fy, = 39,A;, and that all
derivatives are covariant with respect to the Christoffel connection I'j,(G). The
factor VG($) comes from the expansion of the covariant measure in (7):
[1, de'(x)VG(e(x)), G =det G;*. The representation (11) shows that it is I defined
by (7) (and not, for example, In I') that is the effective action.
The lagrangian in (11)

Z=Ye™ | [dg,]| [dnTexp: —lf[¢+"'h8m P(¢+m),...] (12)
x M2 h

is expressed in terms of the path integrals over the “internal” string degrees of
freedom so that £ is effectively “non-local” in ¢ (this “‘smearing™ may be responsible
for the finiteness of ¥£)**. The fields @, G, A;,... can be considered as some
“bound state” excitations of the string degrees of freedom. Thus we get an unusual
type of an induced (gravity, ...) theory where the effective fields (metric,...) are
not to be further quantized. The point is that loop effects of an approximate field
theory (valid at energies E < (a’)”"/?) are automatically accounted for by the string
theory loop corrections***. -

3. Integration over coordinates

Our aim is to determine the leading terms in a “low-energy” (a'- 0) expansion
of I' in (7), (8). According to (12), we are first to expand the fields near ¢’ = const
and to integrate over “fluctuations” 7. Integration over 2-dimensional metrics will
be carried out in sect. 4. At this first stage the 2-metric g,, is considered as an
arbitrary background field (in this section we may not also specialize the value of
the Euler number of M2). The corresponding “first-stage” effective action is given
by

e (/MW[g,®,G,..] _ .[ [dn] e~ (/M) [e+ng,, P(d+n)..] (13)

* The measure [dg,,] is defined as in [4, 8]. In particular we divide by the volume of the full
diffeomorphism group of M? (see also sect. 4).
** As is clear from (12) all non-polynomialities in % arise as a result of “virtual contact exchanges of
the infinite number of the string modes™, cf. [16].
***The infinite set of modes propagating in the string theory loops is in correspondence with the set of
“external” fields, @, Gy, Ay, -.. ;
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It is useful to start the analysis with the formal case when all the “external” fields
except the metric G, are set equal to zero. Then (8), i.e. the action for a string
propagating in a curved space-time:

1
o™ I d’x Vg28""5,9'0.¢'Gy(9) , . (14)

exactly coincides with the action for a generalized o-model defined on a curved
2-dimensional space M? (the “internal” space of the o-model is M with the metric
Gj; note that the roles of M” and M? are reversed on going from a string picture
to a o-model picture). Hence (13) is the partition- function for the o-model on a
curved background g,,. Being interested in the a’- 0 expansion of I we may
compute W perturbatively in # (a'f counts the loop order in (13)).

To make perturbation theory manifestly covariantin D dimensions it is convenient
to do a local change of the quantum variable n’ - ¢'(#, ¢), introducing the geodesic
normal coordinates with the origin at the point ¢' [17, 18]:

n'=o'—¢'— & —iru(B)E/E +- - -. (15)
Making ¢' dimensionless by the rescaling £' - (2a’)"/?£', we obtain for (14) (see
e.g. [19])

4

Is= I d’x \/Eg'"{%a,,_f faviju(¢) _%(273'“’)92&;1(‘#)

X E¢0,£'0,8' ~1(2ma' Y DRijm($)
XEEE™9,80,6 +0(a"R%)} . (16)

Higher-order terms in (16) have the following structure:
j' d’x Vgg"" (a' &) 9(DR) 40,.80,¢, (17)

so that (16) corresponds to a theory with the infinite number of dimensionless
coupling constants (which are powers of the curvature of G; and its covariant
derivatives taken at the point ¢ and rescaled by powers of a'). Observing that ¢'
transforms as a vector under the point transformations of ¢' we can go to the
orthonormal basis introducing £°(x) = ef(¢)¢'(x), Gy=efe}, a=1,..., D. Then
(16) takes the form '

L= I @x Vg  {59,6°0,£” — §Rapcat *6°9,£°0,£* + O(a'h)}

(R...=2ma'R...). (18)

A convenient covariant choice of the “gaugé‘; in (10)is [18]: P*=[d’x \/Ef“(x):{)
(it eliminates the constant zero mode of the scalar laplacian on a compact space ™
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M2). Throughout this paper we ignore various local factors (~8%(0)) like
det (9n'/3€’) or Q (as well as various quadratic infinities) which are cancelled by
a proper choice of the functional measure (being quadratically divergent they in
any case vanish in dimensional regularization). For example, the quadratic infinities
corresponding to the theory (18) are cancelled by the term (~A? [ d*x In det G(¢ +
n(£ ¢))) coming from the covariant measure [d¢'] (A > o is a cutoff).

The classical action (18) is invariant under the Weyl transformations g,, >
/\z(x)g,,, as well as under the coordinate transformations of x*. To preserve the
latter invariance we use dimensional regularization which breaks down the Weyl
invariance ((18) is Weyl invariant only at d =2). Covariance and Weyl anomaly
considerations (see [20, 21]) suggest that W has the following general structure:

Wlg G]= iﬁ j RVg&x+y j (RVg).O(RVg)x d’x d’x’, (19)

B=4a, y=a,taha’'R+ysha*(R...) 2+ . (20)

Here R and & = R}, are the scalar curvatures of g,,, and G respectively,e =d —2->
0~ and '
O00==8%x-x), DO=35,(Vgg"3,). (21)

The first term in (19) is the “topological” ultraviolet infinity (infrared infinities are
absent because of compactness of M2). The second term in (19) corresponds to the
Weyl anomaly (T% = (2/vVg)g,..(8W/ 8g,,) = —4yR). In the one-loop approximation
for the two-dimensional theory (13), (18) W in (19) is simply the effective action
for D free scalar fields on a curved 2-dimensional background. Hence y = D/967
(see e.g. [21, 4]). To determine the two-loop coefficient in (20) one may expand the
metric near the flat background g,,, = §,,, + h,,, and compute the “self-energy” graphs
for h,, (fig. 1) using momentum space representation and the infrared cutoff by the
explicit mass term (the contributions of the first two diagrams of fig. 1 mutually
cancel).

“No 1/ or non-local 1/e infinities appear in W=
J1d’p/(2m)*1 % b (P) Kipe( P) Boo(—p) (nO counterterms are to be accounted for
in computing W their use would be equivalent to a non-trivial renormalization of
G;(¢) in (14) making the effective action I' ambiguous)*. As a result we repro-
duce the hi,, term in the expansion of (19) with ¥ =—%/128#*. Thus in the

Fig. 1.

* In order to detect the infinity in (19) one assumes the background field ¢ to be non-constant.
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two-loop approximation

V= s 2 R() +O(a WA . @)
(This result being dependent on a’® (i.e. on the square of ratio of a string “radius”
to a space-time “‘radius”) disagrees with the expression found in ref. [22] where a
particular case of M? = S” was considered.)

Having found W[g, G] we are to integrate e~ over the metric g,,. This will
be done in the next section using the methods of refs. [8, 23, 24]. Asa result the
a'R term in (22) will produce the Einstein-like term in the effective action I'. Now
let us include in W the contribution of the antisymmetric tensor A; (the contribution
of the scalar field & will be discussed in sect. 4), The relevant piece of the action (8)

W/A

1 ) _
Iga= e’ J &’x{3vgg" 0,.9'9,9'Gy(e)

+3ie"8,9'0,0’A5(0)} (23)

is exactly the action for the generalized o-model with a generalized “Wess-Zumino”
term. In fact the second Kalb-Ramond [13] term in (23) coincides with the so-called
Wess-Zumino term [26, 27] for the special choices of M” and A;(¢) corresponding
to the “standard” o-models. Expanding ¢’ near ¢' according to (10), (15) we find
that in additum to (18) the action (23) contains also the terms depcndmg on
Fy =380An, Rl and their covariant derivatives. The leading contribution in (20)
comes from the followmg term in (23):

% szx svaabc(¢)§ apg avg L]

Fope=(2ma’)?F. (24)

Computing the two-loop h,, “self-energy” diagrams with two a/F vertices (fig.
2) we conclude that the total result corresponds to (22) with the following substi-
tution:

R->R—5FF*. (25)
(Note a connection of this result with that found previously (on a linearized level)

in the context of the old dual string model [14], and also with recent work [28, 29]
on the generalized o-model (23).)

i
n

Fig. 2.
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One can give an alternative derivation of egs. (19), (22), (25) using the fact that
the Weyl invariance in two dimensions makes it possible to establish the exact
expression for the free scalar Green function [4, 23]. Introducing the conformal
coordinates in which g,,, = 62’8,,, (p is not regular on Mf,) we have (projecting out
the zero-mode contribution and taking y =2)

1
4ar

D&=-—In [(x —x')’+% e“'"‘""""] - (26)
Here A—_i-no is a covariant cutoff. As follows from (18) the two-loop contribution
in W is given by '

WP =-1R I d*x Vgg"”

xlim QRViViOx-Vi0vi05R). 27
The result of (27) is the same as in (19), (22) (R=-2¢"**Op).

The analysis of this section can be generalized to the case of the Fermi string
theory with the classical action invariant under the N =1 two-dimensional local
supersymmetry [9, 30, 31]. Coupling a free Fermi string to the external metric Gy
amounts to constructing a locally supersymmetric generalization of the N = 1 super-
symmetric generalized o-model action (see e.g. [32]): TThe result (cf. ref. [33] for
‘the N =2 case) appears to be a straightforward combination of the actions of refs.
[9, 30] and [32]. It is possible also to include the coupling to A; using the N =1
supersymmetric extension of the action (23) constructed in [28] (see also [29]). Less
clear is how the Fermi string theory (apparently lacking D-dimensional supersym-
metry) can be coupled to a sort of ten-dimensional supergravity anticipated as its
a'~ 0 limit (cf. [34]). Such coupling is perfectly possible for the covariant superstring
action of ref. [35]. Thus generalization of the above treatment to the superstring
case remains an interesting problem for the future (in particular, it is important to
understand whether a superstring action with “sources” can be transformed into a
sort of supersymmetric o-model action).

4. Ground state problem (integration over 2-metrics; solution of effective equations)

Given the effective field action (7) we can study the problem of a ground state
in “the closed Bose string theory. Namely, we first have to compute
I'l®, Gy, Ay, By - . .] (B stands for all higher-spin tens_o'r fields) for arbitrary argu-
ments and then find the effective mean values of fields, i.e. the solutions of the
effective field equations

oI oI or or
30 2 3G 2A 0> s @)

y éB
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Assuming that the ground state space-time manifold should possess some global
isometries (e.g. Poincafe or de Sitter) we have to look for solutions of (28) with the
tensor fields By equal to zero. As for Ay, it may be non-vanishing in the vacuum
with Fap. ~ €a (@, b, c=1,2,3) thus a priori distinguishing “compactification” to
3 dimensions [36]. Hence the ground state is determined by the expectation values
of the three “lowest mass” fields @, G; and A,

It is easy to guess the general structure of the first several terms in the expansion
of I' in (7): .

F[®, G, Al= I d%¢ VG{V(P) + a'f;(P)(3,P)>

+a'f( @) + a'f(®) FyF ¥ + O(a)} . (29)

All the indices are contracted with the help of Gyj(¢). To establish the ground state
values @,, G,, A, one has thus to compute the functions V and f,. A check of the
. absence of ghosts in the theory will be the physical relative signs of the “kinetic
terms” in (29), while the stability of the ground state under small fluctuations will
be equivalent to the absence of tachyons in their spectrum.

Thus we get a consistent field-theoretic formulation of the “tachyon problem™ in
the Bose string theory. It was anticipated previously that the presence of the tachyon
in the free string spectrum indicates that the expansion goes near a “wrong’ vacuum
and hence a sort of “‘spontaneous symmetry breaking” (generation of condensates
of some scalar modes) is needed to establish the “true” one (see e.g. [37]). However,
an off-shell method for the solution of the ground state problem (analogous to the
effective action method for the study of dynamical symmetry breaking in a field
theory) was not developed. A circumstance that was also ignored in the previous
approaches is that the flat metric G; =8, and A; =0 may not correspond to the
true vacuum of the theory. It is of course necessary to have a flat space vacuum if
one wishes to apply the theory to hadrons but given that the free spectrum contains
the massless “graviton” and antisymmetric tensor the question about the ground
state metric and A; should be solved dynamically without prejudices about possible
relevance of the theory to flat four dimensions.

Recalling that the theory has dimensional parameter ' it is nalural to anticipate
that being computed for a ground state value of @, I" in (29) should contain a
cosmological term (which is not ruled out by the symmetries of this lheory) of
natural value A ~a'™",

Hence the vacuum space-time (or at least a *“factor” of it) is likely to be an (anti)
de Sitter space with a characteristic scale of the Planck order. We stress that it is
unnatural (in the absence of supersymmetry) to hope that the ground state metric
may appear to be flat. Given that stability criteria in a curved space are in general
very different from those in the fiat space we conclude that a resolution of the
“tachyon problem” is essermally connected with the quesnon of the background
space-time geometry.



12 E.S. Fradkin, A A. Tseytlin / Quantum string theory

It seems likely that the ground state problem should have a definite solution
already in the “tree” (i.e. first quantized string) approximation. Hence we shall
compute I" for the case when the integration in (7) goes over closed 2-dimensional
riemannian manifolds without handles M3, i.e. with the topology of the sphere
S*(x(M?) =2). Even the treatment of this simplest case is fuall of technical details
which we shall partly omit here (some basic material about computation of a free
partition function, i.e. I"[0], can be found in refs. [23, 24, 8]). Separating the constant
part ¢’ of ¢’ as in (10), (15) we get (cf. (12)-(15))

r(e,G, A]~J. d¢ _[ [dg,.] I [d&'] exp {—I d’x Vg (9, £)

1 : —
—mj d&’x[3Vge" 0,£'0,8Gy(¢) +.. .]} ; (30)

The integral over £' goes over the regular non-constant functions on M3 (satisfying

fd*x Vgé¢'(x)=0) and
D(¢, &)= P(d+ (e, &)= ‘P(¢)+(5‘;¢)¢§

+Z:+-(9,l -Q),ntp)d,f'l--- LI (31)

(9 are covariant derivatives corresponding to G;). Integrating over £', we find the
“effective action” W (defined in (13)), which depends'on ®(¢), 3,P(), . . ., Gy(¢),
R D), -~ ., Fld)y.. (W= d(¢)[d?xV/g+...). Simple power oountmg reveals
that W contains ultraviolet infinities, i.e. depends on a cutoff A of the field theory
defined on a fixed M3. Fortexnmple,"ignoring various mixing terms, one finds

Wo( @) =

= (2 l@rel, I xVE+..., (32)
where 1/ =~In A. Hence W is not “unambiguously calculable” in the Bose string
case we consider®. It appears likely that W will be calculable in the superstring
case where the “‘tachyon field” @ is absent and infinities in other sectors have a
bettér chance of cancelling.

The apparent cutoff dependence of W may look like a serious problem of the
Bose string theory. There are two possibilities of overcoming this difficulty. A naive

* Power counting indicates the presence of infinities also in other field sectors. For example, in the
case of a “higher-spin” field B,,,; we have

= J ¢x JE%{GEWJ‘ &x VE[Byp(4)
2ma .
+BByk" + - JuE D G

and hence

2
WeoB)~— By I R¥Wg d?x+---.
E
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one is to “subtract” the infinities by redefining the field (> @ —a’In AD*P+: - )
in each order of expansion in a’ (a redefinition @ > @+ cA? is in any case needed
to absorb quadratic infinities). This procedure makes W finite but dependent on an
infinite number of arbitrary (“subtraction-dependent”) constants. Another more
appealing possibility is connected with the existence of some natural “built-in”
mechanism leading to a well-defined I" as a functional of fields rescaled by powers
of the cutoff so as to make them dimensionless (® - A2d, . . .). The basic observation
is that the rescaling of the cutoff should be equivalent to a rescaling of a two-
dimensional metric g,,. But g,, itself is an integration variable in (7). Hence all
the cutoff dependence (left after the rescaling of the fields) should be absorbable
in a formal redefinition of the integration variable, and hence should be absent in
I'. There of course may be additional infinities coming from the integral over metrics
itself. For example, the integral over a “scale” of g,, may diverge at lower limit.
However, this integral should necessarily be cutoff at 1/A because a (covariant)
short-distance cutoff 1/ A >0 was already introduced in the theory defined on M2
with a fixed metric. As a result, this integral will be automatically convergent after
the rescaling of the metric discussed above. That this second approach is sensible
can be seen on the example of a free partition function or a “‘naive effective potential”
I'[® = u}=const, G, =8, Ay, ...=0]={exp (—u3 | d*x Vg)), which as will become
clear (see also [24, 8]), is a well-defined function of S=dA2 Itis interesting to
note that if this mechanism is indeed operative (as we shall see) no actual renormaliz-
ation of o in (7) is needed at all so that o is a fixed coupling constant of the string
theory (cf. [8]).

" Being interested in the lowest-order terms in (29) we can ignore higher-derivative
couplings in (31) and carry out explicit (one-loop) integration over ¢:

W=2a(¢) J d&’x Vg+3Indet (8,4 +27a'(D,2;®P) )+ -,

A= —Tan(g“"fa,.) = —fg ; (33)

There is no contribution from the linear term because | d’x v/g¢ vanishes for a class
of functions on which the &' integral in (30) is defined, namely for the regular
functions expandable in eigenfunctions (with non-zero eigenvalues) of the Laplace
operator on M3*. Thus, to the lowest order in a

w=0(4) [ &x V- m(@a), j Fx Vg0 + -, (34)

* This in fact is a subtle point. Assumms first that (3,P), = J; is non-constant on M3, integrating over
£ and then taking the limit J->const one finds the additional term in (33):
wa’(3,0)* | d*x d*x' Vg ;1v/g,. However, the function £ ~1~"J needed to compute the gaussian

. integral by a shift is not regular on M3. For regularity of the limit one has to take 0" with projecturs
on non-constant functions so that the final result vanishes.
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where (1,07} = 8'”(x — x'). Introducing a proper-time cutoff 1/A2-0 we get (cf.
[4] and (26))

I dxVgOl= _I!; (In A?) I d’x Vg +ﬁ I d*x &x' Vg, O (RVE). . (35)
Hence,

W= W,(0)+& J' d*xVg+ia' (In AH)D*D I d’xVg
_la'D*® j dx %' VD ZHRVE), +he'(In AD(R —4F?)

+ [ w—i(@ —ﬁF’)] J d’x &’x’ (RVg),O M RVE)
64
+O(a'2} . Yo= (D —26)/967. (36)

Here F?= F F™ and W,(0)=—3(D-26)In A? (note that | RVg d’x=8=)* In
(36) we accounted for the leading gravitational and antisymmetric tensor contribu-
tions already found in (22), (25). We also included the contribution of the ghost
operator corresponding to the gauge g,, =¢**§,, (with §,, being a metric on S?).
For g, =€*"§,.**

—1a'9’® I d’x &’x' Vg0 (RVE)«+ia'(In A%)(R —5 F?)
+ [yo—;—ﬂ(ge ~5F)] I d*x &' (RVE)OURVE)x

O=0(), R=R(@@). (37)

All the cutoff dependence in (36) can be absorbed in rescaling of the metric
(84, = A7%g,,) and the scalar field (&= A’P):

w=2d I ExVE-La' PP J [ﬁ—'ﬁ+[yo—%(ge—.—gﬁ)] I RO'R. (36)

* To obtain this value of W,(0) one has to correctly subtract the contribution of the six zero modes
(corresponding to the conformal Killing vectors) of the ghost operator ~V2, —}Rg,, and to define
[dg,;,.] in (30) by dividing the formal measure by the volume of the dificomorphism group (see [8]).

** It may seem that | RLI 'R should not change under the constant scaling of the metric. However,
this symbol in (19) should be understood precisely according to (37).
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Expanding e % in powers of a’ we obtain

Ie,G Al~v" _[ d’¢ VG(9) J [dple ™
X [1 = aa’[ P*P I d*x Vg +(R —%F’)]
+3a'@*P J 1:|—'R+-9"~(92—ﬁ1~*’-) I RD_'R+O(a”')] , (38)
64T :

Wo= Wo(0)+ @ J. &x J§+.y.,[ RO'R, a=ilmA>.

Here
8w =84, RVEg=RVE-20p,
s by
B =15 x2/ar7)"

I RO 'R= I d’x &*x' Vg, R,O Vg R,

I O 'R= j d&*x &' Vg O R gr . .

p-integration goes over regular functions on S°. Note that (38) does not contain
additional integrations over parameters of *‘Teichmuller deformations” of the metric
[8] because any traceless deformation of a metric on M3 can be generated by a
local diffeomorphism. The integrand in {38) is invariant under the diffeomorphisms
that preserve the gauge condition g,, = €*”§,,- They are generated by the six confor-
mal Killing vectors (three SO(3) rotations and three proper conformal boosts). The
corresponding global transformations form the conformal group SO(2, 2). ¥ is the
(infinite) volume of this group which cancels the analogous factor coming from the
integral over p (p is invariant under SO(3) but is “shifted” by the conformal boosts).

Let us first investigate the case of y, =0 or D = 26. The free theory (P =0, Gy =8y
Ay, ...=0) is then Weyl invariant, i.e. p is a gauge degree of freedom. The corre-
sponding partition function I'[0] then diverges and is to be regulated by introducing
a gauge. In analogy with philosophy adopted in ordinary gauge theories it may
seem natural to insert the Weyl gauge (p =0) also in the presence of “sources”
(“external” fields) even though they formally break the Weyl symmetry. In any case,
the integral over p is not a well-defined one for y, =0 and hence some prescription
of how it is to be evaluated is to be adopted. That the gauge-fixing prescription is
a reasonable one is seen from the fact that using it one can prove that the amplitude -
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(2) reproduces the Virasaro-Shapiro (VS) amplitude for D = 26*. Putting p equal
to zero in (38) and computing all the integral with the S* metric (=£,,) we finish
with the result

r*o[e, G, Al]=-M>? I d%¢ VG e ®[1-1a,a'D*P

+a'by(R—1F)+- -1, (39)

where a, and b, are constants, @ = & [V§d>x and M is a normalization mass that can
be taken equal to (2ma’)™"/?. Having completely “omitted” the integral over the
metrics, we cannot apply the natural “mechanism” for elimination of infinities
described above. Thusin (39) we assume that a, is a finite but “‘subtraction-dependent™
constant.

It may appear that p =0 is a too stringent condition. In fact, it may be desirable
to preserve the “small” conformal group (see previous footnote) under which
8p = £(ayV uL' ({' are the proper conformal Killing vectors), i.e. to fix the Weyl
gauge only for the “‘transverse” directions. Then the (finite-dimensional) integral
over the “pure conformal gauge” p’s will remain and our “mechanism” will be
applicable. We shall discuss this more rigorous approach later but it is instructive
first to analyze the ground state problem for the “model action™ (39). Introducing
the new dimensionless scalar field 2 = exp (—®) we can rewrite (39) as

reo[e, G, Al=-m> J' d%¢ VG[02* - a'a,(8,02)*

+a'by(R - HF)2°+0(a)]. (40)
Hence if we ignore the metric and the antisymmetric tensor backgrounds we get a
free scalar field which is a ghost for a, <0 and a tachyon for a,>0. If a,>0 (as
we shall assume) all the three “kinetic terms” in (40) have the physical signs.
Correspondence with the free string spectrum** suggests that a, =3, though the
choice of this particular value will not be important for the subsequent discussion.
A naive flat-space vacuum {2 =0 is unstable due to the tachyonic nature of the
fluctuation mode. Let us see if the full action (40) admits a stable ground state

* In the momentum representation Gn(py,...,Pn)= (l'[‘:_1 d*x, Vg, ¢"*°Py), Integration over ¢
produces 8(Zp). Inserting [[_ 6(p(x)) we get just the VS amplitude but without the mass-shell
condition a’p} = 4. This condition is recovered under additional requirement of conformal invariance
(duality). It was noted in [10] that using a different prescription for integration over p(x,) one can
obtain in Gy, the pole factors [, (4—a'p})™" in front of the VS amplitude. However, this prescription
is completely ad hoc. The only important fact is that the G with p(x,) integrations included is
invariant under the conformal SO(2, 2) transformations for arbitrary pZ = —m?, while the VS amplitude
is conformal invariant only at the point pi=4/a’. Hence the only effect of the conformally invariant
removing of the p-integrations should be restriction of the VS amplitude on the mass shell. This
justifies the use of the conformal invariance requirement in addition to the gauge-fixing prescription.
This correspondence is not obvious in fact. The naive vacuum seems to be @ =0 and not £2 =0 (cf.
(2), (14)). Note, however, that 2 depends on a *‘subtracted” value of @ and hence a dn'ece
interpretation is complicated due to the dependence on the cutoff.

£
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configuration. Suppose we look for maximally symmetric vacua, so that the vacuum
value of {2 is £2=const# 0. Then the classical field equations corresponding to
(40) take the form

1+a'by(R -#F) =0,

Ri—+FmnF™ =0, 9, F*=0. ‘ (41)

The value of {2, is thus arbitrary. It is easy to see that there are no solutions with
Fj. = 0. No solutions exist also if G has the euclidean signature (so that F2>0).
Hence we deduce that the D-dimensional space M, where strings are defined, must
have at least one “time” direction. Only one “time” is consistent with the absence
of ghosts. Solutions with a maximal symmetry are obtained in the case when Fj, ~ &
in some two space and one time dimensions. Thus M? =§° xMP~? where §* is an
anti-de Sitter three-dimensional “space-time” (with signature —++), i.e.

Rap= 2fu ab > Fabe = fo€abe s (42)
fo=1/a'b,, abc=0,1,2.

If Fy, has all other components equal to zero, M~ is an arbitrary Einstein space
with a zero cosmological constant, i.e.

Romn =0, m,n=4,...,D (43)

(We assume that Gy is block diagonal). Hence the maximally symmetric case is
MP7? =RP7, Less symmetric solutions are found if Fj; ~ £, for some 3-dimensional
subspaces of M”™. Then M2 splits on a product of compact S> factors:

“nﬂu if" By F“an'l’n =j;'£“nﬂu?u » .
fo-Xfi=1/ba'>0. (44)

The general solution corresponds to M” equal to a product of §3, of N S* factors and of
some (dim = D —3(N +1)) Einstein manifold satisfying (43)*.

We see that the Bose string model prefers the three space-time dimensions with
the anti-de Sitter metric and the non-vanishing antisymmetric tensor field strength.
Direct analysis shows that there are no tachyonic modes in the spectrum of fluctu-
ations of the fields near their vacuum values. Thus in contrast to the “naive” =0
vacuum the true vacuum is stable. Note that the non-zero vacuum value of 2 implies
the non-zero constant vacuum value for ® ~ —In 2**. Thus our conclusion is that
generation of non-trivial background values for @, G; and A; formally solves the
“tachyon problem”.

* In contrast to the Freund-Rubin mechanism [36], the presence of {2 makes it possible to have flat
space-like subspaces. ~
** Note also that the vacuum value of the action (40) is equal to zero and that the value of £2 determmcs
the value of the gravitational constant.
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This result (if true also for D <26) seems to rule out a direct application of the
closed Bose string theory to a description of glueballs but is quite natural from the
“fundamental” point of view on a string theory as a candidate for a theory of all
interactions. In a more realistic superstring case other antisymmetric tensors will
be present in (40) (while 2 will be absent) and hence more realistic patterns of a
ground state compactification may exist. Here we would like to note the following
problem that must be carefully analyzed in the approach to compactification based
on the effective action like (30), (40). In the derivation of the action (40) we used
the o’ - 0 approximation (and neglected higher tensor fields). However, the resulting
ground state space appears to have a ‘characteristic scale of the order of (a’)"/>.
Hence we have to study whether the higher-order terms in (40) are in fact irrelevant.
It seems likely that it is incorrect to study compactification in the superstring theory
starting only with a D =10 supergravity action. Maybe it is sufficient to include a
number of other terms (like a”®*+---) but maybe one has to invent a new
approximation scheme for I' without expanding it in powers of a'.

Let us now consider the computation of I" for the general case D <26 (for D>26
p is a ghost). It is useful to isolate first the integral over a constant scale of the
metric and then to do a loop expansion for the remaining degrees of freedom. This
is done systematically by inserting 1= [y dA 8(J Vg d’x— A) in eq. (36), i.e. by
extracting the integral over the surface area A [23] (see also [24]). Starting with eq.
(38) and using (37) we get

=

r(e,G A}~ v J. d°¢ VG ImdA Rs I dg 6(j d*x Vg (e* - l))
Xe"s{l—%a@z( PA)A™ j dx VE e*[3In (A2A)+ 5 -107'R]

1 -
la'(R - f—ze][l +1n (A*A) +; j d’x p0ep
—2A7" J d’x J@‘ﬁ] +O(a’2)} 2

S=x—«xln (A’A)+41U dx p0of +3Rs _[ dx Vgo(e? —2p - 1)] . (45)
o =

Here x = (D 26) and A=[d’xVZ (g, is the same as in (38)). The metric
8our = (A/A}g,,, (R, is. the curvature scalar of g,, Ro=8n/A, Oo=0(go)) is the
stationary point of the action ~f RO™'R under the constraint | d’x Vg = A. The
integration variable § (a regular function on S?) has a vanishing vacuum value (the
total metric is now g =e*g,, cf. (38)). The Liouville-type action for 5 in (45) is
positive under the constraint | d*x VZ(e*’ —1)=0 [38].

All the A-dependences in (45) are shown explicitly except that coming from the
dependence on go,, ~ Ag,, In view of the Weyl invariance of (], and RoVg, the
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latter dependence can be only of the “‘anomalous” type, f(A?A). Thus we see (in
agreement with the suggestion made above) that all the cutoff dependence in (45)
can be eliminated by introducing the new variables A= A?A and & = A& so that
I' expressed in terms of !5, Gy and A is independent of the cutoff, i.e. is an unambiguously
calculable functional. This conclusion is unchanged if the integral over A formally
diverges at A =0 because in fact it must be cut off at A,;,~1/4%>0.

We shall evaluate I' in the simplest possible approximation, including the one-loop
contribution from the p action but ignoring the g dependence of the pre-exponential
terms. The integral over p then is

J dp S(J vgp ﬂzx) exp (ﬁ J- d’x \[E_oﬁjm-;){l T
= Ao—Ro, Ao=—%ap(sa“~/s‘oa;). (46)

The operator 50 defined on S? has the spectrum A, = (47/A)[n(n+1)—2], i.e. has
. one negative mode (with eigenfunction g = const) and three zero modes (correspond-
ing to the invariance of the integrand of (45) under the (proper) conformal transfor-
mations). The negative mode is projected out by the §-function in (46) while the
infinite integral over the (normalized) zero modes is cancelled out by the ¥~ factor
in (45). The contribution of (46) is thus proportional to

(AA)(det’ 4p)72,
In det’ 4= —(B,—4) In (A2A)+const , (47)

where the first factor comes from the normalization of the negative and zero modes,

=(1/4w) | @®x Vgo(iRo+ Ro) =3 is the corresponding DeWitt-Seeley coefficient
for 50 and the prime and (—4) indicate that the first four modes of 50 are not
included. Introducing A = AZA and &= A~2® we can then put the result for I in
the form*

F~J dP¢ VG J dA e PArv A 1 14492

x(1—3n A)+ia (R —5F)(1—In A)+-- -}, (48)

Here v =3(D—25) if D <26, and v=1 if D =26 (the contribution of det’ A, in (47)
is absent in the latter case, while the integral over ’s expandable in higher n>1
eigenfunctions of 4, is regulated by inserting the Weyl gauge). For the free case
(® = const, G; =8, A;=0) eq. (48) agrees with the result of ref. [24].

* Note that to absorb the quadratic infinities (which we did not indicate explicitly above) one apparently
has to-redefine & - @+ const A%, As a result the constant part of & appears to be ambiguous. Here
it may be useful to recall once again that one can get free of this ambiguity by using a dimensionless
cutoff or by properly defining the measure of the path integrals involved.
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The integral over A is also to be evaluated in a “saddle-point” approximation.
The “saddle point™ for the “‘action™ in (48) is

Ay=v/d. (49)

Expanding A near A, and integrating over A— A, in the gaussian approximation
for the “action” (putting A= A, in the pre-exponential terms) we find from (48)

I'=cMP J d°¢ VG(P/v)®

x[1—§a'v%‘—p(n ~3in (B/v))+ia'(R -5F)(1+In (é/p))+0(a'2)}, (50)

where 8 =—1—» (i.e. § =3(19— D) for D <26 and & = —2 for D =26) and ¢ = const.
Introducing the dimensionless scalar field 2 = (®/»)*/? we can rewrite (50) as

I'=cMP” I d%¢ VG[2*—a’'(62)*(a,+ az1n 2)
+ia'(R —ﬁf#)n’(1 +§ In n) +0(a™)], (51)

wherea, = —87%(1+ 8)(3—28),a,=—256">(1+8).For 8 = ©(51) hasthe same form as
the “model action” (40). Thissuggests that the ground-state structure should be similar
for both actions. Assuming that the ground state value of {2 is £2,=const# 0 and
ignoring In f2-terms we find that the classical field equations corresponding to (51)
coincide with (41):

R-HFP=—4a"", Ry—iFmF"™=0, (52)

Again there are no solutions corresponding to the flat D-dimensional space-time,
while the maximally symmetric solution is (anti-de Sitter); XR”™> with Fiy~ €.
The stability of the solutions depends on the values of a, and a, and deserves special
study. :

Our basic conclusion is that (either for D =26 or for D <26) it is necessary to
account for the ‘‘condensates’ of the D-dimensional metric and the antisymmetric
tensor (as well as for the “condensate™ of the “ground state” scalar) in order to
determine the true ground state of the closed Bose string theory. It is inconsistent
(from the effective field theory point of view) to take D-dimensional space-time to
be flat. _ .

A non-trivial question is whether a solution of (52) approximates a solution of
the full effective equations (28). This may not be the case because (52) imply that
a'R =—24, a'F?=~96 and hence all higher order (~a”®?+- - -) terms in (51) a
priori cannot be neglected. However, it is possible to give an indirect argument that

* An interesting property of this solution is that it “‘predicts” not only the dimension of the “effective”
space-time (three) but also its non-euclidean signature. This raises a hope that both the dimension

and the signature of the physical space-time may be predicted in a similar fashion in a more realistic
superstring context. 3
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(adS); XxRP~? with ® —5F?=0 may still be an exact (tree level) solution of string
theory ground state equations (28). Eqgs. (28) imply vanishing of expectation values
of some string-theory operators constructed of ¢' and g,, Particular vacuum
backgrounds may be distinguished by some symmetry properties implying the
vanishing of these expectation values. For example, if the generalized string action
(8) corresponds to a conformal invariant two-dimensional field theory then (at least
in the tree approximation and for the critical number of dimensions) the expectation
value of any local operator of non-negative dimension vanishes and thus the
corresponding background fields solve egs. (28) (cf. [43]). The only known confor-
mally invariant model (with vanishing .8-function) .of the type (8) is the principal
o-model with the Wess-Zumino term having a properly chosen coefficient [26]
(supersymmetry offers additional possibilities [19, 28]). The simplest example is (8)
with G, being a metric on S°, A; having Fy, = fey (f = const) on §°, @ = const and
all other fields vanishing. If the scalar curvature of Gy is ® =6/r (r is the radius
of S°) then the value of f ensuring the vanishing of the B-function is f=+2/r so
that R —F,, FY =0{26, 28]. Note that not only S* but also its “analytic continu-
ation” obtained by changing the signature from (+++) to (—++) without violating
the relation & —{F>=0 (i.e. (adS); with Fj; ~ &) is admissible as providing the
vanishing B-function. Thus in spite of the fact that higher-order terms in (51) are
not naturally suppressed for the above (adS), XR”~ solution it is likely to coincide
with an exact (tree-level) ground state solution of the Bose string theory.

The action analogous to (51) is found if we include the contribution of the
“dilaton” field C in (8) (see ref. [42]). Taking for simplicity ® = const we get in
the tree approximation (at the critical dimension)

r~ jd”qb VG e {1+ [R +4(3,C) —5F 5] +0(a?)}, (53)

or after the Weyl rescaling G; > G;; exp (4C/(D—-2))
4 ( o.. 4C
r Kza,jd &G exp (_D~2)

1 4
“FJ d°¢ Jﬁ{ge 55 @CY —uF e-‘Cf‘”-=’+0(a')} :
r)(D-Z},N s g s e—cr . (531')
The second term here has the same form as the bosonic part of the action of D =10
supergravity. The important advantage of our approach over the previous ones
[3, 14] (based on S-matrix considerations) is that we are able to establish the full
non-polynomial structure of dilaton couplings. Assuming C = const in the vacuum,
the effective equation 8I"/8C =0 implies the vanishing of the “lagrangian” in the
curly brackets in (53) (and thus, incidentally, the vanishing of the vacuum value of
cosmological constant). Now it is easy to prove the observation made in ref. [43])

k~gla
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that (in the tree approximation) type I superstring theory always admits a vacuum
solution M'® =M* x 35, where M* is flat. In fact, because of 8I'/ 8C =0 the equation
8I'/ 8G; =0 looks like (cf. (52); e7>€ in (53) plays the role of 2% in'(51))

If M* is maximally symmetric, all “matter” fields should have vanishing 4-
dimensional components (the argument breaks down for type 1A theory where one
may have Fj~ €;y). Then Ripr=0, i, j/.=0,...,3, is always a solution of
8I'/8G;=0.

One may question how the tachyon problem can be solved in an open Bose string
theory. The generalization of (7) to the (oriented) open-string theory (more properly,
to the theory of interacting open and closed strings) is

I'(®, Gy, A, C,.|X, A, 1= ¢™ J- [dg,.l[de'le™ tr(Pe™), (54)

where the summation goes over compact (oriented) 2-manifolds with the topology
of a disk with holes (k) and handles (n) (x =1—k—2n); I is _given by (8) and

= drex @ +idate+ ), 6=,

@'(1)=¢'(x(1)), x*(t) parametrizes the boundary, e*(?)=(g,,%*%")sm. The fields
X, A, ... correspond to the modes of the open-string spectrum (scalar tachyon,
massless vector,...) and are assigned to representations of an internal symmetry
group G (in the oriented string case G=U(N) and fields belong to the adjoint
representation). P in (54) is the ordering along dM. Ignoring non-trivial back-
grounds of the fields of the closed string sector (G, = 8, @ =0) we get for G =U(1)
in a tree approximation (M?= disc)

r-j qubj dLL” e *H1+ ma'ky(D)D X +ina Kk FyFY +- - -}
0

&5 J. dD‘ﬁf(}?){] + b(i)EIX’ + '.'rza'zJF‘ijF'f-{- cee},

L=AL, X=A"'X, A->w,
L= (the length of IM?) =2ma,  F;=0,A;—3A;,

k|=E%d_OK(B,G]é—f]nL~+const, 0<6<2mw,

. &
kz—§d0§d8 [BBK(e 9)55;1((8 0)-K(#8, ﬂ)mf((ﬂ 0)] =2,

where K (6, 8")= K(z, z')|,m is the boundary value of the Neumann function on a
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standard disc with radius a,
K(z z’)=-—1—ln|z—-z’]|z--f’_'|, zlm=ae”.
2w

A stable vacuum may correspond to X =const, F;~ g, i.e. to a breakdown of
D-dimensional Lorentz symmetry to O(2) xO(D =1, 1). It may happen, however,
that a stable ground state is possible only after the account of loop corrections, and
thus of “condensates” of G; and Ay

5. Discussion

The argument which led to the expression (7) for the effective action used a string
theory motivation. At the same time, another interpretation of I" is possible. One
~ can forget completely about the string theory and consider (7) as a basic definition
of the effective action in a fundamental theory of infinite number of fields with the
“massless” ones being the metric and the antisymmetric tensor. (In the supersym-
metric case the massless sector will include also other “lower-spin” Bose and Fermi
fields in a number hopefully sufficient for a low-energy correspondence with the
" “standard model”.) The “internal” variables which are quantized in this theory are
the coordinates ¢’ (and also the “internal” metric g,,). The “classical” space-time
coordinates ¢’ are the mean values of ¢'(x) (cf. (10)). All “ordinary” fields are not
explicitly quantized but their quantum dynamics is implicitly accounted for due to
their dependence on the fluctuating space-time coordinates ¢’ (see (8)).

A reasonable point of view is that all we need to know from a fundamental
“quantum gravity” theory is an effective action I'[ G, ¥] (G is the metric and
stands for all other fields) that should satisfy several conditions: (i) it should be
mathematically well defined, i.e. finite, calculable, etc; (ii) it should possess a
consistent (unitary) low-energy limit, i.e. should contain the Einstein term and
kinetic terms for ¢ with correct physical signs and no instability should be present
(no ghosts and tachyons, i.e. positive energy); (iii) it should be a starting point for
a study of fundamental problems of Planck scale physics (quantum cosmology,
compactification of extra dimensions, black holes, etc). '

The I' in eq. (6) may be viewed as a candidate for such an effective action. It is
free of the usual problems of effective actions in ordinary field theories: it is
manifestly covariant and “gauge independent” (no guage is needed to be fixed for
Gy) and it is free of the ultraviolet infinities. There are also no other problems (like
indefiniteness of the classical action) arising in the naive quantization of the Einstein
theory itself. . : : :

It of course remains to be seen whether I' as defined by (7) is completely free of
pathologies like some special sorts of infinities or inconsistency of the “loop
expansion” in (7). In fact, the prescription of summation over topologies may look
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ad hoc* so that it may be desirable to derive it as a perturbation expansion for the
quantum field theory of string functionals ¥[C] with the action | WA¥ + ¥ (in
analogy with what was done in the light-cone gauge in [39]). A covariant formulation
of such a “second quantized™ theory (generalizing the Polyakov approach to the
“first quantized” string) remains to be developed.

Adopting this point view on the action (7) we are led to the follewing natural
question: why the action (8) standing in the exponent in (7) is given by a two-
dimensional integral, i.e. corresponds to one-dimensional extended objects (strings) ?
We know that historically the string theory was first developed in the context of a
strong interaction theory and only then was it observed that the presence of
“graviton” in the string excitation spectrum suggests a more fundamental role of
strings. Nowdays it is clear that the quark-antiquark pair connected by an open
string is indeed an adequate description of mesons, following from QCD but there
seems to be no general arguments distinguishing strings as basic objects for the
construction of a fundamental theory like (7). In fact, it is straightforward to write
down a generalization of (7) for the case of a closed “extended” object of dimension
d —1 (particle, string, membrane, . . .)**

e, G A, 1= J[dg,v] I[dw}e""“"

lopolmuu

I=A4 J dx Vg d(e)+ A 2M? I dxVgig" .0 B,tiju(qJ)

+iM? J dix e rag, @ e+ 3, pUA (@) ... . (55)

Here u, v=1,...,d, i, j=1,...,D, M=Q2ma')""? A is a cut off, and dots
stand for “higher-spin” field terms like [z g**g**3,0%3,0%,0%,¢ “B;..., dx,
etc. The action I (and hence I' =[ d°¢ VG Z(P(d),...), cf. (11)), possesses only
two kinds of “‘external” gauge invariances: (i) the D-dimensional covariance which
is simply a consequence of the d-dimensional covariance of I; (ii) the abelian gauge
invariance for the antisymmetric tensor, A, ..., =, Ay,...;,;- As a by-product, we
deduce that the spectrum of excitations in a theory of closed d ~ 1(>0)-dimensional
objects should contain the massless (gauge) fields (represented by the metric G
and the antisymmetric tensor of rank d) in addition to the infinite number of the
massive fields***. In this way we understand that any theory (either supersymmetric
or not) based on extended objects of an arbitrary dimension should contain (when

* One may question why different “loop diagrams” are taken with weights exp (o) and not with o(x)
where @ is some unknown function. A partial justification is provided by the observation that oy
can be written as a local addition to the action (8).

** We assume that @ contains a constant part ~(1—3d), cf. [40].
***The spectrum of a theory of open (d — 1)-dimensional objects is a “combination” of the spectra of
the theories of closed objects of dimensions (d —1) and (d —2).
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interpreted in four dimensions) massless particles only of spins s <2. The point is
that “higher-spin” fields in (55) lack the corresponding gauge groups needed to
ensure their masslessness in I. The distinguished role played by G, and A,l...u' is
due to the existence of only two covariant objects (g,, and £“1""*4) on an arbitrary
finite-dimensional riemannian manifold. To get massless higher-spin fields we need
a new (infinite-dimensional?) geometry with higher symmetric invariants.

What is less clear is how to give meaning to the sum over topologies in (55).
Lacking topological classification of (d > 2)-dimensional closed manifolds it is
difficult to classify admissible types of interactions of extended objects. At the same
time, the inclusion of non-trivial topologies (“loops’™) is necessary in order to have
the efiective “duality’” between the “source” (external) fiélds in (55) and virtual
states that propagate in loops (this “duality” is absent in the case of particles, i.e.
d =1). If this duality takes place, we can q_onsié(entl_y truncate I" to an effective
action I for a field theory of finite number of fields defined at energies E <M, so
that “loop” corrections to I" reproduce ordinary loop corrections to I" computed
with a cutoff at higher energies. Another problem is that the kinetic part of the
action I in (55) lacks Weyl invariance if 4> 2 and hence the “first stage™ effective
action W[g, @,...] (cf. (13)) will be essentially non-jocal and difficult to compute..
‘These and other techmical probléms present for d>2 distinguish the string case
d =2 as a first non-trivial but yet tractable one.

Leaving aside these complications it is possible to guess the low-energy (M - )
structure of I' in (55). As in the string case it is natural to suppose again that the
higher tensor fields By,... are irrelevant for a study of a ground state problem, so
that the 1/ M expansion of I" looks like (cf. (39), (48))

o, G, Al~ j d° J‘G‘{ V(¢)+—B—l;- (9)9,D3,DG"

1 1 P
+ Flf;(d’)% +E2f3( P)F, ..., Fi e+ 0( l/M‘)} ’ (56)

'In analogy with the string case, it appears likely that the ground state values of
fields will be @ =const, G;={block diagonal metric corresponding to a D-
dimensional space-time being a product space containing one or several (d+1)-
dimensional factors} and F,...;,,, ~ &,...;,,, (for indices belonging to a (d +1) sub-
space). Hence compactification to four dimensions is preferred in the case of
membranes. We would like to note, however, that the actual compactification
mechanism may be different from that of ref. [36] due to the presence of the scalar
& (as we already saw in sect. 4). Also, higher-order ((1/ M*)®?+- - -) terms in (56)
may be important. :

One of the authors-(A.A.T s.) acknowledges useful discussions with S.M. Apenko,
A.M. Semikhatov, 1.V. Tyutin, M.A. Vasiliev and B.L. Voronov. .
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Note added

After this paper was written we learned about the preprint [41] where a
“phenomenological” approach to the study of compactification in a Bose string
theory is discussed. It seems that the “first principles” approach to a field-theoretic
description of a quantum string theory developed in our work provides a consistent
framework for investigation of the ground state problem (including space-time
compactification) in this theory and gives answers to the principal questions raised
in ref. [41].

Note added in proof

Computing I' at the critical dimension we are to discard the integral over the
conformal degree of freedom p using a Weyl gauge. The resuiting off-shell expression
for I' a'priori depends on the Weyl gauge used. A crucial consistency requirement
should be gauge independence of the effective background (a solution of (28)) and of I
computed at the stationary point. A sufficient condition for this is the Weyl invariance
of the integrand (i.e. a decoupling of p) for the stationary values of the fields. The
on-shell Weyl invariance is also crucial for consistency of the amplitudes generated by
I'[44]. Tt is remarkable that the effective equations corresponding to (53) do imply (to
the leading order) the quantum Weyl invariance of the string action (8). As was
noted in ref. [45] they also imply the (one-loop) ultraviolet finiteness of the corre-
sponding o-model. Our conjecture (which may turn out to be true only in the
superstring case) is that the stationary points of the effective action always correspond
to Weyl-invariant (and thus finite) two-dimensional theories.
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